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Abstract

Although recent structural connectivity studies of traumatic brain injury (TBI) have used graph 

theory to evaluate alterations in global integration and functional segregation, pooled analysis 

is needed to examine the robust patterns of change in graph metrics across studies. Following 

a systematic search, 15 studies met the inclusion criteria for review. Of these, ten studies were 

included in a random-effects meta-analysis of global graph metrics, and subgroup analyses 

examined the confounding effects of severity and time since injury. The meta-analysis revealed 

significantly higher values of normalised clustering coefficient (gö=ö1.445, CI=[0.512, 2.378], 

pö=ö0.002) and longer characteristic path length (gö=ö0.514, CI=[0.190, 0.838], pö=ö0.002) in 

TBI patients compared with healthy controls. Our findings suggest that the TBI structural network 

has shifted away from the balanced small-world network towards a regular lattice. Therefore, these 

graph metrics may be useful markers of neurocognitive dysfunction in TBI. We conclude that the 

pattern of change revealed by our analysis should be used to guide hypothesis-driven research into 

the role of graph metrics as diagnostic and prognostic biomarkers.

Keywords

Traumatic brain injury; Graph theory; Graph metrics; Structural connectomics; Network analysis; 
Diffusion MRI; Biomarkers; Meta-analysis; Systematic search; Narrative review

*Corresponding author. Phoebe.Imms@myacu.edu.au. 

Declarations of interest 
None.

Financial disclosures 
The authors report no biomedical financial interests or potential conflicts of interest.

Europe PMC Funders Group
Author Manuscript
Neurosci Biobehav Rev. Author manuscript; available in PMC 2023 October 26.

Published in final edited form as:
Neurosci Biobehav Rev. 2019 April 01; 99: 128–137. doi:10.1016/j.neubiorev.2019.01.002.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



1 Introduction

Traumatic Brain Injury (TBI) is one of the leading causes of death and disability in young 

people, affecting 10 million people worldwide every year (Humphreys et al., 2013; Hyder et 

al., 2007). The severity of a brain injury is typically described as mild, moderate, or severe, 

based on time spent unconscious and/or coma rating score, the duration of post-traumatic 

amnesia, and neuroimaging results. Cognitive deficits (e.g., slow processing speed and poor 

concentration), motor control deficits (e.g., poor manual dexterity, balance deficits), and 

behavioural problems (e.g., impulsivity) are particularly common (Rabinowitz and Levin, 

2014; Rossi and Sullivan, 1996). Approximately 15–30% of mild TBI cases (Shenton et al., 

2012) and up to 65% of moderate-severe cases (Rabinowitz and Levin, 2014; Selassie et 

al., 2008) report long-term problems. These persistent deficits cause disability and interfere 

with a patient’s ability to perform day-to-day tasks, for example getting dressed, planning 

ahead, and preparing food (Rabinowitz and Levin, 2014). Isolating neurological biomarkers 

holds promise as a means to identify which patients are at risk of long-term disability; which 

has implications for patient management and development of economically sustainable 

treatment options.

There is mounting evidence supporting diffusion MRI as a sensitive diagnostic tool in the 

care of patients with TBI (for reviews, see Delouche et al., 2016; Hulkower et al., 2013; 

Hutchinson et al., 2018; Xiong et al., 2014). First, changes in white matter organisation 

following TBI have been demonstrated in several important fibre bundles of the brain 

(Bendlin et al., 2008), including the superior longitudinal fasciculus (e. g., Farbota et al., 

2012; Spitz et al., 2013) and the corpus callosum (e.g., Levin et al., 2008; Mayer et al., 

2010; Rutgers et al., 2008). For example, in a meta-analysis of 13 diffusion studies of TBI, 

significant increases in fractional anisotropy (FA) and decreases in mean diffusivity (MD) 

were found in the posterior parts of the corpus callosum (Aoki et al., 2012).

Second, decreased white matter organization has been shown to predict poorer outcome in 

chronic TBI patients of all severity types (Kinnunen et al., 2011; Kraus et al., 2007), and 

in acute mild TBI patients with persistent symptoms (Niogi et al., 2008). Lower FA in the 

subregions of the corpus callosum has been associated with poorer bimanual coordination 

(Caeyenberghs et al., 2011a) and slower processing speed (e.g., Levin et al., 2008; Wilde 

et al., 2006) in moderate-severe TBI patients. Similarly, lower FA in the cerebellum has 

been associated with poorer manual dexterity (Caeyenberghs et al., 2011b). Despite multiple 

reports of altered diffusion metrics, the regional analyses reported in these studies cannot 

identify how whole brain networks are affected by white matter damage following TBI.

Because TBI may be considered a ‘disconnection syndrome’, where symptoms are 

accounted for by altered connectivity between regions of the brain, it is important to take 

global network disruption into account (Catani and Ffytche, 2005; Griffa et al., 2013). 

Where traditional diffusion approaches such as those outlined above examine isolated brain 

regions, graph theoretical analysis (GTA) can characterise the global structure of the brain 

network (or ‘connectome’; Bullmore and Bassett, 2011; Hagmann et al., 2008; Sporns, 

2013). Structural GTA represents the brain as a set of ‘edges’ (white matter pathways) 

that pass between ‘nodes’ (brain regions), using the reconstruction of white matter tracts 
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as weights. This graph is then used to calculate graph metrics, which estimate network 

properties such as global integration and functional segregation (Rubinov and Sporns, 2010; 

see also Supplementary Material 1 for definitions, interpretations, and calculations for the 

graph metrics included in this review).

Connectome analyses have rapidly found applications in the clinical neurosciences because 

the balance between integration and segregation necessary to support complex function may 

be affected by disease or injury. In their seminal review, Griffa et al. (2013) propose that 

graph metrics show promise as biomarkers in neurodevelopmental disorders such as ADHD 

(e.g., Cao et al., 2013), neurodegenerative diseases like Alzheimer’s disease (e.g., Lo et al., 

2010), and psychiatric disorders such as schizophrenia (e.g., Fornito et al., 2012). In one 

of the first structural GTA studies of TBI, Caeyenberghs et al. (2012) have revealed that 

young TBI patients have decreased connectivity degree within the brain, which correlated 

significantly with poor balance. Similarly, Kim et al. (2014) found that longer path length 

in adults with moderate-severe TBI correlated with poorer higher-order cognitive processes 

like executive function and verbal learning. Since then, more research has suggested that 

graph metrics could be ‘biomarkers’ of TBI (e.g., Hellyer et al., 2015; Yuan et al., 2015, 

2017b).

With recent growth in the use of structural GTA in all types of TBI, there is a need to 

conduct a meta-analytical review to probe consistent patterns of change in graph metrics to 

see which hold promise as biomarkers. In the study presented here, we conduct a narrative 

review of diffusion MRI papers comparing healthy controls (HCs) using GTA, and the first 

meta-analysis to date of graph metrics in TBI. Heterogeneity in patient samples is addressed 

using subgroup analyses. This divides up an already small body of research, and as such 

the results are for hypothesis generation only. It was also our aim to draw inferences from 

this data about how graph metrics might be used as biomarkers in TBI, and to provide a 

framework for hypotheses in future GTA studies.

2 Method

2.1 Search and selection strategy

A systematic literature search was conducted using Medline, CINAHL, PsycINFO, and Web 

of Science for all relevant articles published from 1999 until the last search date (4th of April 

2018; see Fig. 1 for PRISMA diagram). The search terms were [((TI OR AB) “traumatic 

brain injur*” OR TBI)) AND ((TI OR AB) connectom* OR “structural connect*” OR 

“graph theor*” OR “graph metric*” OR “graph analys*” OR “network analys*”)] (see 

Supplementary Material 2 for Mesh headings).

Abstracts and titles of 247 unique papers were returned from this search. The reference lists 

of review papers were searched for additional studies (but none were found). After screening 

titles and abstracts, we excluded studies of functional MRI, electro-encephalography (EEG) 

or magneto-encephalography (MEG), animal models of TBI, and other causes of acquired 

brain injury (such as brain tumours or stroke). Also excluded were studies that did not 

employ a network analysis (for example, tract-based comparisons of FA), any publications 

that were not peer-reviewed (e.g., conference abstracts), and review papers.
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The remaining 26 articles were examined in full to assess eligibility. Studies that did not 

compare the structural connectomes between TBI patients and HCs, or that did not calculate 

graph metrics or run network-based statistics (NBS) were excluded, leaving 15 studies for 

inclusion in the narrative review. Of these, ten studies were included in the meta-analysis, 

addressing global graph metrics that directly compared the structural connectomes of TBI 

patients and HCs. The five studies not included in the meta-analysis were Fagerholm et 

al. (2015) and Mitra et al. (2016), both of which applied machine learning techniques; 

Dall’Acqua et al. (2016) which employed Network Based Statistics (NBS) for the group 

comparisons; and finally Solmaz et al. (2017) and Caeyenberghs et al. (2013), who only 

investigated group differences in regional graph metrics.

2.2 Quality assessment

Two authors (PI, AC) assessed the methodological quality of each study independently, 

using a quality checklist for diffusion MRI studies adapted from Strakowski et al. (2000). 

This checklist has been used to measure methodological quality of papers in previous 

meta-analyses on schizophrenia (e.g., Baiano et al., 2007; Shepherd et al., 2012), major 

depressive disorder (e.g., Jiang et al., 2017), and bipolar disorder (Strakowski et al., 2000). 

As shown in Supplementary Material 3, the checklist included three categories: (i) subjects 

(items 1–4); (ii) image acquisition methodology and analysis (items 5–10); and (iii) results 

and conclusions (items 11–13). For each item, scores of 1, 0.5, and 0 were assigned (1 = 

criteria fully met; 0.5 = criteria partially met; 0 = not met). Total scores vary from 0 to 13. 

Currently, there are no established cut-off scores for high- and low-quality studies using this 

tool, however, it was decided by the research team that any study with less than half the total 

score would be excluded from the analysis for poor methodological quality. Disagreements 

between reviewers were resolved by a third review from the senior author (KC).

2.3 Data extraction for quantitative synthesis

Global graph metrics estimating global integration (global efficiency, normalised 

path length, and characteristic path length); functional segregation (normalised 

clustering coefficient, transitivity, mean local efficiency, modularity); centrality, resilience 

(betweenness centrality, small-worldness, assortativity); and basic measures (degree, 

density, and strength) were extracted across studies (see Supplementary Material 1 for 

comprehensive definitions of these graph metrics). To calculate effect sizes, means and 

standard deviations were extracted from published articles, supplementary materials, or 

via email correspondence with the authors (Caeyenberghs et al., 2014; Kim et al., 2014; 

van der Horn et al., 2016). In one study, p-values and t-scores were used to estimate the 

effect size (Hellyer et al., 2015). For longitudinal GTA studies (Yuan et al., 2017a, b), 

only the baseline (‘pretraining’) comparisons between TBI and HCs were included. Two 

papers reported TBI connectivity data in separate subgroups, one according to severity level 

(Königs et al., 2017), and the other by post-traumatic complaints (van der Horn et al., 

2016). The latter provided pooled data for the purpose of the overall synthesis via email. 

For Königs et al. (2017) the averages across the TBI group were pooled for the global 

synthesis in Microsoft Excel (using calculations included in Supplementary Material 4). 

Graph metrics that were calculated at the local or nodal level were excluded (i.e., local 
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efficiency, eigenvector centrality, and betweenness centrality of singular nodes not averaged 

across the network) to constrain the scope of the analysis to network-level dysfunction.

2.4 Data analysis for quantitative synthesis

Hedge’s g, the standardised mean difference score between groups, was calculated for each 
outcome variable (i.e., graph metric) using the Comprehensive Meta-Analysis software, and 

analysed using a random-effects model (CMA; Biostat, USA, v2.2.064). In basic terms, a 

separate meta-analysis for each graph metric was run, as each metric should be treated as a 

separate outcome measure. To calculate the overall effect sizes, mean effects of each metric 

were pooled across studies and weighted by sample size and the 95% confidence intervals 

(CI). A positive effect size indicated that the TBI group had a higher mean value of the 

graph metric compared with the HC group, while a negative value indicated higher mean 

values in the HC group. Effect sizes were regarded as small if g ≥0.2, medium if g ≥0.5 and 

large if g ≥0.8 (Cohen, 1988). Also, subgroup analyses on graph metrics were conducted 

for injury severity (mild, moderate-severe), chronicity (time since injury) (acute:< 6 months 

post injury; chronic:> 6 months post injury), and age at injury (paediatric : < 18 years old; 

adult: 18–65 years old). The results of our meta-analysis should be considered as hypothesis 

generation only, as suggested by the Cochrane guidelines when the number of studies in the 

analysis is low (Sambunjak et al., 2017).

The I2 statistic was used to index heterogeneity in the data, i.e. the percentage of observed 

variability that is greater than what would be expected by chance or sampling error alone. 

High scores (I2 > 75%) suggest heterogeneity due to differences in sample demographics 

(Higgins et al., 2003). Low I2 scores (I2 < 50%) represent homogenous data, supporting a 

real effect between HC and TBI groups. Publication bias was assessed using Egger’s test for 

asymmetry in a funnel plot (Egger et al., 1997).

Finally, false discovery rate (FDR) correction (p < 0.002) was conducted for all analyses 

in accordance with recommendations by Wang and Ware (2013). Interdependencies 

between outcomes were accounted for using the Benjamini-Yekutieli procedure on the 

Bioinformatics toolbox in MATLAB_R2018a (Benjamini and Yekutieli, 2001).

3 Results

3.1 Sample characteristics

The TBI patient pool included 429 participants, and the HC pool 306, with an age range of 

8–65 years old. Four studies included mTBI patients only, six studies included moderate-

severe TBI patients only, and two studies included both severity types (see Table 1). 

Chronicity varied widely between studies, with TBI groups ranging from acute (e.g., within 

96 h post injury; Yuan et al., 2015) to chronic (e.g., 5.91 years post injury, ± 3.1 years; 

Yuan et al., 2017a). Six studies recruited paediatric TBI patients, two studies included both 

children and young adults, and four studies recruited adult TBI patients.
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3.2 Quality assessment

Table 2 summarises the quality of the 13 papers according to the diffusion MRI checklist 

categories, ranked according to overall score (maximum score 13). Most papers scored 

full points for describing parameters of the diffusion scanning sequences. Points were 

often deducted for poor description of graph metric calculations and failing to correct for 

multiple comparisons. The ‘subjects’ category of the checklist had the highest average 

score (3.6/4, 90.5%), followed by ‘methodology’ (5.4/6, 89.7%), and ‘results/conclusions’ 

(2.5/3, 83.3%). Overall, the total quality score was high, and varied from 9 to 12.5 points 

out of a possible 13 (average score: 11.5/13, 88.5%). The study of Verhelst et al. (2018) 

had the highest methodological quality. There was no significant effect of publication bias 

(Egger’s regression intercept = 1.81, CI: [-1.94, 5.57], p = 0.34), and all studies met the 

benchmark for inclusion in the meta-analysis, showing that the published studies are a good 

representation of available evidence.

3.3 Meta-analysis

Table 3 summarises the differences in global graph metrics between TBI and HC cohorts 

across studies. For each graph metric, the direction of significant group differences between 

TBI and HCs was the same across studies, with the exception of small-worldness and 

normalised path length. The overall effect sizes for normalised clustering coefficient, 

global efficiency, density, and characteristic path length were found to be significant 

(p < 0.05), with moderate to large Hedge’s g effect sizes (g > 0.5) (see Fig. 2, and 

Supplementary Material 5 for statistics). However, only normalised clustering coefficient 

and characteristic path length remained significant following FDR correction (p < 0.002). 

The subgroup analyses revealed longer normalised path length in acute/mild patients; higher 

small-worldness in chronic patients; higher small-worldness in paediatric TBI patients; and 

higher normalised clustering coefficient in paediatric TBI patients compared to HCs (FDR 

corrected, p < 0.001, see Table 4). In the next paragraphs, we will present the results of key 

overall effects and subgroup analyses for each graph metric that was significant after FDR 

correction.

3.3.1 Global integration—Four of the ten studies investigated characteristic path 

length. (Caeyenberghs et al., 2014; Hellyer et al., 2015; Kim et al., 2014; Königs et al., 

2017). Of the 142 patients in this analysis, 114 were moderate to severe; 63 acute patients 

were on average 5.5 months post-injury, while 79 chronic patients were on average 3.5 

years post-injury; and 101 were adults (average age: ~26.9 years) and 41 were paediatric 

(average age: ~10.5 years) at injury. Across this entire cohort, characteristic path length 

was longer in the TBI patients compared with HCs (g = 0.514, p = 0.002, I2 = 28.601%). 

The heterogeneity value of this graph metric was low, indicating that the dataset was 

homogenous.

Six studies investigated normalized path length (Caeyenberghs et al., 2012, 2014; Verhelst 

et al., 2018; Yuan et al., 2017a, 2015; Yuan et al., 2017b) with no overall group effect (g 
= 0.815, p = 0.129, I2 = 92.1%). Of the 112 patients in this analysis, 67 were moderate 

to severe; 45 acute patients were between 96 h and 4 months post-injury, while 67 chronic 

patients were on average 4 years post-injury; and 21 were adults (average age: ~21.3 years) 
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and 91 were paediatric (average age: ~12.1 years) at injury. Subgroup analysis revealed that 

the acute/ mild TBI group showed significantly increased normalised path length compared 

with HCs (g = 0.965, p < 0.001, I2 = 0.0%), with a decreased heterogeneity value. The effect 

size for the chronic/moderate-severe group was not significant.

3.3.2 Functional segregation—Seven studies calculated normalized clustering 

coefficient (Caeyenberghs et al., 2012, 2014; van der Horn et al., 2016; Verhelst et al., 2018; 

Yuan et al., 2017a, 2015; Yuan et al., 2017b). Of the 165 patients in this analysis, 67 were 

moderate to severe; 98 acute patients were between 96 h and 4 months post-injury, while 67 

chronic patients were on average 4 years post-injury; and 74 were adults (average age: ~27.4 

years) and 91 were paediatric (average age: ~12.1 years) at injury. Normalised clustering 

coefficient was higher in TBI patients in the overall meta-analysis (g = 1.445, p = 0.002, I2 

= 91.484). In the chronicity and severity subgroup-analysis, the effect remained significant 

in the chronic/moderate-severe patients only (chronic/mod-erate-severe: g = 1.924 p = .014, 

I2 =92.440%). However, this effect retained a high heterogeneity value. Similarly in the 

age at injury subgroup analysis, normalised clustering coefficient was significantly higher 

in the paediatric TBI patients than HCs (g = 2.00, p = 0.001, I2 = 89.82). This effect was 

not observed for adult TBI patients. However, grouping by age at injury only lowered the 

observed heterogeneity in normalised clustering coefficient by ~2%.

3.3.3 Small-worldness—Six studies reported on small-worldness differences between 

TBI and HCs (Caeyenberghs et al., 2012, 2014; Hellyer et al., 2015; Yuan et al., 2017a, 

2015; Yuan et al., 2017b), with no significant effect size overall; however, a trend was 

evident for larger values in TBI patients (g = 0.794, p = 0.06, I2 = 89.736%). Of the 158 

patients in this analysis, 105 were moderate to severe; 108 acute patients were between 96 h 

and 5.5 months post-injury, while 50 chronic patients were on average 4.6 years post-injury; 

and 84 were adults (average age: ~26.6 years) and 74 were paediatric (average age: ~11.8 

years) at injury. Subgroup analysis showed a significant effect size for chronic patients only, 

with increased small-worldness in chronic TBI patients compared with HCs (g = 0.950, 

p = .001, I2 = 39.536%). Grouping by chronicity also greatly reduced heterogeneity in 

the chronic group. Subgroup analysis by severity revealed larger small worldness values 

for the mild group (g = 1.309, p = .020, I2 = 81.922%); however, heterogeneity remained 

high and did not survive FDR correction. Finally, small-worldness was significantly higher 

in the paediatric TBI patients (but not adult TBI patients) compared to HCs (g = 1.25, p 
< 0.001, I2 = 56.949). Grouping by age at injury reduced the heterogeneity observed in 

small-worldness, meaning that age at injury could be explaining some of the differences in 

small-worldness between TBI patients and HCs.

4 Discussion

Our study is the first meta-analysis to assess the consistency of recent graph theoretical 

studies of TBI. The overall quality of the papers was high, and all met the benchmark 

for inclusion in the review. Findings suggest that normalized clustering coefficient and 

characteristic path length may be sensitive diagnostic biomarkers to distinguish TBI patients 

from HCs, with the former particularly high in chronic/moderate-severe and paediatric TBI 

patients after subgroup analyses. Furthermore, we suggest that values of normalised path 
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length may be increased in acute/mild patients, and small worldness may be higher in 

chronic and paediatric TBI patients. In the following sections we will examine the use of 

graph metrics from a critical view. Specifically, we will discuss the following topics: (4.1) 

evidence that the TBI network is closer to a regular lattice structure than HCs, and (4.2) the 

use of graph metrics as diagnostic and prognostic biomarkers in longitudinal studies. In (4.3) 

we will also point out a number of methodological issues and provide recommendations 

for the future study of structural connectomics in TBI. Finally, in (4.4) we will address 

any limitations of this pooled analysis, including heterogeneity in patient samples and 

parcellation schemes.

4.1 Towards a regular network structure in TBI patients

The hypotheses presented in the research papers reflect the exploratory nature of GTA 

in TBI studies. Clear rationales and a priori hypotheses regarding the specific choice of 

graph metrics (together with the expected direction of effect) was omitted in many of the 

studies analysed. For example, Yuan et al. (2017b) ambiguously predicted that metrics 

would be “abnormal at baseline but would normalise after training”. Only Yuan et al. (2015) 

and Königs et al. (2017) justified their choice of each graph metric. While exploratory 

research is necessary, a clear rationale concerning the selection of graph metrics will 

advance theoretical reasoning in the field. Furthermore, having a priori hypotheses about the 

expected direction of effect will minimise multiple comparisons, thereby reducing chance 

findings that inflate the false positive rate. The findings from our meta-analysis, outlined in 

the following paragraphs, can serve as a guide in the development of hypotheses for the next 

generation of GTA studies in TBI.

Small-worldness is the ratio of normalised clustering coefficient to normalised path 

length, and represents the balance between segregation for local specialization and global 

integration (Watts and Strogatz, 1998). While all studies found that the TBI connectome is 

still a smallworld network, there was evidence of a shift towards a regular lattice structure. 

Small-worldness values were significantly higher for TBI patients greater than 6 months 

post injury, and for children with TBI. These results suggest a shift in network structure, 

which is probably due to a secondary process of neurodegeneration and/or is specific to 

those patients injured during childhood. However, further research is needed to evaluate the 

neurobiological mechanisms underlying increases in small-worldness. Yuan et al. (2015) and 

Yuan et al. (2017a) suggested that higher small-worldness is primarily driven by an increase 

in local clustering. Still, changes in small-worldness alone do not provide insight into the 

nature of the group differences. Instead, researchers could focus on more specific metrics 

that can differentiate between alterations in segregation and integration (Fornito et al., 2013; 

Papo et al., 2016), including measures of clustering and path length as described next.

In line with the observed shift towards a regular network, our review revealed that 

normalised clustering coefficient was significantly higher in the TBI group compared to 

HCs. This result indicates that TBI patients have more ‘closed triangles’ in their network 

graph compared to the controls, denoting greater functional specialisation. We also observed 

that this effect remained significant in the paediatric group but not the adult group. Yuan 

et al. (2015) suggested that this finding in paediatric TBI patients reflected an adaptive 
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response to the injury, whereby local connections are increased because they are less 

vulnerable to damage than long-range connections. However, we argue that this is a costly 

adaptation, as it would increase the number of steps needed for information to travel 

between any two regions (Fornito et al., 2016; Sporns, 2011). In fact, our meta-analysis 

also showed that characteristic path length was significantly longer in the TBI population 

compared to the HCs, meaning there are a greater number of steps between any two nodes 

on average in the TBI network than in the HC network. Furthermore, the subgroup analysis 

demonstrated that normalised path length in the acute mild TBI group (but not the chronic 

moderate-severe group) was significantly higher than HCs. However due to the paucity of 

data available, it was impossible to determine whether this effect was driven by chronicity 

or severity. Despite the lack of data, our findings support the idea that the TBI network 

topology departs from the economical random-graph (Sporns, 2011).

4.2 Use of graph metrics as diagnostic and prognostic biomarkers

The effects described in Section 4.1 support the use of normalised clustering coefficient and 

characteristic path length as diagnostic biomarkers to identify group differences between 

TBI patients and HCs. Graph metrics can also be used to detect the presence or absence 

of diffuse axonal injuries (DAI) within TBI patients. Two papers included in the review 

(Fagerholm et al., 2015; Mitra et al., 2016) employed machine learning methods on graph 

metrics to classify patients. Fagerholm and colleagues were able to classify the presence 

of DAI in TBI patients with a high accuracy rate of 93.4%, and found that betweenness 

centrality had the highest ‘feature importance’ when differentiating between patients with 

microbleeds and HCs. Using a similar machine learning technique, Mitra et al. found that 

connectivity strength could differentiate mild TBI patients with DAI from HCs with an 

accuracy rate of 68.16%. These are very promising techniques that clearly demonstrate the 

use of graph metrics as diagnostic biomarkers.

Another important aspect of evaluating a diagnostic biomarker is the association of the 

metric with behavioural/clinical outcomes, which was done in all studies apart from one 

(Hellyer et al., 2015). For example, longer characteristic path length correlated with worse 

performance on verbal learning task as well as executive dysfunction in moderate-severe 

TBI patients (Kim et al., 2014). Longer characteristic path length also coincided with 

lower intelligence scores and shorter working memory span in moderate-severe TBI patients 

(Königs et al., 2017). Lower normalised clustering coefficient was found to be associated 

with slower processing speed in mild TBI patients (van der Horn et al., 2016). These 

significant correlations highlight the potential of normalised clustering coefficient and 

characteristic path length as biomarkers of behavioural deficits following TBI. However, 

reminding us of the preliminary nature of this work, a number of studies did not correct 

for multiple comparisons when running correlations between graph metrics and behavioural 

tests (Kim et al., 2014; Yuan et al., 2017a). While uncorrected thresholds can be useful 

for exploratory research, correction for multiple comparisons would strengthen the validity 

of these findings. Finally, comparison between studies is problematic because different 

outcome measures were used across studies. We recommend the use of a core set of 

behavioural tests in the future (e.g., Wefel et al., 2011).

Imms et al. Page 9

Neurosci Biobehav Rev. Author manuscript; available in PMC 2023 October 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Finally, we wanted to explore whether graph metrics can be used as prognostic biomarkers 

to predict treatment response. Longitudinal studies are necessary to investigate which graph 

metrics change in response to training. Only two GTA studies (by the same group, Yuan 

et al., 2017a, b) so far have conducted longitudinal training studies. Yuan et al. (2017a) 

found that normalised clustering-coefficient and small-worldness values decreased following 

10 weeks of attention and executive function training in TBI patients, but remained the 

same in the HCs. In an aerobic training study, Yuan et al. (2017b) found that improved 

Post-Concussion Symptom Inventory scores following 4–16 weeks of training correlated 

with increased global efficiency and lower normalised path length. However, this study 

did not investigate the interaction effect between group and time directly. Overall, there is 

some evidence that network measures can be used as prognostic biomarkers, but further 

longitudinal analyses are needed to investigate the predictive value of graph metrics.

4.3 Methodological considerations and further recommendations

As a tentative conclusion, our meta-analysis showed that normalized clustering coefficient 

and characteristic path length are potential diagnostic biomarkers that may be sensitive to 

group differences between TBI and controls. However, GTA is a mathematical framework 

that has only recently been applied in neuroscience (for a critical review, see Fornito et 

al., 2013), and the underlying biological mechanism of change (e.g., increase in axon 

density, diameter, myelination, sprouting of synapses) is so far unknown. Due to inherent 

limitations in tractography, we do not know yet whether graph metrics directly reflect 

white matter integrity (e.g., Jones et al., 2013). Therefore, it is important to refrain from 

diagnosing ‘abnormal’ graph metrics, when comparing TBI patients to HCs (e.g., Yuan et 

al., 2017b), until we know the biological mechanisms underpinning graph metrics. Validated 

neuro-psychometric testing could couple structural connectome measures such as graph 

metrics (and other diffusion-based measures) to multimodal data with known information 

processing properties. Until then, structural graph metrics represent the necessary but 

insufficient properties of the network to function (Sporns, 2012). However, we can get a 

better understanding if we first obtain reliable patterns of brain connectivity.

There are methodological challenges associated with investigating graph metrics in 

patients with TBI. These include applying appropriate MRI acquisition and preprocessing 

techniques, connectome construction, and specifying edge weights (see Table 1 for a 

summary of the methods used in the studies in this review). Future research should (a) 

utilise advanced diffusion sequences (e.g., multishell, not used by any studies in the 

review) with accelerated acquisition speed to accommodate for non-compliance due to 

poor concentration (e.g., multiband/ compressive sensing); (b) employ robust estimation 

approaches for diffusion MRI metrics (e.g., Slicewise OutLIer Detection (SOLID; Sairanen 

et al., 2018)); and (c) apply a model that can resolve crossing fibre orientations (e.g., 

constrained spherical deconvolution, only used by two papers in the current review). 

Furthermore, although connection density has a noticeable impact on graph metrics (van 

Wijk et al., 2010), only six of the thirteen studies in the quality assessment accounted 

for differences in network density (as suggested byBullmore and Bassett, 2011) when 

comparing structural networks of TBI and HCs (Caeyenberghs et al., 2012; Hellyer et al., 

2015; Königs et al., 2017; Solmaz et al., 2017; van der Horn et al., 2016; Yuan et al., 
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2015). Similarly, researchers should consider using multiple edge weighting and parcellation 

schemes to examine the robustness of data (Qi et al., 2015; Sotiropoulos and Zalesky, 2017), 

as was done by Caeyenberghs et al. (2012, 2013, 2014), Fagerholm et al. (2015), and Königs 

et al. (2017). Finally, future studies should employ advanced measures of white matter such 

as fibre density and cross section (Raffelt et al., 2017) as edge weights, because FA (used 

by three studies) and number of ‘streamlines’ (used by eight studies) lack the microstructural 

specificity to fully characterise the integrity of the structural network. In summary, by using 

more advanced MRI acquisition and pre-processing techniques we can get closer to an 

understanding of the biological underpinnings of the TBI structural connectome.

4.4 Limitations of the pooled analysis

4.4.1 Heterogeneity in parcellation schemes—One limitation of combining 

different graph analyses is that it inevitably requires pooling data obtained with different 

parcellation schemes. Differences in the way the cortex is parcellated can significantly 

impact the results of GTA (Zalesky et al., 2010). As shown in Table 1, five different 

parcellation schemes (e.g., the Desikan atlas from Freesurfer and the Automated Anatomical 

Labeling atlas) were used across the papers included in the meta-analysis, each with a 

different number of regions of interest or ‘nodes’ (range: 82–164). Parcellation schemes 

with higher resolution (i.e., more nodes) will demonstrate gradual increases in normalised 

path length and reductions in normalised clustering coefficient (Bassett et al., 2011), while 

measures of network organisation (e.g., small-worldness) will remain largely the same (Qi 

et al., 2015). However, because whole brain node templates in this current study were of 

similar spatial scales, impact on pooled graph metrics should be negligible (Zalesky et al., 

2010), and it is therefore likely that this effect is small and does not detract from the overall 

findings.

4.4.2 Heterogeneity in the TBI samples—Patients with TBI are diverse, and several 

clinical and demographic factors (such as severity, chronicity, and age at injury) will 

impact the comparability of patient cohorts across studies. In the present meta-analysis, we 

attempted to address the issue of heterogeneity in our pooled TBI population by conducting 

subgroup analyses. However, the heterogeneity values remained above 75% for the majority 

of the subgroup analyses, indicating that results may still have been driven by differences in 

sample demographics (Higgins et al., 2003). This is not surprising given the diversity present 

in the structure of an injured brain, which may include focal lesions, diffuse axonal injury, 

or both. There were also limited studies that could be included in this review, making some 

subgroup analyses hard to interpret. For example, there were no studies of moderate-severe 

TBI patients in the acute phase, or mild TBI patients in the chronic phase that could be 

included in the normalised path length subgroup analyses (see Table 4). Therefore it is 

impossible to determine whether normalised path length was increased in the acute/mild 

group due to the time since injury, or the severity of the injury. Overall, this meta-analysis 

allows us to see universal trends that are present in the structural connectome of TBI 

patients; however more research is needed that spans across all TBI subgroups, so that future 

pooled analyses can better distinguish between all TBI populations.
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5 Conclusion

Despite the complexity of applying GTA to the heterogeneous TBI population, our meta-

analysis of structural connectivity studies revealed that normalised clustering coefficient and 

characteristic path length can be regarded as diagnostic biomarkers of TBI. These findings 

provide an evidentiary framework for future research. The emerging evidence suggests that 

average path length and clustering is increased in TBI patients, with the overall network 

more closely resembling a regular lattice. Using graph metrics we are able to differentiate 

between TBI population and healthy controls on the one hand, and the presence/ absence 

of DAI on the other hand. Also, there is preliminary evidence that graph metrics predict 

future response to training. Despite the promising results, the biological mechanisms 

underlying alterations in graph metrics is unclear. Future research should employ advanced 

diffusion MRI tools and obtain biologically-validated measures of structural connectivity in 

longitudinal studies.
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Fig. 1. PRISMA flow diagram of the systematic literature search.
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Fig. 2. 
Inverted forest plot of the overall effect sizes and 95% confidence intervals for each graph 

metric, including heterogeneity values (I2). The size of the markers on the I2 graph represent 

the number of studies in each pooled analysis (range: n = 1 to n = 7), with larger circles 

indicating a larger n. See subscript of Table 3 for description of graph metric abbreviations.
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Table 2
Quality Assessment Results for Graph Theoretical Studies of Traumatic Brain Injury.

Subjects Methodology Results/Conclusions

T1 T2 T3 T4 Overall 
(/4) T5 T6 T7 T8 T9 T10 Overall 

(/6) T11 T12 T13 Overall 
(/3)

Final 
Score

Verhelst et al. 
(2018) 1 1 1 1 4 1 1 1 0.5 1 1 5.5 1 1 1 3 12.5/13

Caeyenberghs 
et al. (2012) 1 1 1 0.5 3.5 1 1 1 1 1 0.5 5.5 1 1 1 3 12/13

Dall’Acqua 
et al. (2016) 1 1 1 1 4 1 0.5 0.5 1 1 1 5 1 1 1 3 12/13

van der Horn 
et al. (2016) 1 1 1 0.5 3.5 1 1 1 0.5 1 1 5.5 1 1 1 3 12/13

Yuan et al. 
(2015) 1 1 1 1 4 1 1 1 0.5 0.5 1 5 1 1 1 3 12/13

Caeyenberghs 
et al. (2013) 1 1 1 1 4 1 1 1 1 1 0.5 5.5 0 1 1 2 11.5/13

Caeyenberghs 
et al. (2014) 1 1 1 0.5 3.5 1 1 1 1 1 0.5 5.5 1 0.5 1 2.5 11.5/13

Königs et al. 
(2017) 1 1 1 1 3.5 1 1 1 0.5 1 1 5.5 0 1 1 2 11.5/13

Solmaz et al. 
(2017) 1 0.5 0.5 1 3 1 1 1 1 1 1 6 1 1 1 2.5 11.5/13

Yuan et al. 
(2017a) 1 1 1 1 3.5 1 1 1 0.5 1 0.5 5 0.5 1 1 2.5 11.5/13

Hellyer et al. 
(2015) 1 1 0.5 1 3.5 1 1 1 1 1 1 6 0 0.5 1 2.5 11/13

Kim et al. 
(2014) 1 1 0.5 1 3.5 1 1 1 0.5 1 1 5.5 0 1 1 2 11/13

Yuan et al. 
(2017b) 1 1 0.5 0.5 3 1 1 1 0.5 0.5 0.5 4.5 0 1 0.5 1.5 9/13

*
Fagerholm et al. (2015) and Mitra et al. (2016) were excluded from the quality assessment due to incompatibility with the questionnaire (machine 

learning experiments).
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Table 3
Graph Metrics in Patients with Traumatic Brain Injury compared to Healthy Controls.

Graph Metrics

Segregation Integration Centrality/General measures

Cl γ Q Eloc T a Eglob L λ b σ k D s

Caeyenberghs et al., 2012 • ↑ • ↓ • • • • ↓ ↑ ↑ • ↓ •

Caeyenberghs et al., 2014 – – • • • • ↓ ↑ – • – • • –

Hellyer et al., 2015 ↓ • • • • • • ↑ • • ↓ ↓ • •

Kim et al., 2014 • • – • – • • ↑ • • • • – •

Königs et al., 2017 • • – • – – • – • • • • • •

van der Horn et al., 2016 – – – – • • – • • – • • • •

Verhelst et al., 2018 • ↑ • • • • • • ↑ • • • ↓ –

Yuan et al., 2015 • ↑ ↑ – • • ↓ • ↑ – ↑ • • •

Yuan et al. (2017a) • – – – • • – • – • ↑ • • •

Yuan et al. (2017b) • ↑ – – • • ↓ • ↑ • ↑ • • •

Total* 3 7 6 5 2 1 5 4 6 3 6 1 3 2

↑/ ↓ higher/lower respectively in TBI patients than in HCs; - no significant difference between TBI and HC; • this metric wasn’t measured. *the 
total number of times this metric was measured.
Cl Clustering coefficient, γ Normalised clustering coefficient, Q Modularity, Eloc Local efficiency, T Transivity, a Assortativity, Eglob Global 

efficiency, L Characteristic path length, λ Normalised characteristic path length, b Betweenness Centrality, σ Small-worldness, D Density, k 
Degree, s Strength.
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Table 4
Results of the Subgroup Analyses.

Outcome Subgroup Variable N Hedges G Lower Limit Upper 
Limit Z-Value P-Value I-Squared 

(%)

Global 
Efficiency 
(Eglob)

Chronicity/
Severity Acute/mild 3 –1.610 –3.402 0.181 –1.762 0.078 95.109

Chronic/
modsev 2 –0.485 –1.408 0.437 –1.031 0.302 71.268

Age at injury Adult 2 –0.446 –1.368 0.475 –0.949 0.343 79.580

Pediatric 3 –1.625 –3.298 0.047 –1.905 0.057 92.912

Local 
Efficiency 
(Eloc)

Chronicity/
Severity Acute/mild 3 0.031 –0.292 0.354 0.188 0.851 0.000

Chronic/
modsev 2 –0.677 –2.067 0.713 –0.995 0.340 89.863

Modularity (Q) Chronicity Acute/mild 3 0.602 –0.479 1.683 1.091 0.275 89.877

Chronic/
modsev/both 3 –0.038 –0.379 0.302 –0.221 0.825 0.000

Age at injury Adult 2 –0.233 –0.625 0.159 –1.163 0.245 0.000

Pediatric 4 0.532 –0.182 1.247 1.460 0.144 81.165

Normalised 
Clustering 
Coefficient (γ)

Chronicity/
Severity Acute/mild 3 0.915 –0.379 2.209 1.386 0.166 92.389

Chronic/
modsev 4 1.924 0.382 3.465 2.446 0.014 92.440

Age at injury Adult 2 0.150 –0.571 0.871 0.408 0.683 68.072

Pediatric 5 2.000 0.857 3.143 3.430 0.001 89.822

Normalised 
Path Length 
(λ)

Chronicity/
Severity Acute/mild 2 0.965 0.523 1.408 4.274 *< 0.001 0.000

Chronic/
modsev 4 0.789 –0.903 2.482 0.914 0.361 94.501

Small 
Worldness (σ) Chronicity Acute 3 0.625 –0.892 2.142 0.808 0.419 94.950

Chronic 3 0.950 0.402 1.499 3.396 *0.001 39.536

Severity Mild 2 1.309 0.203 2.414 2.320 0.020 81.922

Modsev 4 0.533 –0.491 1.558 1.021 0.307 89.792

Age at injury Adult 2 –0.087 –1.358 1.185 –0.133 0.894 90.342

Pediatric 4 1.246 0.694 1.798 4.423 *< 0.001 56.949

significant at p < .05.

*
significant at p < .001.
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