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Abstract

Plant growth, development, and response to the environment are mediated by a group of small 

signaling molecules named hormones. Plants regulate hormone response pathways at multiple 

levels, including biosynthesis, metabolism, perception, and signaling. In addition, plants exhibit 

the unique ability to spatially control hormone distribution. In recent years, multiple transporters 

have been identified for most of the plant hormones. Here we present an updated snapshot of the 

known transporters for the hormones abscisic acid, auxin, brassinosteroid, cytokinin, ethylene, 

gibberellin, jasmonic acid, salicylic acid, and strigolactone. We also describe new findings 

regarding hormone movement and elaborate on hormone substrate specificity and possible genetic 

redundancy in hormone transport and distribution. Finally, we discuss subcellular, cell-to-cell 

and long-distance hormone movement and local hormone sinks that trigger or prevent hormone-

mediated responses.

Introduction

Plants are dynamic organisms that respond to the environment and adjust to it. Much of 

this communication and subsequent responses are mediated by plant hormones, a group 

of small organic signaling molecules that crosstalk at multiple levels to regulate growth, 

development, and response to the environment [1]. Hormone homeostasis is integratively 

regulated by hormone synthesis, metabolism, transport, perception, and signal transduction, 

which control their related activities in the plant. Hormone perception can be local or distal 

from the site of the synthesis. Therefore, hormones can be transported to their site of action 

by active transporters to regulate their distribution, leading to various responses [2–4]. This 

spatial regulation takes place in the bioactive hormone forms but is also relevant for their 

intermediates and conjugated forms. Characterization of hormone transporters identified in 

recent years has revealed a dynamic regulation of hormone distribution and homeostasis [5]. 

Hormone transporters are divided into different families, each with unique characteristics. 

Furthermore, other mobile signaling factors, such as small peptides and hormone-like 

molecules, are also translocated in the plant (reviewed recently by Takahashi et al. 2019 

[6]). Here we summarize current knowledge regarding hormone transporters (Figure 1) and 

discuss the common and unique transport mechanisms in plants (Figure 2).
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Abscisic acid

Abscisic acid (ABA) is involved in various processes in plants such as germination, seed 

dormancy, root development, drought tolerance, stomatal closure, and growth [2,7]. It was 

long thought that ABA is generated in the root and transported to the shoot to mediate 

stomatal closure. However, it is now recognized that ABA is also synthesized in the 

shoot [7–11], primarily in the vasculature [12]. Experiments showed that phloem-specific 

ABA synthesis reconstitutes ABA activity in stomatal aperture, indicating that ABA can 

move to regulate distinct responses [7,9,10]. Several ABA transporters have been identified, 

shedding light on the molecular mechanisms of ABA delivery. Transporters from the ATP 

binding cassette (ABC) family, such as ABCG25 and ABCG40, were characterized as ABA 

transporters in Arabidopsis thaliana. ABCG25 is an ABA exporter from the vasculature, 

and ABCG40 is an ABA importer to guard cells [13,14]. This suggests that there is active 

transport of ABA from the vasculature to the guard cells. ABCG25 and ABCG31 export 

ABA out of the endosperm, working in concert with ABCG30 and ABCG40 that import 

ABA into the embryo [4,15]. The DTX50 (from the MATE family) and AIT1-4 (also 

known as NPF4.6, 4.5, 4.1, 4.2 respectively), were also identified as ABA transporters 

in Arabidopsis (notably, AIT2-4 ABA transport activity was shown in yeasts but was not 

characterized in planta yet) [16–19]. Additional ABA transporters have been characterized 

in other plants. For instance, SlAIT1.1 was identified as an ABA importer in tomato 

(Solanum lycopersicum) and was shown to function downstream to the DELLA gibberellin 

suppressor response to promote stomatal closure [20]. MtABCG20 is an ABA exporter 

that is present in roots and germinating seeds in Medicago truncatula [21]. Recently, 

several ABA transporters have also been characterized in rice. The wheat disease resistance 

gene Lr34res was shown to affect ABA transport in Lr34res-expressing rice plants and 

yeasts transport assays, but its subcellular localization has not been discovered yet [22]. 

Furthermore, DG1 is an exporter from the MATE family which facilitates long-distance 

transport of leaf-derived ABA to control seed development, whereas OsPM1 is an importer 

involved in stomatal closure and drought responses [23,24].

Moreover, ABA is conjugated with glucose by UDP-glucosyltransferases to generate ABA-

glucosyl ester (ABA-GE), a non-active form of ABA [25]. ABCC1 and ABCC2 have 

shown ABA-GE import activity in a heterologous yeast system and are localized on the 

plant tonoplast membrane [26]. Recently, ABCG17 and ABCG18 were characterized as 

plasma membrane ABA transporters that redundantly mediate ABA import, specifically in 

the leaf mesophyll cells. The ABA import activity mediated by ABCG17 and ABCG18 

leads to the formation of conjugated inactive ABA sinks in mesophyll cells and thus restricts 

stomata closure (short-distance ABA movement) and lateral root emergence (long-distance 

ABA movement). ABCG17 and ABCG18 are required for ABA homeostasis under normal 

conditions, whereas abiotic stress conditions repress their expression and therefore release 

free ABA to promote a rapid ABA response (Unpublished 1). Whether ABA-GE transport 

is essential for guard cell activity and whether ABA-GE is transported long distance are still 

unclear.
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Auxin

Indole 3-acetic acid (IAA) plays central roles in plant growth and development, controlling 

cell division, elongation, and differentiation. The combined activities of auxin influx and 

efflux carrier proteins generate local hormone maxima. Directional auxin gradients are 

prerequisites for essential developmental processes such as organ development, bending to 

light (phototropism), and directional root growth (gravitropism and hydrotropism) [27]. 

Several groups of auxin transporters have been identified and characterized. The best-

characterized are the PIN proteins, which facilitate polar cell-to-cell IAA movement. In 

Arabidopsis, eight PIN proteins differ in the length of their middle hydrophilic loop [28]. 

The long PIN proteins (PIN1– 4 and 7) are exporters localized to the plasma membrane, 

and their polar localization determines the direction of auxin flux. Three PIN proteins 

(PIN5, 6, and 8) have a shorter central hydrophilic domain. PIN5 and PIN8 localize in the 

endoplasmic reticulum, and PIN6 is detected in both the endoplasmic reticulum and the 

plasma membrane, suggesting possible roles in regulating intracellular auxin homeostasis 

[29]. Recent studies have revealed that phosphorylation is essential for PIN activation, so 

PIN phosphorylation needs to be taken into account in auxin transport studies [30,31].

PIN-driven auxin export is likely ancient and conserved, as the PIN homologue of the green 

alga Klebsormidium flaccidum function as a plasma membrane-localized auxin exporter. 

Unlike the canonical PINs, the K. flaccidum does not localize polarly, a crucial mechanism 

to restrict the direction of auxin flow [32].

Intraspecies and interspecies pin1/3/4/7 knockout complementation experiments revealed 

that PIN genes underwent three critical evolutionary innovations associated with 

morphological patterning of shoot/root, inflorescence, and flower, essential architectural 

organs in Arabidopsis [33]. In addition, systematically swapping of the domains between 

PIN proteins localized to the endoplasmic reticulum and plasma membrane as well 

as between apical and basal plasma membrane-localized PINs showed that N- and C-

terminal transmembrane domains and the central hydrophilic loop contribute to subcellular 

localization and cellular polarity [34].

The PIN-like PILS family of transporters reside at the endoplasmic reticulum and seem 

to limit nuclear auxin response by an auxin sequestration mechanism, defining differential 

growth rates [35,36]. The AUX/LAX family consists of four functional auxin influx carriers 

that mediate auxin-related developmental programs in different organs and tissues. AUX1, 

which is the most studied family member, is required for shoot-wards auxin transport from 

the root tip to regulate root gravitropism and root hair development [37]. Recent work 

showed that AUX1 promotes root hair elongation in response to phosphate limitation in 

Arabidopsis and rice [38,39].

Single-cell nucleus morphokinetic tracking combined with cell-type-specific induction of 

auxin biosynthesis enabled mapping of directional auxin flow in the root. The experiments 

showed that auxin flows down the root in a PIN-dependent but AUX1/LAX-independent 

manner. Similar results were obtained for auxin flux from the epidermis into the vasculature. 

However, rapid shootward movement of auxin depends on AUX1 and PIN2 proteins. In 
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addition, root skewing requires localized auxin concentrations but is likely not regulated by 

the activity of PIN2 or AUX1 [40].

Several ABCB family members, ABCB1 (also known as PGP1), 4, 14, 19 (also known as 

MDR1), and 21, are critical for the polar auxin distribution [41–44]. ABCB6 and 20 are 

two additional functionally redundant auxin exporter family members reported regulating 

shoot growth [45]. ABCB15-18 and 22 were recently reported to redundantly allow IAA 

movement from the lateral root cap, shoot-wards via the epidermis, to regulate lateral root 

initiation (BioRxiv 2). WAT1 is a tonoplast-localized auxin transporter, shown to export IAA 

from the vacuole to the cytosol [46]. Several NPF proteins also transport auxins. NRT1.1 

(also known as NPF6.1 or CHL1) is a dual-affinity nitrate transporter that mediates nitrogen 

uptake from the rhizosphere; it also transports IAA [47].

Recent work identified NPF transporters of indole-3-butyric acid (IBA), a precursor of IAA. 

The first, TOB1 (also known as NPF5.12), promotes IBA sequestration into the vacuole 

[48]. The second, NPF7.3, moves IBA into columella root cap cells to regulate gravitropic 

responses [49]. In addition to these two NPF IBA transporters, three additional proteins, 

PXA1 (also known as ABCD1) [50], ABCG36 [51], ABCG37 [52,53], have been implicated 

in IBA transport. However, the regulation of IBA uptake carriers and long-distance transport 

efflux carriers remains unknown [54].

Brassinosteroid

Brassinosteroids (BRs) are steroidal hormones that regulate plant growth and development 

[55]. It has been controversial whether and how BRs are transported throughout the plant. 

Experiments conducted in Pisum sativum revealed BR accumulation in different tissues 

but found no evidence suggesting that BR is transported long-distance [56]. Although BR 

biosynthesis enzymes are localized to the endoplasmic reticulum, BR receptors are found on 

the cell surface [55,57]. Therefore, BR must be translocated from the cell’s interior toward 

the apoplast through passive or active intracellular transport [58–60]. Recent mapping 

of expression patterns of BR biosynthesis enzymes and cell-type mis-expression studies 

revealed that BR precursors and possibly the bioactive BRs, brassinolide and castasterone, 

can move locally within the root over short distances (BioRxiv 3). The movement and tight 

regulation of the biosynthesis pathway generates a hormone concentration gradient along the 

root axis (BioRxiv3, 4). Ecdysone, a steroidal hormone from Drosophila melanogaster with 

structural similarities to BR, is transported by calcium-mediated vesicle exocytosis or by 

an ABC transporter named Atet [60,61]. Thus, there may be parallel transport mechanisms 

for BRs [60]. It will be important to obtain evidence for BR export activity and to identify 

whether there are specific transporters of BR and its precursors.

Cytokinin

Cytokinins (CKs) are involved in numerous developmental and physiological processes 

such as maintaining shoot and cambial meristem activities and promoting cell division, 

differentiation and root nodulation [62]. CKs are mobile molecules that have two main 

active forms. One form is trans-zeatin (t Z), which is synthesized in the roots and 
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translocated acropetally to the shoot through the xylem. The second, N6-(Δ2-isopentenyl) 

adenine (iP), is produced in the shoot and moves basipetally toward the root by the phloem 

[63]. An ABCG-type transporter, ABCG14, was identified as a CK transporter involved in 

long-distance transport from root to shoot [64–66]. abcg14 loss-of-function mutants have 

a shoot growth repression phenotype that can be rescued by exogenous t Z application. 

Furthermore, grafting experiments indicated that ABCG14 is required in the root to 

promote shoot growth [64,65]. In rice, OsABCG18 regulates long-distance transport of 

root-derived CK, implying that it has similar characteristics to ABCG14 in Arabidopsis [67]. 

Additionally, it was suggested that members from the equilibrative nucleoside transporter 

(ENT) family mediate CK transport. Oryza sativa ENT2 and Arabidopsis ENT3, ENT6, 

ENT7, and ENT8 are involved in CK transport, but the proteins localization and direction 

of transport are not clear [68–70]. An interesting transport mechanism was proposed for the 

purine permease (PUP) family in Arabidopsis. PUP14 imports CK from the apoplast to the 

cytosol, which minimizes the bioactive CK in the apoplast, leading to reduced CK response 

[71]. Additional PUP family members were characterized as CK importers in rice. OsPUP1 

and OsPUP7 import CK into the endoplasmic reticulum, whereas OsPUP4 transports CK 

from the apoplast into the cytosol. Together, these transporters mediate CK transport to 

control grain-size and development in rice [72,73]. Furthermore, Arabidopsis PUP1 and 

PUP2 can uptake t Z and iP in yeast, but their role in plants has not been characterized [74].

Transporters from the AZA-GUANINE RESISTANT (AZG) purine family are CK 

transporters that are involved in the crosstalk between CK and auxin in Arabidopsis. AZG1 

is a CK importer that interacts and co-localizes directly with PIN1 during stress in roots 

[75]. AZG2 imports CK to regulate lateral root development in an auxin-dependent manner 

[76]. Moreover, it was suggested that ABCI-type transporter family members ABCI19, 

ABCI20, and ABCI21 might function together as a CK transporters. Those proteins are 

localized at the endoplasmic reticulum and are suggested to reduce cytosolic CK levels [77].

CK from the xylem has been argued to be a mobile signal that triggers divisions in the 

neighboring procambium cells [78]. Recently, it was reported that the transcription factor 

TMO5 (also known as LHW) can trigger the formation of a mobile CK that increases the 

density of root hairs [79]. As several of the identified transporters belong to relatively large 

families (i.e., PUPs), it will be important to examine whether additional CK players exist 

within these families and to characterize robustness and specificity. This work will likely 

have to overcome issues of the extensive functional redundancy within the family gene 

clades.

Ethylene

Ethylene is a gaseous hormone that can diffuse freely both in aqueous and lipid 

environments of the cell. Ethylene plays multiple roles in plant development and 

environmental responses with functions in seedling growth, organ development, abscission, 

ripening, and pathogen responses [80]. Although the gaseous hormone can freely diffuse 

through membranes and is thus able to move between cells and the intracellular 

space without the assistance of transporters, evidence suggests that much of its 

spatiotemporal regulation is due to the localization of its non-gaseous immediate precursor 
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1-aminocyclopropane-1-carboxylic acid (ACC). Whereas the major transport route of the 

soluble ACC is likely to be mediated by the xylem, ACC transport via the phloem has 

also been observed [81]. In 2015, LHT1 was identified as the first ACC transporter; LHT1 

mediates ACC movement through the xylem [80]. Alanine and glycine, known as substrates 

of LHT1, compete with ACC for transport by LHT1. Within the LHT transporter family, 

ACC transport does not seem to be specific to LHT1. LHT2, but not LHT3 and AAP5, 

restore ACC responses in lht1 mutant seedlings and suppress the early senescence phenotype 

of the lht1 mutant [82].

Gibberellin

Gibberellin (GA) promotes diverse plant processes such as seed germination, organ 

elongation, flowering, and fruit development [83]. GA is present in all vascular plants in 

many forms, although only a few (e.g., GA1, GA3, GA4, and GA7) were found to be 

bioactive in plants. The other forms of GA are non-bioactive and exist in plants as precursors 

or catabolites [84–88]. The biosynthesis steps of the active GAs are complex, and their 

genes are expressed in different cells, tissues, and developmental stages along the plant 

[85]. There is evidence for both long- and short-distance transport of GA [84,85,89]. For 

example, the GA precursor, GA12, is a mobile form that can move from root to shoot 

[85,90]. The differential fluorescent signal of GA-biosensor GPS1 between the elongation 

and meristematic zones [91], and of GA biosynthesis genes tissue-specific expression are 

additional indications for root-transported GA in Arabidopsis [89].

GA molecules are subjected to the ion-trap mechanism, as several other acidic hormones, 

thus limiting their ability to move out of cells [88]. Therefore, it has been hypothesized 

that GA efflux transporters are required for GA local movement. However, these exporters, 

which are possibly masked by functional redundancy, have not been discovered yet [87]. 

Several GA influx transporters have been identified [87,88]. The NPF proteins are the first 

GA transporters to be identified. NPF3 promotes GA influx in the elongating endodermal 

cells of Arabidopsis root. Its expression is repressed by nitrogen and GA but induced by 

ABA [92,93]. The NPF transporter GTR1 (also known as NPF2.10) appears to be a GA 

transporter in Arabidopsis [94]. Several other NPF transporters, such as NPF2.5, NPF4.1, 

and NPF4.6, promote the uptake of GA in Xenopus oocytes [95], although their specific 

in-planta roles are not clear yet.

A puzzling observation in this field is the nonspecific transport activity of NPF transporters 

for different GA forms as well as diverse molecules, such as ABA, jasmonic acid, nitrate, 

glucosinolate, and others [96]. The nonspecific transport activity of NPF members is also 

relevant to the SWEET family, as several members are sugar transporters as well. SWEET13 

and SWEET14 were identified as GA importers in Arabidopsis thaliana, and SWEET3a was 

characterized as a novel GA transporter in rice [97,98]. Further work is needed to reveal 

the missing GA exporters and possibly additional importers that regulate GA movement in 

processes such as germination and flowering time.
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Jasmonic acid

Jasmonic acid (JA) is a lipid-derived hormone signal detected during development, abiotic 

stress such as wounding, and biotic stress leading to immune responses. Such responses 

trigger an increase in the free JA compound and the bioactive hormone jasmonoyl-L-

isoleucine (JA-Ile) not only at the site of damage but also in distal, unharmed tissues.

The first half of JA biosynthesis leading to the synthesis of the intermediate cis-12-

oxophytodienoic acid (OPDA) takes place in chloroplasts. It was recently shown that OPDA 

is exported from the chloroplasts by JASSY, a START protein localized to the chloroplast 

outer envelope membrane [99]. CTS (also known as ABCD1), localized to the peroxisomal 

membrane, allows OPDA import into peroxisomes, where further JA biosynthesis occurs 

[100].

Recent reports using grafting experiments suggest that travel through the phloem by OPDA 

and its derivatives, but not the bioactive jasmonoyl-isoleucine (JA-Ile) conjugate, is essential 

to initiate JA signaling in the root [101]. JA-Ile, considered to be the bioactive form of JA, 

is perceived in the nucleus. Therefore it is interesting that ABCG16 (also known as JAT1) 

is localized to both the nuclear envelope and plasma membrane and mediates both cellular 

efflux of the free JA molecule and the nuclear influx of JA-Ile [102]. This was the first 

demonstration of a nuclear-localized hormone transporter in plants, as far as we are aware.

Recently, Arabidopsis ABCG6 and ABCG20 (also known as JAT3 and JAT4, respectively) 

were shown to actively regulate leaf-to-leaf translocation of JA produced in response 

to wounding [103]. Thus, the two phloem-expressed plasma membrane-localized, high-

affinity JA and low-affinity JA-Ile importers cooperate in long-distance JA translocation. 

Notably, yeast assays showed export activity while plant suspension cells showed import-

compatible transport activity. In addition, several NPF transporters promote JA and JA-Ile 

movement in yeast and Xenopus oocytes heterologous systems. NPF2.10 is among the few 

transporters within the family to be characterized in vivo. The loss of the NPF2.10 function 

results in reduced JA transport from wounded to un-wounded leaves [104]. However, the 

transport of JA by the NPFs is not specific as these transporters can promote GA, ABA, 

and glucosinolates transport [1]. Likely, genetic redundancy is significantly limiting the 

physiological characterization of these transporters in planta, as they belong to a large 

protein family.

Salicylic acid

Salicylic acid (SA) regulates multiple plant processes, among them the plant immune 

response to pathogens. SA has long been known to be essential for systemic acquired 

resistance (SAR). Following SAR, the bioactive SA hormone is converted to a methylated 

form, MeSA, which is biologically inactive. MeSA accumulates in the phloem and is 

transported to the distal tissues, where it is converted back to SA to induce SAR [105]. The 

process is further regulated by the activity of the uridine diphosphate glycosyltransferase 

UGT71C3 that catalyzes MeSA glucosylation [106]. Mutations in BSMT1 (SA methyl 
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transferase 1), SABP2 (salicylic acid binding protein 2), or UGT71C3 compromise SAR, but 

it is not entirely clear which form of SA is mobile.

Several lines of evidence imply that direct SA transport and SA-mediated systemic 

activity of related signaling molecules influence SAR [107]. Mutants impaired in cuticle 

establishment are defective in SAR due to alterations in systemic transport of SA 

[108,109]. Pathogen induced apoplastic accumulation of SA is driven by a pH gradient 

and deprotonation of SA [108].

An exciting addition to the field comes from the pipecolic acid (PIP) pathway. SA 

contributes to the induction of synthesis of N-hydroxyl pipecolic acid (NHP) from the 

PIP precursor Δ1-piperideine-2-carboxylic acid and biosynthesis of PIP upon pathogen 

infection [110,111]. Importantly, SA signaling and establishment of SAR depends on NHP, 

highlighting the importance of a new hormone signal during biotic stress responses.

Whereas the cell-to-cell and long- and short-distance SA and MeSA transporters have not 

yet been found, the MATE family transporter EDS5 was shown to export SA from the 

chloroplast to the cytosol [112]. The amidotransferase PBS3 catalyzes the conjugation 

of glutamate to cytosolic isochorismate, and this glutamate conjugate spontaneously 

decomposes into bioactive SA to control the innate immune response [112,113]. Further 

experiments are needed to quantitatively map the distribution of SA, MeSA, PIP, and 

NHP compounds before and after local pathogen infection [107]. Most importantly, the 

transporters that facilitate the transport of bioactive molecules that activate SAR remains 

unknown.

Strigolactone

Strigolactones (SLs) are carotenoid-derived phytohormones that have been identified as 

regulators of lateral root development and bud growth and as triggers for symbiosis between 

plants and mycorrhizal fungi [114,115]. SL can be synthesized in both roots and shoots. 

Grafting experiments revealed that root-derived SLs could rescue a shoot SL mutant 

phenotype, demonstrating that SL can be transported from distant areas. This long-distance 

transport toward the shoot lateral axils was shown to control lateral bud outgrowth [116– 

119]. Moreover, SLs were found to regulate vascular tissue formation and regeneration 

by inhibiting the auxin PIN-dependent feedback transport [120]. The petunia ABCG-class 

protein PDR1 was the first characterized SL transporter in plants. It is a plasma membrane-

localized exporter, expressed in root cortex and shoot axils [118,121]. Experiments indicate 

that PDR1 controls short-distance transport in the root tip, hypodermal, and stem axillary 

cells. Other studies showed that pdr1 mutants are defective in translocation of synthetic 

SL from root to shoot, implying it also plays a role in long-distance transport of SL 

[118,119,121]. Nevertheless, long-distance transport of SLs might not be solely dependent 

on PDR1. It has been suggested that additional transporters and SL precursors remain to 

be found [119,122]. Recently, ABCG59 was identified as a SL transporter that fine-tunes 

mycorrhizal symbiosis in Medicago truncatula [123]. Yet, it remains unclear which SL 

compounds move within plants and whether PDR-mediated transport exists in additional 

plant species.
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Conclusions and future perspectives

In recent years, multiple plant hormone transporters have been characterized in Arabidopsis 
and other plant species, shedding light on the active mechanisms that drive hormone 

spatiotemporal regulation (Figure 1) [4,5]. Several distinct mechanisms have been identified 

(Figure 2): 1) Subcellular hormone transport, which delivers bioactive hormones, 

intermediates, or conjugated forms into and out of organelles, may occur as part of the 

biosynthesis processes (i.e., JASSY and ABCD1), during homeostasis (i.e., PILS family 

members and WAT1), or during the promotion of the response (i.e., ABCG16). 2) A 

negative hormone sink occurs when transporters import bioactive hormone into the cell 

and prevent its binding to the receptor at the apoplast (i.e., PUP14). An additional 

negative hormone sink may result from a plasma membrane exporter that pumps the 

bioactive hormone out of the cell (i.e., possibly ABCBs). Negative hormone sinks may 

occur with hormone intermediates and conjugated forms at the tissue or organelle level. 

3) Positive hormone sinks result when transporters import bioactive hormones into cells 

that directly perceive and activate the hormone response (i.e., NPF3 and NPF7.3). Positive 

hormone sinks may also occur when a hormone exporter delivers the bioactive hormone 

to the neighboring cell. 4) Cell-to-cell mechanisms are active when the transporters allow 

directional movement of the hormone. This type of action occurs when transporters are 

polarized at the subcellular level (i.e., PINs) and are relevant to non-subcellular polarized 

transporters (i.e., ABCBs that transport auxin). 5) Long-distance transport allows root-to-

shoot or shoot-to-root transport of bioactive hormones, their intermediates, or conjugated 

forms through the xylem and phloem [1]. These transporters can directly load or unload 

hormones from the vasculature (i.e., ABCG14, NPF4.6, and ABCG25) but also may affect 

long-distance hormone transport indirectly (i.e., ABCG17 and ABCG18) (Figure 2). We 

expect that additional transporters for all hormones, from the distinct transport mechanisms 

discussed above, will be identified in the coming years.

Abbreviations

ABC ATP Binding Cassette

NPF Nitrate transporter 1(NRT1)/Peptide Transporter family

AIT ABA-Importing Transporter

ABA-GE ABA Glucosyl Ester

DG1 Defective Grain-filling 1

IAA Indole 3-Acetic Acid

IBA Indole-3-Butyric Acid

PILS PIN-Likes

LAX Like-Aux

WAT1 Walls Are Thin 1
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TOB1 Transporter of IBA 1

PXA1 Peroxisomal ABC-Transporter1

ENT Equilibrative Nucleoside, Transporter

PUP Purine Permease

AZG Aza-Guanine Resistant

GTR1 Glucosinolate Transporter-1

MATE DTX/Multidrug and Toxic Compound Extrusion

ACC L-aminocyclopropane-1-Carboxylic Acid

LHT Lysine–Histidine-like Transporters

AAP Amino Acid Permeases

MeJA Methyl Jasmonate

JAT Jasmonate Transporter

OPDA Cis-12-oxophytodienoic Acid

CTS ABC Transporter

JA-Ile Jasmonoyl-Isoleucine

SAR Systemic Acquired Resistance

MeSA Methyl Salicylate

BSMT1 SA methyl transferase 1

SABP2 salicylic acid binding protein 2

PIP Pipecolic acid

NHP N-hydroxyl Pipecolic acid

EDS5 Enhances Disease Susceptibility5

PBS3 avrPphB Susceptible 3
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Fig. 1. Overview of plant hormones transporters.
Known transporters for each hormone are shown. Blue arrows represent importers; 

orange arrows represent exporters. The inset boxes are magnifications of the indicated 

organelles. The proteins transport the indicated bioactive hormone unless stated otherwise 

(ABA-GE stands for ABA Glucosyl Ester; IBA for Indole-3-Butyric Acid; ACC for L-

aminocyclopropane-1-Carboxylic Acid; JA-Ile for Jasmonoyl-Isoleucine; OPDA for Cis-12-

oxophytodienoic Acid). All hormone transporters were characterized in Arabidopsis thaliana 
unless stated otherwise (Sl, Solanum lycopersicum; Os, Oryza sativa; Mt, Medicago 
truncatula; Pa, Petunia axillaris). IC stands for isochorismate.
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Fig. 2. Overview of hormone transport mechanisms in plants.
Diverse mechanisms of hormone transport are shown. A. Subcellular transport of hormones 

in or out of organelles (i.e., ABCD1 for peroxisomes and TOB1 for vacuole) leads to 

activity, storage, or degradation of the bioactive hormone, intermediates, or conjugated 

hormone forms. B. Negative sinks reduce hormone action. Several scenarios may lead 

to this phenomenon. First, insufficient hormone activity may result from import of the 

hormone into the cytosol, when the hormone receptors operate outside the plasma membrane 

(i.e., PUP14); second, the transporters may import the hormone into the cytosol where 
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conjugation results in inactivity (i.e., ABCG17 and ABCG18); third, hormone export 

activity may lead to a decrease in the hormone activity in the cell (i.e., possibly ABCBs). 

C. Positive sinks enhances the activity of hormones by importing hormones or derivatives 

into the cell (i.e., NPF3 and NPF7.3). D. Cell-to-cell transport of hormones can occur via 

an exporter or an importer, allowing hormone gradients (i.e., PINs and AUX\LUXs). E. 
Long-distance transport of the hormone from root to shoot or vice versa occurs through the 

vasculature. This type of transport includes xylem and phloem loading and unloading (i.e., 

ABCG14 and DG1).
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