
Sample size requirement for achieving multisite harmonization 
using structural brain MRI features

Pravesh Parekh#a,c,d,f, Gaurav Vivek Bhalerao#b,c,d,e,
Accelerator Program for Discovery in Brain disorders using Stem cells (ADBS) Consortium
Biju Viswanath1, Naren P. Rao1, Janardhanan C. Narayanaswamy1, Palanimuthu T. 
Sivakumar1, Arun Kandasamy1, Muralidharan Kesavan1, Urvakhsh Meherwan Mehta1, 
Odity Mukherjee2, Meera Purushottam1, Bhupesh Mehta1, Thennarasu Kandavel1, B. 
Binukumar1, Jitender Saini1, Deepak Jayarajan1, A. Shyamsundar1, Sydney Moirangthem1, 
K.G. Vijay Kumar1, Jayant Mahadevan1, Bharath Holla1, Jagadisha Thirthalli1, Bangalore 
N. Gangadhar1, Pratima Murthy1, Mitradas M. Panicker3, Upinder S. Bhalla3, Sumantra 
Chattarji3, Vivek Benegal1, Mathew Varghese1, Janardhan Y.C. Reddy1, Padinjat Raghu3, 
Mahendra Rao3,
Sanjeev Jain

,

Dr. John P. Johnc,d,f,#, Dr. G. Venkatasubramanianb,c,d,##

aNORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of 
Clinical Medicine, University of Oslo, Oslo, Norway

bTranslational Psychiatry Lab, National Institute of Mental Health and Neurosciences (NIMHANS), 
Bangalore, India

cADBS Neuroimaging Centre, National Institute of Mental Health and Neurosciences (NIMHANS), 
Bangalore, India

dDepartment of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), 
Bangalore, India

eDepartment of Psychiatry, University of Oxford, United Kingdom

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
#Corresponding authors: Dr. John P. John, Multimodal Brain Image Analysis Laboratory, Department of Psychiatry, National Institute 
of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India. jpj@nimhans.ac.in. ##Corresponding authors: Dr. 
Ganesan Venkatasubramanian, Translational Psychiatry Lab, Department of Psychiatry, National Institute of Mental Health and 
Neurosciences (NIMHANS), Bangalore, 560029, India. gvs@nimhans.ac.in. 

Author contributions 
Pravesh Parekh and Gaurav Vivek Bhalerao: Conceptualization, Methodology, Software, Formal analysis, Data Curation, Writing - 
Original Draft, Writing - Review & Editing, Visualization
The ADBS Consortium: Computing resources
John P. John and Ganesan Venkatasubramanian: Resources, Writing - Review & Editing, Supervision, Project administration, 
Funding acquisition

Declaration of Competing Interest 
None

Ethics statement 
The NIMHANS dataset was acquired as part of two research projects which received ethical clearance from the Institute Ethics 
Committee, prior to data collection. No additional ethical clearance was requested as the other datasets are already publicly available.

Europe PMC Funders Group
Author Manuscript
Neuroimage. Author manuscript; available in PMC 2023 September 19.

Published in final edited form as:
Neuroimage. 2022 December 01; 264: 119768. doi:10.1016/j.neuroimage.2022.119768.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://creativecommons.org/licenses/by-nc-nd/4.0/


fMultimodal Brain Image Analysis Laboratory, National Institute of Mental Health and 
Neurosciences (NIMHANS), Bangalore, India

1National Institute of Mental Health and Neurosciences (NIMHANS)

2Institute for Stem Cell Biology and Regenerative Medicine (InStem)

3National Center for Biological Sciences (NCBS)

# These authors contributed equally to this work.

Abstract

When data is pooled across multiple sites, the extracted features are confounded by site effects. 

Harmonization methods attempt to correct these site effects while preserving the biological 

variability within the features. However, little is known about the sample size requirement 

for effectively learning the harmonization parameters and their relationship with the increasing 

number of sites. In this study, we performed experiments to find the minimum sample size 

required to achieve multisite harmonization (using neuroHarmonize) using volumetric and surface 

features by leveraging the concept of learning curves. Our first two experiments show that site-

effects are effectively removed in a univariate and multivariate manner; however, it is essential 

to regress the effect of covariates from the harmonized data additionally. Our following two 

experiments with actual and simulated data showed that the minimum sample size required for 

achieving harmonization grows with the increasing average Mahalanobis distances between the 

sites and their reference distribution. We conclude by positing a general framework to understand 

the site effects using the Mahalanobis distance. Further, we provide insights on the various factors 

in a cross-validation design to achieve optimal inter-site harmonization.
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1 Introduction

With the advent of standardized data sharing structures such as the Brain Imaging Data 

Structure (Gorgolewski et al., 2016) and the availability of open-source platforms for data 

sharing, such as OpenNeuro (Markiewicz et al., 2021), it is increasingly common to share 

different kinds of neuroimaging data. Performing analyses by pooling samples across these 

datasets allows for increased sample size, better representation of geographical diversity, 

and the potential to develop robust, generalizable models. However, using multi-site data 

is challenging owing to factors like different scanners/hardware, differences in acquisition 

protocols, conditions of data acquisition (such as subject-positioning, eyes-open vs. eyes-

closed during resting-state functional magnetic resonance imaging (fMRI)), variations in 

terms of image quality, etc. When pooling samples across scanners, it is essential to 

correct for site-related variations, which can otherwise influence outcome measurements 

like cortical thickness and brain volumes (for example, see (Fortin et al., 2018; Lee et al., 

2019; Liu et al., 2020 Medawar et al., 2021; Takao et al., 2014; Wittens et al., 2021)). These 

“batch effects” are well-known in fields like microarray technology, where methods have 
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been developed to correct for these effects (see (Johnson et al., 2007) and (Leek et al., 2010) 

for a review).

Multiple harmonization methods have been proposed for correcting scanner-related 

differences in neuroimaging. A regression-based procedure to correct for site-effects is 

to add dummy-coded scanner/site variables (for example, (Bruin et al., 2019; Fennema-

Notestine et al., 2007; Pardoe et al., 2008; Rozycki et al., 2018; Segall et al., 2009; 

Stonnington et al., 2008). Another popular method for correcting site-specific effects is 

to use ComBat (Fortin et al., 2018; Johnson et al., 2007). The ComBat harmonization 

method models the location and scale of the variables to be harmonized, accounting for the 

additive and multiplicative effects of the site on the variables and preserving the site-specific 

biological variability (Fortin et al., 2018, 2017). Various extensions to ComBat have been 

proposed, such as ComBat-GAM, which models the non-linear effect of the age (Pomponio 

et al., 2020) available as the neuroHarmonize package, CovBat, which additionally models 

the covariance in the data (Chen et al., 2021), ComBat for longitudinal data (Beer et al., 

2020), etc. A newly developed method, NeuroHarmony, attempts to generalize to unseen 

scanners/sites, taking into account the image quality metrics (Garcia-Dias et al., 2020).

Previous work has shown that harmonization methods like Com-Bat can remove site-related 

effects. For example, (Zavaliangos-Petropulu et al., 2019) examined differences in ROI-level 

diffusion measures and found only one remaining ROI showing significant protocol-related 

differences post harmonization. In (Fortin et al., 2017), the authors showed that ComBat 

effectively removed site-related differences from voxel-level diffusion scalar maps and 

ROI-level diffusion measures. Similarly, in (Fortin et al., 2018), the authors showed that 

the site-related effects on cortical thickness were removed using Combat. In addition to 

univariate results, the authors also demonstrated the removal of site-related effects in a 

multivariate manner: a support vector machine (SVM) classifier was unable to predict the 

site after harmonization.

The sample used for “learning” harmonization parameters must adequately capture site-

related effects to achieve inter-site harmonization. This becomes critical in situations where 

harmonization needs to be carried out in a cross-validation manner − learning of the 

harmonization parameters happens from the training set, and these parameters are then 

applied to the test set (for example, in machine learning). Therefore, a central question in 

such paradigms is finding the minimum sample size required to eliminate the site effects. 

Additionally, it is essential to assess the sample size requirement in the context of a potential 

multi-variate relationship between the variables and the site. In this paper, we attempt to 

address this lacuna by leveraging the concept of learning curves to find the minimum sample 

size required to remove site-related effects. By iteratively increasing the sample size per site 

and training a machine learning classifier to predict the site, we attempt to find the sample 

size at which the classifier prediction reduces to chance.
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2 Methodology

2.1 Datasets

For this study, we selected T1-weighted MRI scans of healthy subjects from four publicly 

available datasets and supplemented them with scans from our labs. We restricted our 

selection to datasets that had scans of at least 300 healthy subjects acquired on the same 

scanner. The first dataset was the Southwest University Adult Lifespan Dataset (SALD) 

(Wei et al., 2018), a cross-sectional sample of 494 subjects. The second dataset consisted 

of the scans acquired at the Guy’s Hospital and available as part of the IXI dataset 

(available at https://brain-development.org/ixi-dataset/) and composed of 322 subjects 

(henceforth referred to as “Guys” dataset). The third dataset was the Amsterdam Open MRI 

Collection (AOMIC) (Snoek et al., 2021a, 2021b) and consisted of 928 subjects. The fourth 

dataset was a pooled1 version of four different datasets: the Beijing Normal University 

(BNU) dataset 1 (Lin et al., 2015)(n = 57; available at: https://fcon_1000.projects.nitrc.org/

indi/CoRR/html/bnu_1.html), BNU dataset 2 (Huang et al., 2016) (n= 61; available 

at: https://fcon_1000.projects.nitrc.org/indi/CoRR/html/bnu_2.html), BNU dataset 3 (n= 

48; available at: https://fcon_1000.projects.nitrc.org/indi/CoRR/html/bnu_3.html), from the 

Consortium for Reliability and Reproducibility (CoRR) dataset (Zuo et al., 2014), and the 

“Beijing_Zang” dataset (n= 192) from the 1000 Functional Connectomes Project (Biswal et 

al., 2010). The CoRR dataset is test-retest reliability scans, and for the present work, we 

only considered the baseline scans for all subjects (we henceforth refer to this combined 

dataset as “BNUBeijing”). The final dataset (“NIMHANS” dataset) consisted of 372 

subjects collected at the National Institute of Mental Health and Neurosciences (NIMHANS) 

as part of two different research projects.

2.2 Image acquisition and processing

We have summarized the critical acquisition parameters for the datasets in Table 1. For each 

image, we set the origin (i.e., (0,0,0) coordinate) to correspond to the anterior commissure 

(AC) using acpcdetect v2 (Ardekani, 2018; Ardekani et al., 1997; Ardekani and Bachman, 

2009) (available at: https://www.nitrc.org/projects/art/). We then, visually examined the 

images and manually set the origin to the AC using the display utility in SPM12 v7771 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) in case of acpcdetect failure. Then, we 

ran the segmentation and surface pipeline for all the images using the Computational 

Anatomy Toolbox (CAT) 12.7 v 1727 (http://www.neuro.uni-jena.de/cat/) with SPM12 

v7771 in the background, running on MATLAB R2020a (The MathWorks, Natick, USA; 

https://www.mathworks.com).

2.3 Quality check

First, we rejected the data of any subject with an age of less than 18 years. Next, we flagged 

the data of any subject whose CAT12 report had a noise rating of “D” or below. In the 

next step, we eliminated the scans of any subject where the CAT12 quantified white matter 

1We pooled these datasets as they were acquired on the same scanner; (Huang et al., 2016) mentions that the BNU series was 
acquired on the same scanner and Beijing_Zang was confirmed to have been acquired on the same scanner (Y.F. Zang, personal 
communication, December 04, 2021)
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hyperintensity exceeded a volume of 10 cm3 (while this criterion is arbitrary, it helped 

eliminate any scans with a potential of underlying white matter abnormalities). Additionally, 

to identify scans with improper segmentation, we calculated the Dice coefficient of the 

(binarized) modulated normalized gray matter image with the (binarized) template gray 

matter image (from CAT12) and flagged the images with a Dice coefficient less than 0.9. In 

addition, the NIMHANS dataset has undergone a thorough visual quality check as part of 

ongoing research work at our labs.

2.4 Selected sample

After the quality check, we had 489 subjects in the SALD dataset, 302 in the Guys dataset, 

928 in the AOMIC dataset, 341 in the BNUBeijing dataset, and 318 in the NIMHANS 

dataset. Since the lowest number was 302 subjects in the Guys dataset, we decided 

to randomly subset 300 subjects from each dataset for further experiments. Further, we 

rounded the age to the nearest integer. The socio-demographic details of these 1500 subjects 

are summarized in Table 2.

After the quality check, we had 489 subjects in the SALD dataset, 302 in the Guys dataset, 

928 in the AOMIC dataset, 341 in the BNUBeijing dataset, and 318 in the NIMHANS 

dataset. Since the lowest number was 302 subjects in the Guys dataset, we decided 

to randomly subset 300 subjects from each dataset for further experiments. Further, we 

rounded the age to the nearest integer. The socio-demographic details of these 1500 subjects 

are summarized in Table 2.

2.5 Features

We extracted regional gray matter volumes using the Hammers atlas (CAT12 version 1727; 

(Faillenot et al., 2017; Gousias et al., 2008; Hammers et al., 2003) as the primary features. 

This version of the Hammers atlas consists of 68 regions of interest (ROIs); from these, we 

excluded the bilateral parcels of corpus callosum, brainstem, and the ventricles, resulting 

in a total of 60 gray matter volumes for each subject. In addition to volumetric features, 

we also performed experiments using regional cortical thickness, fractal complexity, sulcal 

depth, and gyrification index. For these surface features, we used the Desikan-Killiany 

(DK40) atlas (Desikan et al., 2006) consisting of 72 parcellations; from these, we excluded 

the bilateral corpus callosum and the unknown parcels, resulting in a total of 68 surface 

estimates for each subject.

2.6 Harmonization

For all the experiments, we used the neuroHarmonize (Pomponio et al., 2020) (available 

at: https://github.com/rpomponio/neuroHarmonize/) toolbox for harmonizing the features 

across scanners. For each experiment, each model (see below), we preserved the effects of 

age, total intracranial volume (TIV), and sex (dummy coded as 1 for females).

2.7 Experiments

The primary motivation behind this study is to estimate the minimum sample size required 

to achieve inter-site harmonization, such that the multivariate mapping between features 

and scanners is removed. To achieve this, we first show that univariate (experiment 1) and 
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multivariate (experiment 2) mapping exists between features and scanners; we also show 

that this mapping is removed after performing harmonization. Then, in experiment 3, we 

use the concept of learning curves to estimate the minimum sample size required to remove 

the (multivariate) site effects. Finally, in experiment 4, we extended the learning curve 

experiment using simulated data. This was done to examine the sample size requirement 

under a wide-range of Mahalanobis distances (see below) and number of sites. Critically, we 

note that for experiments 2–4, we used the same seeds to ensure the comparability of the 

results.

2.7.1 Experiment 1: univariate differences—Following (Garcia-Dias et al., 2020), 

we performed two-sample Kolmogorov-Smirnov (KS) tests between pairs of scanners for 

each ROI’s brain volume and surface features to test if the distribution of the features were 

significantly different before and after harmonization. However, it should be noted that age, 

TIV, and sex will confound ROI features. Therefore, for each pair of scanners, for each 

ROI, we performed a linear regression to correct for these confounding variables. Then, the 

residuals from the linear regression were used for the pairwise two-sample KS test. Similar 

to the earlier work (Garcia-Dias et al., 2020), we did not perform any correction for multiple 

comparisons and examined our results at α = 0.05.

2.7.2 Experiment 2: multivariate differences—We fit a linear SVM model to predict 

the scanner using volumetric features. We repeated this before and after harmonization using 

10-fold cross-validation considering a pair of scanners at a time (10 combinations), three 

scanners at a time (10 combinations), four scanners at a time (five combinations), and all 

five scanners at the same time. We used the one vs. one coding method in MATLAB for 

multiclass classification. We performed the following operations within a cross-validation 

framework: regression of age, TIV, and sex (independently and combinations thereof; eight 

combinations), standardization of features, and training of linear SVM (using the default 

hyperparameter C = 1). In each of these steps, the parameters were learned from the training 

data of each fold and then applied to the test data. In the case of harmonization, the training 

data was harmonized, and harmonization parameters were applied to the test data before the 

regression step for each cross-validation fold. This was done to ensure that the regression 

coefficients were not confounded by site effects; a similar approach has been followed in 

(Pomponio et al., 2020). We repeated the 10-fold cross-validation 50 times and performed 

an additional 50 repeats of permutation testing (i.e., 100 repetitions for permutation testing). 

For permutation testing, we permuted the class labels of the entire data and calculated the p 
values as described in (Ojala and Garriga, 2010). This procedure is illustrated in Fig. 1.

2.7.3 Quantifying the multivariate site-effect—In order to quantify the multivariate 

site-effect prevalent in our dataset, we used the Mahalanobis distance (MD) (Mahalanobis, 

1936), which is a multivariate extension of Cohen’s d(Cohen, 1988) and can be used for 

calculating the standardized mean differences between groups (Del Giudice, 2009). We first 

calculated a reference distribution using the overall mean and pooled covariance matrix from 

the individual distributions. Then, we calculated the MD from each individual distribution to 

the reference distribution as:
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MDi = μi − μR
TC−1 μi − μR

where μi indicates the means of all variables in that individual distribution, μR indicates the 

means of all variables in the reference distribution, C indicates the overall pooled variance-

covariance matrix, and MDi indicates the calculated Mahalanobis distance of that individual 

distribution from the reference. We then averaged the individual MDi Dis to get an overall 

measure of the site-effect. We calculated two versions of MD − one without regressing 

any covariates and one after regressing the effect of TIV, age, and sex. When performing 

the regression, we regressed the effect of the covariates on the entire data (i.e., linearly 

regressing the effect of covariates across all sites in a single model) before calculating the 

MD.

2.7.4 Experiment 3: learning curves—In order to estimate the minimum sample size 

required to remove the site-effects, we leveraged the concept of learning curves. Stated 

simply, a learning curve can be used to assess the performance of a learner (SVM, in 

our case) as a function of increasing sample size. Within a cross-validation framework, 

when small sample sizes are used for learning harmonization parameters, we do not expect 

multivariate site-effects to be effectively removed from the test set. This can be tested 

by dividing the datasets into three parts: the first part used for learning harmonization 

parameters (and applying to the other parts), the second part used for learning the 

multivariate mapping between features and scanners, and the third part used for evaluating 

the classifier. If the site-effects are removed by harmonization, then a classifier will not be 

able to learn the mapping between features and scanners, and therefore the test accuracy 

of this classifier will be as good as chance level (which can be assessed by permutation 

testing).

The experimental design is illustrated in Fig. 2. For this experiment, we first performed a 10-

fold split on the dataset (n = 1500, 300 samples per scanner), resulting in 270 samples and 

30 samples (“SVM test”) per scanner; the 270 samples per scanner were then split into 200 

(“NH learn”) and 70 samples (“SVM train”) per scanner. The NH learn sample was used for 

learning harmonization parameters, the SVM train sample was used for training SVM, and 

the SVM test sample was used for testing the SVM performance. For the NH learn sample, 

we iteratively increased the sample size from 10 samples per scanner to 200 samples per 

scanner in increments of 10 samples (i.e., within each fold, 20 different sample sizes were 

used to learn harmonization parameters). For each sample size, we learnt the harmonization 

parameters and then applied to SVM train and SVM test samples. The harmonized SVM 
train sample was then used for training a linear SVM classifier to predict the scanner and 

the classifier performance assessed on harmonized SVM test sample. The entire process was 

repeated 50 times and an additional 50 repeats were performed for permutation testing (i.e., 

a total of 100 repeats for permutation testing). For this experiment, we learnt the regression 

coefficients (for the effect of age, TIV, and sex) from the SVM train samples and applied 

the coefficients to SVM test samples. Similarly, the standardization parameters were learnt 

from the SVM train samples and applied to the SVM test samples. Similar to experiment 2, 

we performed experiment 3 by taking a pair of scanners at a time (10 combinations), three 
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scanners at a time (10 combinations), four scanners at a time (five combinations), and all 

five scanners at the same time.

2.7.5 Experiment 4: simulation-based approach—We created 600 simulated 

samples per site by sampling from a multivariate normal distribution with means and 

covariances from the fractal dimension features from the actual data. Specifically, since 

we had five sites, we took their means and covariances and combined them to have 25 

different combinations of means and covariances; using these, we obtained 25 simulated 

datasets having 600 samples in each site. This strategy allowed us to get datasets covering a 

wide range of MDs between pairs of sites. We then repeated the learning curve experiment 

(experiment 3) using these simulated datasets with the difference that the k-fold split was 

20 fold, resulting in 30 samples per site for SVM Test, a holdout of 70 samples per site for 

SVM Train, and 500 samples for NH Learn (which we iterated over from 10 samples per site 

to 500 samples per site in increments of 10, stopping when the SVM Test performance was 

not above chance). The design of this experiment is shown in Fig. 3.

Having obtained the simulated data for 25 sites, we took combinations of two, three, and 

four sites taken at a time and ran experiment 3 with the data splits as mentioned above. In 

this simulation-based experiment, we did not attempt to simulate the covariates, in view of 

the complex multivariate relationship within the covariates and between the features and the 

covariates. Given the large number of possible combinations and the computational costs 

involved, we only ran the experiment by randomly2 selecting 100 two-, three-, and four-site 

combinations.

2.8 Data/code availability statement

The neuroimaging data used for all sites (except NIMHANS) is publicly available. The code 

for the experiments is available at https://github.com/parekhpravesh/HarmonizationPaper. 

The demographics and feature information for the NIMHANS dataset can be requested from 

the corresponding authors on presentation of a reasonable data analysis request. The other 

datasets used in this study are publicly available.

3 Results

3.1 Experiment 1: univariate difference

For every ROI, we compared the distribution of volumes and surface features between 

pairs of scanners before and after harmonization using a two-sample KS test at α = 0.05 

(after regressing the linear effect of age, TIV, and sex). Before harmonization, several 

of the gray matter volumes across ROIs were statistically different between pairs of 

scanners; after harmonization, most of these were not significantly different, except for 

the right pallidum (BNUBeijing vs. NIMHANS, p = 0.0491) and right thalamus (SWU 

vs. NIMHANS, p = 0.0243) (see Fig. 4 and Fig. 5). For cortical thickness, most ROIs 

were statistically different before harmonization; after harmonization, only left pericalcarine 

region was statistically significant (Guys vs. NIMHANS, p = 0.0113) (see Figures S1 and 

2We randomly selected 15 MDs <= 0.5, 70 MDs between 0.5 and 1.0, and 15 MDs > 1.0
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S2). For fractal dimension, several ROIs were significantly different before harmonization; 

after harmonization, the fractal dimension of only the right frontal pole was statistically 

significant (AOMIC vs. NIMHANS, p = 0.0391) (see Figures S3 and S4). For sulcal depth, 

several ROIs were significantly different before harmonization but after harmonization, 

none of the ROIs showed a statistically significant difference (see Figures S5 and S6). 

For gyrification index, several ROIs were significantly different before harmonization; after 

harmonization, the left pars orbitalis showed a statistically significant difference (AOMIC 

vs. BNUBeijing, p = 0.0309 and AOMIC vs. SWU, p = 0.0189) (see Figures S7 and S8). 

Additionally, we note that AOMIC vs. Guys and Guys vs. NIMHANS did not have many 

significantly different ROIs (less than 10) before harmonization for fractal dimension, sulcal 

depth, and gyrification index. Similarly, BNUBeijing vs. SWU only had four significantly 

different ROIs before harmonization (fractal dimension). The overall number of significantly 

different ROIs before and after harmonization across feature categories is summarized in 

Table 3. We note that some of the ROIs were statistically significant after harmonization; 

however, we emphasize that these p-values are prior to any multiple comparison correction. 

We did not perform any correction for the number of ROIs because it was more important to 

avoid any false negatives in this analysis.

3.2 Experiment 2: multivariate differences

For volumetric features, for all site combinations, before harmonization, the SVM models 

were always able to predict the sites above chance level, irrespective of which covariates 

were regressed. When harmonization was performed (within cross-validation), for all site 

combinations where no regression of covariates was performed, or when TIV alone was 

regressed, or when TIV and sex were regressed, the SVM model predictions were above 

chance level. When only sex was regressed, only AOMIC vs. BNUBeijing SVM model 

predictions were not statistically above chance level. When age alone, or TIV and age, 

or age and sex were regressed, SVM prediction for certain site combinations remained 

statistically significant. Only when TIV, age, and sex were regressed, the SVM predictions 

for all site combinations were statistically not significant. An example plot showing these 

accuracies before and after harmonization for all categories of covariate regression (for 

volumetric features) is shown in Fig. 6. Overall, all harmonized SVM accuracies were 

lower than before harmonization, irrespective of which covariates were regressed. This 

indicates that harmonization does remove site effects; however, it is important to additionally 

regress the confounding variables of TIV, age, and sex after harmonization to eliminate 

site-effects completely. For surface features, we saw a similar trend, albeit some differences 

(see supplementary material); the overall trend of SVM accuracies being non-significant 

after regression of TIV, age, and sex was consistent across the four surface feature categories 

− cortical thickness, fractal dimensions, sulcal depth, and gyrification index.

3.3 Quantifying the multivariate site-effect

We used the MD to quantify the site-effect before and after regression. These results 

are summarized in Fig. 7. Overall, we observed a reduction in MD after the regression 

of confounding variables of age, TIV, and sex. Further, for fractal dimension, sulcal 

depth, and gyrification index, we observed that the MD were smaller than volumetric and 

cortical thickness features. We observed the smallest effect sizes in SWU vs. NIMHANS 
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(volumes), AOMIC vs. NIMHANS (cortical thickness and gyrification index), AOMIC 

vs. Guys (fractal dimension and sulcal depth) before regression; after regressing of the 

covariates, the smallest effect sizes were in AOMIC vs. Guys (for all feature categories). 

The largest effect sizes were seen in BNUBeijing vs. Guys (volumes), BNUBeijing vs. Guys 

vs. NIMHANS (cortical thickness), AOMIC vs. BNUBeijing vs. Guys vs. SWU (fractal 

dimension), AOMIC vs. SWU (sulcal depth), and AOMIC vs. BNUBejing vs. Guys vs. 

SWU vs. NIMHANS (gyrification index) before regression; after regression, the largest 

effect sizes were seen in AOMIC vs. BNUBeijing vs. Guys vs. SWU (volumes, cortical 

thickness, fractal dimension, and sulcal depth), and in AOMIC vs. BNUBeijing vs. Guys vs. 

SWU vs. NIMHANS (gyrification index).

3.4 Experiment 3: learning curves

When examining learning curves, we looked for the sample size at which the SVM classifier 

performance was no different than chance level (“convergence”) − we considered the sample 

size at which we first observed p > = 0.05 as the required minimum sample size to remove 

site-effects completely. For volumetric features, for two-site combinations, all combinations 

except AOMIC vs. BNUBeijing and Guys vs. SWU converged and the sample size required 

ranged from 120 per site (Guys vs. NIMHANS) to 180 per site (AOMIC vs. NIMHANS). 

When considering more than two-site combinations, we did not see convergence up to 

200 samples per site (see Figures S9 and S10). The two-site results for volumetric data is 

summarized in Fig. 8.

For cortical thickness, for two-site combinations, all combinations except BNUBeijing vs. 

NIMHANS and Guys vs. SWU converged (see Figure S11). The sample size required 

ranged from 110 per site (Guys vs. NIMHANS) to 200 per site (AOMIC vs. BNUBeijing). 

We did not see convergence up to 200 samples per site when considering more than two-site 

combinations (see Figures S12 and S13).

For fractal dimension, for two-site combinations, all combinations converged, and the 

sample size required ranged from 50 samples per site (AOMIC vs. Guys) to 200 samples 

per site (Guys vs. SWU) (see Figure S14). For three-site combinations, we observed 

convergence for AOMIC vs. Guys vs. NIMHANS (160 samples per site), BNUBeijing vs. 

SWU vs. NIMHANS (190 samples per site), and BNUBeijing vs. Guys vs. NIMHANS 

(200 samples per site) (see Figure S15). The other multi-site combinations did not show 

convergence for up to 200 samples per site (see Figure S16).

For sulcal depth, for two-site combinations, all combinations except Guys vs. SWU 

converged, and the required sample sizes ranged between 70 samples per site (AOMIC 

vs. Guys) and 160 samples per site (AOMIC vs. SWU and AOMIC vs. BNUBeijing) (see 

Figure S17). For three-site combinations, only AOMIC vs. Guys vs. NIMHANS converged 

(180 samples per site) (see Figure S18); all other multi-site combinations did not show 

convergence for up to 200 samples per site (see Figure S19).

For the gyrification index, for two-site combinations, all combinations except Guys vs. SWU 

converged, and the required sample sizes ranged between 70 samples per site (AOMIC vs. 

Guys) and 200 (AOMIC vs. BNUBeijing) (see Figure S20). For three-site combinations, 
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AOMIC vs. BNUBeijing vs. Guys showed convergence at 200 samples per site (see Figure 

S21); all other multi-site combinations did not show convergence for up to 200 samples per 

site (see Figure S22).

In general, for every site-combination, we observed that the minimum sample size required 

for convergence increased with increasing average MDs. We observed that low MDs 

generally led to lower required sample size (for example, across all feature categories, the 

lowest MDs was ~0.24 for fractal dimension between AOMIC and Guys, which showed 

a convergence at a mere 50 samples per site). We calculated the correlation between the 

average MDs (across all feature categories) and the minimum sample sizes required per site 

(excluding the site combinations which did not converge) and found a strong association 

between these (r = 0.82, p < 0.00).

3.5 Experiment 4: simulation-based approach

Similar to our learning curve experiment, when examining the sample size requirement for 

a variety of MDs, we observed that the sample size requirement increased with increasing 

MDs. When comparing the sample size requirement across a number of sites for comparable 

MDs, we observed that the sample size requirement typically increased with an increasing 

number of sites. A summary of the results from the simulation-based approach is shown in 

Fig. 9.

4 Discussion

This study aimed to estimate the minimum sample size required for achieving inter-

site harmonization of volumetric and surface measures. The first step in this quest 

was to establish whether site effects are effectively removed after harmonization. The 

first experiment showed that most measures across ROIs showed site-effects before 

harmonization; almost all the site-effects were removed (in a univariate manner) after 

harmonization. The few ROIs which were statistically different after harmonization are 

likely false positives as we did not correct for multiple comparisons. However, it is 

not enough to show that site-effects are corrected in a univariate manner. Therefore, we 

employed a machine learning approach to assess whether the site effects are eliminated 

in a multivariate manner. The results of this experiment showed that (in most cases) 

site effects are effectively removed only when performing harmonization and regressing 

the confounding effect of TIV, age, and sex. This reveals an interesting aspect related 

to the site-effect. Given that the TIV is calculated from the images, the TIV itself is 

confounded by site-effects. If the TIV is “preserved” during harmonization, then some 

residual site-effects will remain in the harmonized features. Thus, when TIV is regressed 

after harmonization, there is better correction of site-effects. Similarly, if other covariates are 

strikingly different between sites, the harmonized feature values will also show these effects. 

Therefore, it becomes essential to regress the effect of additional confounding factors from 

the harmonized data.

Next, when we examined the learning curves to find the minimum sample size needed for 

effective removal of site-effects (after regressing the confounding effects of TIV, age, and 

sex from harmonized data), we observed that the required sample size exceeded the available 
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sample size in several cases, especially when harmonizing features from more than two sites. 

This is evident when examining the average MDs − as the value of MDs increases, the 

sample size needed to remove site-effects increases (correlation between MDs and sample 

size = 0.82). For example, ROI volumes and cortical thicknesses had, in general, larger 

values for MDs and did not show convergence for more than two sites taken at a time. In 

contrast, fractal dimension, on average, had smaller values for MDs and therefore showed 

convergence for a few of the three site combinations.

We observed a similar trend with the simulation approach, where we observed convergence 

at a sample size greater than 200 for larger MDs. This provides insights into why we did 

not see convergence (at a maximum sample size of 200) for several cases in real data. 

This experiment also reveals an interesting property about the sample size requirement − in 

general, for the same MDs, the sample size requirement increases with an increasing number 

of sites. However, we note that it is possible that our simulation approach overestimated 

the sample size requirement given that we did not simulate (and control for) the effect 

of covariates. In experiment 2, we showed that the site-effect reduces when covariates are 

controlled for − since we did not simulate and control the covariate in the simulated data, 

the uncorrected residual site-effects might have led to an overestimation of the sample size 

requirement.

Having proposed this framework of Mahalanobis distance to quantify the site-effects, we 

acknowledge that our study has a few limitations. When selecting the sites for this study, 

we opted to include BNU1, BNU2, BNU3, and BeijingZang as one dataset. We decided to 

do this based on (Huang et al., 2016) and (Y.F. Zang, personal communication, December 

04, 2021). However, it is possible that there might have been software/hardware upgrades 

which might have introduced some scanner-related variability within this dataset. Similarly, 

for the AOMIC dataset (Snoek et al., 2021b, 2021a), the scanner underwent upgrades during 

the data collection process. This might have introduced some additional scanner-related 

variability within the dataset, which we have not accounted for. Next, in our study we 

have only used neuroHarmonize as a method for correcting site-related effects. However, 

other methods exist for correcting these effects and we have not performed any comparison 

for sample size requirement across these methods. This could be the basis of future work 

where the effectiveness of harmonization method could be compared by calculating and 

comparing the Mahalanobis distances before and after harmonization. Additionally, in our 

study, we have only accounted for the linear trend of age, TIV, and sex. Specifically, we 

preserved these effects during data harmonization and then linearly regressed these effects. 

However, depending on the dataset and the ROI under consideration, it might be necessary 

to account for other trends in the data, such as non-linear age-related trends or accounting 

for more complex models which incorporate interactions among these variables (see, for 

example, (Pomponio et al., 2020), where the authors removed the non-linear trend of age 

from the data after harmonization). On a related note, one could also include other imaging-

derived features during harmonization (such as features from automated quality assurance 

methods like MRIQC (Esteban et al., 2017)). We note that neuroHarmony (Garcia-Dias 

et al., 2020) uses these additional variables during the harmonization process. Depending 

on the complexity of the model used for correcting site-related effects, if more site-related 
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effects are corrected for, we would expect that the Mahalanobis distance would shrink and 

therefore fewer samples would be required to achieve intersite harmonization.

4.1 Recommendations and future directions

Mahalanobis distance—In this study, we have provided a framework to examine the 

site-effects as the MD between each site and the reference distribution. The reference 

distribution is created using the overall mean and pooled covariance matrix from the 

individual sites. When considering more than two sites, we have computed the average 

of the MDs between each site and the reference distribution. However, this average MD 

value is just a mid-point summary statistic which will not entirely reflect the distances 

between the individual sites and the reference. For example, for three sites, the MD between 

one site and the reference may be far greater than the other two sites and the reference. 

Therefore, when considering the harmonization of data from more than two sites, it may 

additionally be useful to examine the range of the MD (i.e., the difference between the 

maximum MD and the minimum MD) as the sample size requirement may not only be 

driven by the average MD. We note that (Zhang et al., 2018) provide a data harmonization 

approach that allows one to specify a reference site. When using this approach, the MD 

can, then, be calculated with respect to the reference site rather than creating a reference 

distribution. In addition, future work should also examine the relationship between the 

minimum sample size and other distance measures. For example, distance measures which 

are bounded within a specific range (for example, the Jensen-Shannon divergence) could be 

useful in generalizing the distances across any number of sites as this might enable direct 

comparison of the distance measure independent of number of sites and number of features.

Number of sites and number of features—In our experiments, we examined the 

minimum sample size required for removing site effects for up to five site combinations. 

Further, we restricted our analyses to 60 volumetric features and 68 surface features. 

However, it is possible that as the number of sites and the number of features increase, 

the MD increases, and thereby the minimum sample size required for achieving inter-site 

harmonization increases. This would, of course, be dependent on the distribution of the 

features and the correlation among them. Future work should explore the sample size 

requirement by densely sampling a 3-dimensional grid of a number of sites × number of 

features × MDs.

Effect of covariates—In our second experiment, we examined the effect of preserving 

age, TIV, and sex as covariates and then regressed the linear effect of these covariates 

after harmonizing the data. These results showed that this regression step is essential to 

achieving complete inter-site harmonization in a multivariate sense. However, the choice 

of the covariates will depend on the dataset and the scientific question being investigated. 

Investigators must carefully choose the covariates, the effect of which will be preserved 

during harmonization, and then subsequently removed; examples of such covariates include 

age (linear or non-linear effects), sex, TIV, their interactions, quality assurance measures, 

etc. We have previously remarked about the relation between TIV and site effects. However, 

when simulating data, we have not accounted for the covariates given the multivariate 

relationship within the covariates and between the covariates and the features. The minimum 
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sample size required to achieve inter-site harmonization may change depending on the 

number of covariates preserved during harmonization and may additionally depend on the 

type of the covariate (categorical/continuous), along with the MDs, the number of sites, 

and the number of features. Further, when harmonizing data across groups of subjects (for 

example, healthy subjects and patients), it might be better to have representative samples of 

all the groups in the harmonization training set and add the group effect as a covariate to be 

preserved, although we have not investigated this aspect in our study.

Cross-validation—In all experiments (experiment 2–4), all the steps (including regression 

of covariates and standardization of data) were performed within a cross-validation 

framework (see Fig. 1 and Fig. 2 for experimental designs). This is an often overlooked 

step where confound correction is performed on the entire data before any machine learning, 

leading to information leakage (see, for example, (Snoek et al., 2019)). Similarly, other 

steps, including data harmonization and standardization, should be performed within a 

cross-validation framework to prevent any information leakage. Therefore, the design of the 

experiment (including the number of folds and the type of cross-validation) is a critical 

factor. It is important to ensure that the training sample is representative of the actual 

dataset; in addition, our results show that the number of folds is an important consideration 

as it will directly control the number of samples available for learning harmonization 

parameters.

Alternate methods for harmonization—As mentioned before, in addition to ComBat, 

other extensions to ComBat like CovBat (Chen et al., 2021) have been proposed. 

Similarly, recently proposed methods like NeuroHarmony (Garcia-Dias et al., 2020) need 

to be tested and evaluated in terms of their sample size requirement for achieving 

intersite harmonization. Additionally, it would be interesting to explore the use of site-

specific regression of covariates within cross-validation and mixed-effects modeling (where 

covariates like TIV, age, and sex are fixed-effects and site is a random-effect) as alternate 

methods for data harmonization. If a harmonization method is more effective than another, 

we would expect that the Mahalanobis distance would shrink, and therefore fewer samples 

would be necessary for effectively removing site effects. On the other hand, if a simplistic 

model is used for correcting site-related effects, then the Mahalanobis distance will be 

larger, and more samples would be required to achieve inter-site harmonization.

5 Conclusion

For multi-site studies that involve any form of cross-validation, it is important to carefully 

design the experiment such that there is enough number of samples (per site) available in 

the training dataset to learn the harmonization parameters adequately. Examples of such 

situations include machine learning classification and prediction studies and model-building 

studies to apply the model to new data. In this study, we have provided a framework utilizing 

Mahalanobis distance to quantify the site effects. Through real data and simulations, we 

have shown the estimated minimum sample size required to remove site effects completely. 

We have attempted to provide some rules of thumb for this sample size requirement under 

different circumstances (see Fig. 9). However, our work indicates that further research needs 

to be carried out in this area while accounting for various previously enlisted factors.
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Fig. 1. 
Pipelines implemented in experiment 2: we trained a linear SVM classifier to predict 

the scanner from raw and harmonized structural features; additionally, we explored eight 

different regression models where we regressed the effect of different confounding variables 

from the structural features; the four pipelines have four different modules: harmonization, 

regression, standardization, and classification; the steps indicated with orange color were 

not performed in that pipeline. The 10-fold cross-validation was repeated 50 times and 

an additional 50 repeats of permutation testing (i.e., 100 repeats of permutation) were 

performed to assess whether the classification performance was above chance level. [color 

version of this figure is available online]. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. 
Pipeline implemented in experiment 3: we trained a linear SVM classifier to predict the 

scanner after using different samples sizes to achieve harmonization of structural features; 

first, we performed a 10-fold split on the data resulting in 30 samples per scanner (SVM 

Test) and 270 samples per scanner. The 270 samples were next split into 200 samples 

per scanner (NH learn) and 70 samples per scanner (SVM Train). For every sample size 

10 to 200, at increments of 10, we learnt the harmonization parameters using NH learn 

and applied it to SVM Train and SVM Test samples. Then, after regressing the effect of 

age, TIV, and sex, we standardized the SVM Train data (and applied the regression and 

standardization parameters to SVM Test) and trained a linear SVM classifier to predict 

the scanner. Model performance was assessed on SVM Test dataset. The 10-fold cross-

validation was repeated 50 times and an additional 50 repeats of permutation testing (i.e., 

100 repeats of permutation) were performed to assess whether the classification performance 

was above chance level. [color version of this figure is available online]. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of 

this article.)
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Fig. 3. 
Pipeline implemented in experiment 4: using simulated data, we trained a linear SVM 

classifier to predict the scanner after using different samples sizes to achieve harmonization 

of structural features; we performed a 20-fold split on the data resulting in 30 samples 

per scanner (SVM Test) and 570 remaining samples per scanner. The 570 samples were 

next split into 500 samples per scanner (NH learn) and 70 samples per scanner (SVM 

Train). For every sample size 10 to 500, at increments of 10, we learnt the harmonization 

parameters using NH learn and applied it to SVM Train and SVM Test samples. Then, after 

regressing the effect of age, TIV, and sex, we standardized the SVM Train data (and applied 

the regression and standardization parameters to SVM Test) and trained a linear SVM 

classifier to predict the scanner. Model performance was assessed on SVM Test dataset. The 

20-fold cross-validation was repeated 50 times and an additional 50 repeats of permutation 

testing (i.e., 100 repeats of permutation) were performed to assess whether the classification 

performance was above chance level. The whole process was repeated for every sample size 

in NH learn till the classification performance was above chance level. [color version of 

this figure is available online]. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.)
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Fig. 4. 
Summary of p-values from two sample Kolmogorov-Smirnov (KS) test between pairs of 

scanners for gray matter volumes from the left hemisphere. Each sub-plot indicates the 

p-values before (lower triangle) and after harmonization (upper triangle) between all pairs 

of scanners; the diagonal elements are shaded in a constant color to help distinguish lower 

and upper triangles. Each cell is color coded based on their p-value and only values smaller 

than 0.05 are shown. See Table S1 for the full names of the ROIs. Note that AOMIC dataset 

has been abbreviated to “AOM”, BNUBeijing dataset has been abbreviated to “BNUB”, 
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and “NIMHANS” dataset has been abbreviated to “NIM”. [color version of this figure is 

available online].
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Fig. 5. 
Summary of p-values from two sample Kolmogorov-Smirnov (KS) test between pairs of 

scanners for gray matter volumes from the right hemisphere. Each sub-plot indicates the 

p-values before (lower triangle) and after harmonization (upper triangle) between all pairs 

of scanners; the diagonal elements are shaded in a constant color to help distinguish lower 

and upper triangles. Each cell is color coded based on their p-value and only values smaller 

than 0.05 are shown. See Table S1 for the full names of the ROIs. Note that AOMIC dataset 

has been abbreviated to “AOM”, BNUBeijing dataset has been abbreviated to “BNUB”, 
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and “NIMHANS” dataset has been abbreviated to “NIM”. [color version of this figure is 

available online].
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Fig. 6. 
Summary of experiment 2 for representative cases for a) two sites, b) three sites, c) four 

sites, and d) five sites taken at a time; The x-axis indicates the model type − raw (R) data 

and harmonized (H) data with different combinations of covariates being regressed while 

the y-axis indicates the 10-fold cross-validated percentage accuracy of SVM classifier; the 

training and test accuracy points are across 50 repeats of 10-fold cross-validation while 

the permutation accuracy points are across 100 repeats of 10-fold cross-validation; the 

asterisk mark indicates models where the permutation testing p-value was less than 0.05; the 
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theoretical chance level accuracy is indicated with a dashed black line [color version of this 

figure is available online].
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Fig. 7. 
Average Mahalanobis distances between combinations of sites before and after regression 

of age, TIV, and sex for raw data; for any site combination, we first created a reference 

distribution using the overall mean and the pooled covariance; then, we calculated the 

distances of each site from this reference distribution and summarized it as the overall 

average; the x-axes indicate the different feature categories − gray matter volumes, cortical 

thickness (CT), fractal dimension (FD), sulcal depth (SD), and gyrification index (GI). Note 

that the AOMIC dataset has been abbreviated to “AOM,” BNUBeijing dataset has been 

abbreviated to “BNUB”, and the NIMHANS dataset has been abbreviated to “NIM”. [color 

version of this figure is available online].
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Fig. 8. 
Summary of learning curves for volumetric features for two-site combinations; the 

orange points indicate the test accuracy of the SVM classifier (50 repeats of 10-fold 

cross-validation), the purple points indicate the permutation test accuracy of the SVM 

classifier (100 repeats of 10-fold cross-validation), while the dashed black line indicates the 

theoretical chance accuracy level; the x-axis indicates the sample size used for learning 

harmonization parameters (“NHLearn”) while the y-axis indicates the test accuracy in 

percentage. The title of each figure indicates the site-combinations, the average Mahalanobis 
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distance (MD) of the two sites from the reference, and the sample size required for learning 

harmonization parameter (n) such that the SVM classifier performance was no different than 

chance level; the accuracies that were above chance are marked with an orange asterisk 

mark [color version of this figure is available online]. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. 
Plot of the sample size required for achieving inter-site harmonization for a range of 

Mahalanobis distances for two-, three-, and four-site scenarios; the features were simulated 

using means and covariances from fractal dimension features from real data (see text for 

details) [color version of this figure is available online]. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 1
Summary of crucial acquisition parameters across the five datasets.

Resolution (mm) Slices TR (ms) TE (ms) TI (ms) Flip Angle 
(degrees)

SALD: Siemens Trio − 3T (n = 494) 1.0000 × 1.0000 × 1.0000 176 1900 2.52 900 90

Guys: Philips Intera − 1.5T (n = 322) 1.2000 × 0.9375 × 0.9375 130/140/150 9.813 4.603 – 8

AOMIC: Philips Intera − 3T (n = 928) 1.0000 × 1.0000 × 1.0000 160 81 37 – 8

BNU-1: Siemens Trio − 3T (n = 57) 1.3300 × 1.0000 × 1.0000 144 2530 3.39 1100 7

BNU-2: Siemens Trio − 3T (n = 61) 1.3300 × 1.0000 × 1.0000 128 2530 3.39 1100 7

BNU-3: Siemens Trio − 3T (n = 48) 1.3300 × 1.0000 × 1.0000 127/128 2530 3.39 1100 7

Beijing_Zang: Siemens Trio − 3T (n = 192) 1.3300 × 1.0000 × 
1.0000 128/176 – – – –

NIMHANS: Siemens Skyra − 3T (n = 372) 1.0000 × 0.9727 × 
0.9727 192 1900 2.4 900 9

1.0000 × 1.0039 × 1.0039

1.0000 × 0.9609 × 0.9609

1.0000 × 0.9766 × 0.9766

1.0000 × 1.0000 × 1.0000
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Table 2
Summary of socio-demographics details for each dataset after quality check.

Dataset # Males # Females Age (Males): Mean ± SD, 
Min − Max

Age (Females): Mean ± SD, 
Min − Max

Age (Overall): Mean ± SD, 
Min − Max

SALD 117 183 45.62 ± 17.82, 20 − 80 45.28 ± 17.46, 19 − 78 45.41 ± 17.57, 19 − 80

Guys 132 168 48.33 ± 16.44, 20 − 86 51.41 ± 14.96, 21 - 80 50.05 ± 15.68, 20 − 86

AOMIC 144 156 23.07 ± 1.74, 20 − 26 23.03 ± 1.79, 20 − 26 23.05 ± 1.77, 20 − 26

BNUBeijing 131 169 21.79 ± 1.86, 18 − 27 21.53 ± 1.89, 18 − 29 21.64 ± 1.88, 18 − 29

NIMHANS 188 112 27.20 ± 5.10, 18 − 49 27.28 ± 6.80, 18 − 50 27.23 ± 5.78, 18 − 50
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Table 3
Number of statistically significant ROIs before and after harmonization using a two 
sample Kolmogorov-Smirnov (KS) test between pairs of scanners for different feature 
categories at α = 0.05.

scanner gray matter volumes Cortical thickness Fractal dimension Sulcal depth Gyrification index

# BH # AH # BH # AH # BH # AH # BH # AH # BH # AH

AOMIC − BNUBeijing 35 0 53 0 44 0 59 0 36 1

AOMIC − Guys 44 0 51 0 2 0 9 0 6 0

AOMIC − SWU 41 0 32 0 33 0 45 0 30 1

AOMIC − NIMHANS 44 0 29 0 23 1 31 0 13 0

BNUBeijing − Guys 44 0 38 0 19 0 40 0 15 0

BNUBeijing − SWU 28 0 35 0 4 0 18 0 13 0

BNUBeijing − NIMHANS 40 1 51 0 21 0 43 0 31 0

Guys − SWU 56 0 55 0 35 0 40 0 36 0

Guys − NIMHANS 35 0 47 1 8 0 8 0 7 0

SWU − NIMHANS 27 1 41 0 24 0 27 0 27 0

BH: before harmonization; AH: after harmonization.
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