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Abstract

Traditionally viewed as poorly plastic, neutrophils are now recognized as functionally diverse. 

However, the extent and determinants of neutrophil heterogeneity in humans remain unclear. 

We performed a comprehensive immunophenotypic and transcriptome analysis, at bulk and single-

cell level, of neutrophils from healthy donors and patients undergoing stress myelopoiesis upon 

exposure to growth factors, transplantation of hematopoietic stem cells (HSC-T), development 

of pancreatic cancer, and viral infection. We uncover an extreme diversity of human neutrophils 

in vivo, reflecting the rates of cell mobilization, differentiation, and exposure to environmental 

signals. Integrated control of developmental and inducible transcriptional programs linked flexible 

granulopoietic outputs with elicitation of context-dependent functional responses. In this context, 

we detected an acute interferon (IFN) response in the blood of HSC-T patients that was mirrored 

by marked upregulation of IFN-stimulated genes in neutrophils but not in monocytes. Systematic 

characterization of human neutrophil plasticity may uncover clinically relevant biomarkers and 

support the development of diagnostic and therapeutic tools.

Neutrophils, the most abundant leukocytes in peripheral blood (PB), ensure host immunity 

by sensing and phagocytosing invading pathogens, as well as by releasing cytotoxic 

molecules via granule discharge or neutrophil extracellular traps (NETs)1. Individuals with 

severe congenital neutropenia or chronic granulomatous disease, diseases characterized 

by defective neutrophil development or functions, are indeed sensitive to opportunistic 

infections2; and rapid reconstitution of neutrophil counts after hematopoietic stem cell 

transplantation (HSC-T) is associated to higher survival and hematological recovery in 

chemotherapy-treated patients3. On the other hand, aberrant neutrophil activation underlies a 

variety of inflammatory conditions, including autoimmunity, stroke, neurodegeneration, and 

cancer4.

The multifaceted activities of neutrophils in health and disease underscore a remarkable 

functional diversity5. In this context, traditional views of neutrophils as short-lived effectors 

with limited plasticity are challenged by findings that, already at the steady state, these 

cells persist within organs and acquire tissue-specific genomic programs6. Heterogeneity of 

neutrophils also reflects the output of bone marrow (BM) granulopoiesis, a demand-adapted 

process sensitive to homeostatic fluctuations7, alterations of the hematopoietic niche, or 

changes in the concentration of mediators such as granulocyte-colony stimulating factor (G-

CSF)8. During stress-induced myelopoiesis, committed precursors and immature neutrophils 

undergo expansion and premature release in the blood, where they co-exist with terminally 

differentiated subsets9–11. Neutrophil properties are further diversified as cells are exposed 

to stress-associated stimuli in the circulation or in target organs, leading to the production 

and release of a spectrum of inflammatory and regulatory products12–16.
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A systematic analysis of the phenotypic and transcriptome changes occurring in human 

neutrophils during inflammation is a prerequisite for the interpretation rational targeting 

of these cells’ activities in homeostasis and disease. However, the extent and drivers of 

neutrophil heterogeneity in humans have remained elusive. We addressed these issues by 

performing a comprehensive immunophenotype and transcriptome analysis, at the bulk and 

single-cell level, of human neutrophils and monocytes in healthy controls and in patients 

undergoing stress-induced myelopoiesis driven by exposure to G-CSF, myeloablative 

conditioning followed by HSC-T, development of pancreatic ductal adenocarcinoma 

(PDAC), or infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV2).

Results

Dynamics and phenotype of G-CSF-elicited human neutrophils

To characterize stress-elicited neutrophil dynamics in humans, we performed a 

comprehensive immunophenotype analysis of PB or BM samples from control subjects 

and age-matched individuals undergoing G-CSF treatment (Supplementary Tables 1-6). 

On the one hand, unfractionated blood samples were analyzed using multiparametric flow 

cytometry with a panel of 16 antibodies able to quantify up to 28 subsets of hematopoietic 

stem and progenitor cells (HSPCs), committed precursors, and differentiated cells17 

(Extended Data Fig. 1a and Supplementary Table 7). To assess neutrophil phenotypes, 

PB and BM samples were additionally subjected to density gradient separation followed 

by targeted flow cytometry analyses of CD15+ CD66b+ cells that sedimented in the 

erythrocyte/granulocyte fraction (referred to as normal-density neutrophils, or NDNs) or 

in the mononuclear cell layer (low-density neutrophils, LDNs) (Extended Data Fig. 1b-d 

and Supplementary Table 7). Neutrophils indeed show variable buoyant densities according 

to changes in their granule content and nuclear morphology during maturation and/or 

activation. We observed a robust mobilization of myeloid-biased HSPCs in G-CSF-treated 

donors (Extended Data Fig. 1e-h), concomitant with a preferential surge of circulating 

neutrophils and other myeloid cells (Fig. 1a and Extended Data Fig. 1i,j). In line with 

previous studies18,19, G-CSF exposure led to increased numbers of neutrophil precursors 

(SSChi CD33/CD66b+ CD38+ CD11c- CD10-) and of immature neutrophils (SSChi CD33/

CD66b+ CD38- CD11c-/+ CD10-) (Fig. 1b,c and Extended Data Fig. 1a,k). G-CSF-treated 

donors displayed high frequencies of LDNs (Fig. 1d,e) that expressed low levels of 

the neutrophil differentiation and activation markers CD11b, CD11c, CD62L, CD16 and 

CD10 (Fig. 1d,f and Extended Data Fig. 2a). G-CSF-elicited LDNs were heterogeneous 

and included cells corresponding to neutrophil precursors (CD15+ CD66b+ CD49d+ 

CD16-), immature neutrophils (CD15+ CD66b+ CD49d- CD16int), and mature neutrophils 

(CD15+ CD66b+ CD49d- CD16hi) (Fig. 1g-i and Extended Data Fig. 2b,c)9–11. Ex vivo 
assays of 5-ethynyl-2’-deoxyuridine (EdU) incorporation confirmed that LDNs contained 

neutrophil precursors with proliferative potential9,10 (Fig. 1j,k and Extended Data Fig. 2d,e). 

As reported previously19, NDNs from G-CSF-treated donors were mostly composed of 

mature neutrophils with an activated phenotype – that is, lower expression of CD10 and 

CD62L (Fig. 1f and Extended Data Fig. 2a) and increased levels of CD35 (CR1) and 

CD54 (ICAM-1) (Extended Data Fig. 2f,g) than control NDNs. These data highlight the 

heterogeneous phenotype of G-CSF-elicited human neutrophils.
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Dynamics and phenotype of neutrophils during HSC-T or PDAC

We next profiled neutrophil dynamics in age-matched subjects undergoing emergency 

myelopoiesis secondary to HSC-T with high-intensity conditioning (Supplementary Tables 

1-6). PB and/or BM samples were collected from these patients shortly after treatment (1st 

follow-up, PB collected 16-27 days post HSC-T), at clinical recovery (2nd follow-up, PB 

and BM collected 28-40 days post-HSC-T), and months after HSC-T (3rd follow-up, PB and 

BM collected >180 days post-HSC-T) (Extended Data Fig. 2h-j). Flow cytometry analyses 

of unfractionated PB samples highlighted mobilization of phenotypically-defined neutrophil 

precursors in HSC-T patients at the first or second follow-up (Fig. 2a-c), coinciding with 

the appearance in the circulation of heterogeneous LDNs (Fig. 2d,e) containing proliferating 

and non-proliferating precursors as well as immature neutrophils (Fig. 2f,g and Extended 

Data Fig. 2d,e,k,l). We then analyzed PB samples from treatment-naïve patients with locally 

advanced or metastatic PDAC (n=19) or with intraductal papillary mucinous neoplasms 

(IPMN) (n=15), a type of lesion that often precedes tumor onset20. Total neutrophil 

counts were largely unaltered in PDAC patients, while those of other hematopoietic cells 

– HSPCs, monocytes and T lymphocytes – were significantly reduced (Extended Data 

Fig. 2m-p). Thus, the neutrophil-to-lymphocyte ratio (NLR), a frequently used marker of 

cancer progression21, was higher for PDAC patients than for healthy controls or IPMN 

patients (Extended Data Fig. 2q,r). In line with previous reports22, we observed increased 

frequencies of circulating LDNs in PDAC patients (Fig. 2h,i), with this cell population 

spanning cycling and non-cycling precursors, immature, as well as mature neutrophils (Fig. 

2j and Extended Data Fig. 2s-v). We highlight that PDAC patients enrolled in the study are 

significantly older than healthy donors (Supplementary Tables 1, 3, 4). However, no increase 

in LDN frequencies nor NLR values were detected in age-matched IPMN patients (Fig. 

2i and Extended Data Fig. 2r), suggesting that age is not a key determinant of neutrophil 

dynamics. Our results highlight mobilization of heterogeneous LDNs as a hallmark of stress 

myelopoiesis induced by G-CSF treatment, HSC-T, or PDAC.

Functional properties of G-CSF-elicited neutrophils

We next performed ex vivo experiments to assess reactive oxygen species (ROS) production, 

neutrophil extracellular trap (NET) release, and cytokine synthesis by neutrophil populations 

isolated from control or G-CSF-treated subjects (Fig. 3a). As compared to those of healthy 

individuals, NDNs from G-CSF-treated donors displayed a weaker respiratory burst upon 

treatment with phorbol myristate acetate (PMA) (Fig. 3b,c) – possibly reflecting the 

pre-activated phenotype of these cells in vivo. G-CSF-elicited LDNs also showed lower 

responses to PMA than controls (Fig. 3b,c), with ROS generation occurring mostly within 

phenotypically mature cells (Fig. 3d,e). Dose-response experiments revealed that, at a 

limiting dose of stimulus, LDNs from G-CSF-treated donors were substantially less able 

to produce ROS than matched NDNs (Fig. 3f). We also found that G-CSF-elicited LDNs 

underwent PMA-driven NETosis less efficiently than NDNs (Fig. 3g), corroborating the 

notion that LDNs contain neutrophils that have not fully acquired effector capacities. We 

next measured the levels of a panel of cytokines, chemokines, and growth factors in the 

culture supernatant of neutrophil populations treated ex vivo with the Toll-like receptors 

(TLR) 8 agonist resiquimod (R848), a powerful stimulator of cytokine release by human 

neutrophils23. A differential biosynthetic capacity emerged when comparing control and 
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G-CSF-elicited NDNs, with the latter cells displaying efficient release of inflammatory 

molecules upon stimulation (Fig. 3h). Notably, LDNs from G-CSF-treated donors were 

particularly responsive to TLR ligation and synthesized the highest levels of cytokines such 

as IL-1β, IL-1RA, G-CSF, CCL2, CCL5, and TNF-α (Fig. 3h). These findings suggest that, 

while lacking at least some effector features of terminally differentiated cells, mobilized 

immature neutrophils retain immune regulatory capacity via cytokine synthesis and release. 

Collectively, our data underscore the influence of maturation and exposure to growth factors 

on the functional effector and the immune regulatory properties of stress-elicited neutrophil 

subsets.

Bulk transcriptome analysis of monocytes, NDNs, and LDNs

To define the gene expression programs of myeloid cells at steady state and after stress, 

we performed bulk RNA sequencing (RNA-Seq) analyses of NDNs, LDNs, and monocytes 

isolated from the PB of healthy controls (n=19), of G-CSF-treated donors (n=17) as well 

as of HSC-T (n=8), PDAC (n=15) or IPMN (n=14) patients. We also analyzed neutrophil 

differentiation intermediates from BM samples of controls (n=3) or HSC-T patients (n=7), 

generating a total of 210 RNA-Seq samples from 73 individuals (Supplementary Table 

8). Cell purity after magnetic bead selection or sorting was consistently higher than 95% 

(Extended Data Fig. 3a-f). Principal component analysis (PCA) and unsupervised k-means 

clustering highlighted clear segregation of monocyte, NDN, and LDN transcriptomes (Fig. 

4a, Extended Data Fig. 4a-c and Supplementary Table 9). Monocytes were characterized 

by selective expression of transcripts encoding for known myeloid transcription factors 

(KLF4, IRF8, MAFB), scavenger receptors (MARCO, MRC1), components of the antigen 

presentation machinery (HLA-DMA, HLA-DRA, CD74) and inflammatory cytokines 

(CCL2, CXCL10) (Fig. 4a, module 6). Notably, monocytes expressed a gene program 

(module 5) that was shared with stress-elicited LDNs and that included transcripts encoding 

for regulators of RNA transcription (POLR1A, POLR2L), translation (EIF2A, EEF2) and 

ribosome biogenesis (RPL10A, RPS23, BOP1) (Fig. 4a). LDNs displayed high levels 

of genes encoding for neutrophil granule proteins (MPO, DEFA4, ELANE), cell cycle 

regulators (TOP2A), transcription factors (CEBPE), and surface markers (CEACAM8) (Fig. 

4a, modules 2 and 4), and they tended to cluster together with developing neutrophils 

of the BM from healthy donors (Fig. 4a and Extended Data Fig. 4a-c). LDNs were also 

characterized by low basal expression of inflammatory response genes (GBP1, OASL, IL1B, 
TNF) that were instead transcribed in NDNs (Fig. 4a, modules 1 and 3) – a finding that was 

confirmed at the protein level for IL-1β (Extended Data Fig. 5a,b). Collectively, these data 

indicate that stress-elicited LDNs are characterized by a gene expression program distinct 

from that of monocytes or NDNs, and largely comparable to that of developing neutrophils 

of the BM.

Transcriptional responses to stress in NDNs and monocytes

We next set out to define stress-induced transcriptional changes in NDNs and monocytes 

(due to their heterogeneity, cells corresponding to LDNs were studied at the single-cell level, 

see below). Analysis of differentially expressed genes (DEGs) (Fig. 4b and Supplementary 

Tables 10-12) and downstream validation (Extended Data Fig. 5c-g) uncovered a profound 

transcriptome reprogramming of NDNs from G-CSF-treated donors or HSC-T patients, 
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while NDNs from PDAC patients underwent comparatively small changes. There was 

a limited overlap between DEGs in NDNs from the various experimental conditions, 

indicating that transcriptional responses of human neutrophils are largely stress-specific 

(Fig. 4c and Supplementary Table 13). In line with this notion, exposure to G-CSF led 

to induction in NDNs of genes belonging to gene ontology (GO) categories such as 

mitochondrial gene translation, oxidative phosphorylation, or leukocyte-mediated immunity, 

and to repression of interferon (IFN) responses (Fig. 4d and Supplementary Tables 14-16). 

On the other hand, NDNs from HSC-T patients showed a clear IFN signature, and they 

expressed genes of defense response and mitochondrial translation GOs (Fig. 4d and 

Supplementary Tables 14-16). Increased expression of IFN response genes and of transcripts 

controlling fatty acid metabolism was also measured in NDNs from PDAC patients (Fig. 

4d and Supplementary Table 14-16). Notably, we found that monocytes from G-CSF-treated 

donors or HSC-T patients showed limited transcriptional changes as compared to what 

observed in NDNs from the same individuals (Fig. 4e, Supplementary Tables 17-22). These 

data highlight a remarkable plasticity of human neutrophils in vivo.

Analysis of plasma factors elicited by G-CSF, HSC-T or PDAC

To identify soluble factors underlying neutrophil dynamics upon stress, we quantified a 

panel of plasma cytokines, chemokines, and growth factors in the PB of subjects enrolled 

in the study (Supplementary Table 23). G-CSF administration was associated to a drastic up-

regulation of G-CSF and IL-1RA, as well as to a mild increase of inflammatory cytokines 

that included IFN-γ, IL-18 and CXCL10 (Fig. 5a,b and Extended Data Fig. 6a). G-CSF 

treatment also led to lower levels of CXCL12 (Fig. 5a,b), a key BM homing signal for 

CXCR4+ HSPCs and immature myeloid cells. We observed a marked inflammatory skewing 

of the plasma cytokine profile in HSC-T patients sampled up to one month after transplant, 

with increased levels of factors controlling myeloid cell differentiation (G-CSF, M-CSF, 

IL-6), recruitment (IL-8, CCL7, CCL3) and activation (IL-18, IL-12, IL-1a, IL-1β) (Fig. 

5a,c). The most up-regulated plasma molecules in HSC-T patients were the IFN-stimulated 

chemokines CXCL9 and CXCL10, in line with a significant elevation of IFN-a2 and IFN-γ 
shortly after HSC-T (Fig. 5a,c). Patients with PDAC, but not with pre-malignant IPMN, also 

showed higher levels of pro-inflammatory cytokines, namely IL-6, IL-8, CCL3, and M-CSF 

as well as of CXCL9 and CXCL10 (Fig. 5a and Extended Data Fig. 6b). Our data indicate 

that G-CSF treatment, HSC-T or PDAC development are characterized by a systemic 

increase in PB concentration of inflammatory molecules known to drive stress myelopoiesis. 

In this context, plasma levels of G-CSF, IL-6 and IL-8 were positively associated with the 

frequencies of mobilized neutrophil precursors or LDNs when combining samples from 

all groups (Fig. 5d,e and Extended Data Fig. 6c-e). A correspondence between plasma 

cytokine profiles and transcriptional dynamics of neutrophils was evident, as exemplified by 

the increased levels of IFNs in PB and upregulation of IFN response genes in NDNs from 

HSC-T patients.

Transcriptional diversity of human neutrophils upon stress

We next performed single-cell RNA-Seq (scRNA-Seq) on CD15+ cells isolated from PB 

or BM samples of healthy controls (PB n=2, BM n=2), G-CSF-treated donors (PB, n=4), 

HSC-T patients (PB n=3, of which one received G-CSF post-transplant, and BM n=2), 
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or PDAC patients (PB, n=5) (Supplementary Table 24). This sorting strategy enabled 

us to recover the full spectrum of developing neutrophils, from precursors to terminally 

differentiated cells (Extended Data Fig. 7a). After normalization and filtering, our dataset 

included transcriptomes from 130,628 cells, of which 1,059 were classified as contaminants 

(Supplementary Table 25). Graph-based clustering analysis revealed an extensive diversity 

of human neutrophils, with cells being distributed in the Uniform Manifold Approximation 

and Projection (UMAP) embedding according to their maturation stage, tissue location, 

exposure to stress signals and donor/patient identity (Fig. 6a,b, Extended Data Fig. 

7b and Supplementary Table 25). We next employed curated gene signatures from 

developing human neutrophils24,25 to annotate UMAP clusters (Fig. 6a-c and Extended 

Data Fig. 7c,d). Cells in cluster 1 expressed the highest levels of a transcriptional module 

previously associated to neutrophil-committed progenitors25, which include genes encoding 

for azurophilic granules (MPO, ELANE) and cell cycle proteins (MKI67, TOP2A); we 

annotated this cluster as “precursors”. We then defined “early immature” (cl. 2, 3) and 

“immature” (cl. 4-14) neutrophils based on increasing expression of specific (CAMP, LTF, 
LCN2) or gelatinase (MMP9, CTSB) granule genes24, which are progressively transcribed 

along the transitions from promyelocytes to band cells25. Finally, “mature” neutrophils 

(cl. 15-24) neutrophils were defined by expression of SELL, MME, and CXCR4 in the 

BM or NAMPT, CXCR2, and SOD2 in PB (Fig. 6a-c and Extended Data Fig. 7c,d). 

Mapping of neutrophil gene modules – previously defined by bulk RNA-Seq (Fig. 4a) – 

onto single-cell transcriptome data confirmed that LDNs (gene modules 2, 4 and 5) span 

precursors, early immature, immature, and mature neutrophils of the BM, while NDNs 

(module 1) correspond to mature PB neutrophils (Extended Data Fig. 7e). In line with the 

observed patterns of LDN mobilization, we found that scRNA-Seq clusters of precursors, 

early immature, and immature neutrophil were predominantly localized in the BM at steady 

state but became evident in the PB of G-CSF-treated donors, HSC-T or PDAC patients 

(Fig. 6a,b and Extended Data Fig. 7f,g). Neutrophils at various developmental stages showed 

differential patterns of inducible gene expression in response to stress. Mature cells from 

controls, G-CSF-treated donors, HSC-T or PDAC patients were segregated from each other 

in scRNA-Seq, while precursors and immature neutrophils from all experimental conditions 

tended to cluster together (Fig. 6a,b, Extended Data Fig. 7f,g and Supplementary Table 25). 

In this context, distinct gene signatures were evident in stress-elicited mature neutrophils. 

G-CSF exposure was associated to higher expression of transcripts such as SERPINA1, 
CR1, CX3CR1, CD177, LAIR1, and CD14, whereas neutrophils from a set of PDAC 

patients expressed IFN response genes (IRF1, GBP1) (Fig. 6a-c and Supplementary Table 

26). Mature neutrophils from HSC-T patients sampled early after transplant expressed high 

levels of genes, such as OAS2, CD274, AIM2, GBP5) (Fig. 6a-c and Supplementary Table 

26), that were associated to IFN responses (Fig. 6d). This signature became less evident 

at later time points (Fig. 6e,f and Supplementary Table 27), consistent with a progressive 

return to steady-state. Collectively, these data indicate that the combined mobilization and 

exposure to inflammatory factors drive divergent developmental trajectories in stress-elicited 

neutrophils, resulting in the acquisition of stimulus-specific gene expression programs 

(e.g., IFN signature) in terminally differentiated cells (Extended Data Fig. 7h). More 

generally, our scRNA-Seq analyses uncover a high degree of transcriptional heterogeneity 
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of circulating human neutrophils, dictated by factors such as the differentiation state, their 

release in circulation, and the immunological status of the host.

Dynamics of neutrophil differentiation during stress

We next set out to dissect how exposure to stress signals impacted on the continuum of 

neutrophil differentiation. We first applied CellHarmony26 on single-cell transcriptomes 

of PB and BM neutrophils from healthy controls to build a reference dataset of steady-

state neutropoiesis, and to define cell states corresponding to specific developmental 

intermediates (Supplementary Table 28). Next, we matched scRNA-Seq data of neutrophils 

from PB and, when available, BM samples from G-CSF-treated donors, HSC-T and PDAC 

patients (termed query) to the previously defined CellHarmony clusters. This approach 

enables unbiased co-clustering of neutrophils at an equivalent maturation phase and precise 

quantification of stress-induced transcriptional changes (Fig. 7a,b, Extended Data Fig. 8a-c 

and Supplementary Tables 29-31). We observed clear differences in both the dynamics and 

the levels of expression of developmental genes in neutrophils from G-CSF-treated donors 

and HSC-T patients, with supra-physiological and prolonged expression of marker genes 

of neutrophil precursors (MPO, DEFA4, ELANE, RNASE2, PLAC8) (Fig. 7a-c, Extended 

Data Fig. 8c and Supplementary Tables 29, 30). Analogously, genes such as TSPO, 
MMP8, HP, FCN1, FCER1G, S100A6 were hyper-expressed in immature neutrophils from 

G-CSF-treated donors and HSC-T patients, and they were prematurely and/or persistently 

transcribed even at earlier or subsequent differentiation stages (Fig. 7a-c, Extended Data Fig. 

8c and Supplementary Tables 29-30). A similar, although less pronounced, behavior was 

observed in neutrophils from PDAC patients (Extended Data Fig. 8a,b and Supplementary 

Table 31). Our data show that exposure to inflammatory factors leads to substantial changes 

in the dynamics of expression of neutrophil developmental genes, possibly supporting the 

enhanced cellular outputs of granulopoiesis during stress.

Transcriptional changes of human neutrophils during stress

To determine how the pre-existing developmental state impacted on stimulus-induced 

reprogramming of neutrophils, we performed differential gene expression analyses between 

reference and query datasets in CellHarmony clusters. These studies uncovered sets of 

genes that were up- or down-regulated upon stress in a developmental state-specific manner 

(Fig. 7d,e, Extended Data Fig. 8d and Supplementary Tables 32-34). In HSC-T patients, 

transcripts up-regulated in differentiated neutrophils (such as ISG15, IFI6 or STAT1) were 

poorly induced in precursors or in immature neutrophils (Fig. 7d,f and Supplementary 

Table 33). Conversely, genes induced in precursors were not induced in mature neutrophils 

(Fig. 7d,f and Supplementary Table 33). The latter behavior was also evident in cells from 

G-CSF-treated donors or PDAC patients, with stress-inducible gene expression programs 

being largely distinct between neutrophils at various developmental states (Fig. 7e,g and 

Supplementary Table 32). In line with this notion, gene ontologies of cluster-specific 

genes were distinct. Mature neutrophils from HSC-T patients up-regulated genes belonging 

to IFN response and antiviral defense GOs, while precursors and immature cells from 

the same individuals upregulated genes involved in RNA processing, translation, and 

protein biosynthesis (Fig. 7h and Supplementary Table 35). On the other hand, mature 

neutrophils from G-CSF-treated donors displayed high expression of genes related to ATP 

Montaldo et al. Page 8

Nat Immunol. Author manuscript; available in PMC 2023 November 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



and carbohydrate metabolic process, macrophage activation and cell adhesion (Fig. 7i and 

Supplementary Table 36). We observed a limited overlap between G-CSF-, HSC-T or 

PDAC-induced genes in CellHarmony clusters (Extended Data Fig. 8e and Supplementary 

Table 37), reinforcing the notion that transcriptional responses of neutrophil subsets are 

stress-specific. We next set out to validate and extend our findings in patients infected with 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), an occurrence associated 

with emergency granulopoiesis and aberrant neutrophil activation27,28. Publicly available 

scRNA-Seq datasets of PBMCs from patients with coronavirus disease 19 (COVID-19)27 

were integrated with single-cell transcriptomes generated in this study and subjected 

to CellHarmony and differential gene expression analyses (Extended Data Fig. 9a). In 

keeping with our previous observations, viral infection altered both the dynamics and the 

expression levels of developmental genes in neutrophil mobilized upon stress (Extended 

Data Fig. 9b and Supplementary Table 38). Genes induced in neutrophils from COVID-19 

patients differed for the various developmental intermediates (Extended Data Fig. 9c and 

Supplementary Table 39), and they were enriched in distinct GO categories (Extended 

Data Fig. 9d and Supplementary Table 40). Mature neutrophils from SARS-CoV2-infected 

individuals displayed an antiviral response signature that was absent or much less evident 

in precursors or immature neutrophils (Extended Data Fig. 9d). Indeed, differentiated 

neutrophils from COVID-19 patients – but not precursors or immature cells – up-regulated 

genes such as IFITM3, LY6E, GBP1, GBP5, IFI6, ISG15, and FECR1G (Extended Data 

Fig. 9e). Collectively, our data indicate that stress-elicited neutrophils undergo context-

dependent transcriptome reprogramming in vivo, in a manner that reflects both the 

developmental stage and the type of stimuli to which the latter cells are exposed.

Transcriptional responses to IFN by developing neutrophils

Bulk and single-cell RNA-Seq analyses highlighted a marked tendency of differentiated 

human neutrophils to undergo transcriptome reprogramming in response to IFN. These cells 

showed dynamic expression of IFN-stimulated genes in HSC-T patients, to a degree that 

even surpassed that of monocytes from the same individuals (Fig. 4d,e and Supplementary 

Table 18). Furthermore, higher expression of IFN-stimulated genes was observed in mature 

neutrophils from HSC-T (or COVID-19) patients as compared to less differentiated cells 

(Fig. 7b,d,f and Extended Data Fig. 9b,c,e). To determine how the differentiation stage 

of neutrophils correlated with their transcriptional responses to IFNs, we performed scRNA-

Seq on developing neutrophils treated ex vivo with IFN-β or IFN-γ. CD15+ cells from 

CB samples of healthy donors were isolated and pooled to capture the entire spectrum 

of neutrophil maturation (Extended Data Fig. 10a-e and Supplementary Table 41). We 

obtained single-cell transcriptomes from 22,440 neutrophils, which clustered in the tSNE 

plot according to their developmental stage and the type of treatment (Fig. 8a-d, Extended 

Data Fig. 10e and Supplementary Table 42). The neutrophil composition of CB largely 

reflected that of BM and PB, with defined populations of precursors (cl. 1), immature 

(cl. 2) and mature neutrophils (cl. 3-6) (Fig. 8a,b and Extended Data Fig. 10e). Cluster 

6 corresponded to a population of CB neutrophils expressing chemokine genes (CXCL2, 

CCL3 and CCL4) that was not clearly detectable in BM or PB samples (Extended Data Fig. 

10f) and was not investigated further. Treatment of mature neutrophils with IFN-β (cl. 4) or 

IFN-γ (cl. 5) led to up-regulation of antiviral response (IFIT1, RSAD2, ISG15 and OASL) 
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or of known IFN-γ target genes (GBP5, CD274, CD69 and SOCS1), respectively (Fig. 8e-g 

and Supplementary Table 43). On the other hand, precursors (cl. 1) or immature neutrophils 

(cl. 2) treated with IFNs did not segregate from controls in the scRNA-Seq analyses at the 

clustering resolution used (Fig. 8a-e and Supplementary Table 42). Developing neutrophils 

showed detectable but weaker induction of IFN-regulated genes than mature cells (Fig. 

8f-i), suggesting lower responsiveness to cytokine stimulation. In line with this notion, 

IFNAR1 and IFNGR1 – transcripts encoding for key IFN-β and IFN-γ receptor subunits, 

respectively – were highly expressed in mature neutrophils, but not in immature neutrophils 

or in precursors (Fig. 8j,k). Collectively, our data underscore the extensive transcriptional 

plasticity of differentiated human neutrophils upon stimulation with environmental agents.

Discussion

In this study, we combined multiparametric immunophenotyping, quantification of plasma 

factors, bulk and single-cell genomics, and computational modeling to dissect cellular 

dynamics and molecular diversity of human neutrophils at homeostasis and upon stress. 

Our study extends previous analyses in mice14,16,29–31, and it uncovers principles of 

neutrophil gene expression in relevant conditions of stress-induced myelopoiesis. Treatment 

with G-CSF of healthy subjects for HSC mobilization, HSC-T in chemotherapy-treated 

patients, and development of pancreatic cancer elicited a common immunological response, 

namely release in the blood of developing neutrophils and production of inflammatory 

cytokines driving neutrophil development and trafficking. The clinical outcomes of the 

above-described settings are profoundly influenced by neutrophil activities, as these cells 

were shown to control HSC mobilization in response to G-CSF or other agents such as 

GROβ and AMD310032, to enable immune protection of the host and vascular repair33 upon 

HSC-T, and to modulate cancer progression in a context-dependent manner4,34,35.

The properties of stress-elicited LDNs have been studied in various settings, often by bulk 

comparison with mature neutrophils36. We report that LDNs are highly heterogeneous and 

span the entire spectrum of neutrophil differentiation, up to early precursors. In keeping 

with their immature phenotype, LDNs displayed limited effector properties ex vivo – that 

is, respiratory burst and NETosis – as compared to terminally differentiated cells. On the 

other hand, LDNs were particularly efficient at producing cytokines upon TLR ligation, a 

capacity that was likely supported by the high expression level of transcript and protein 

biosynthesis genes. The functions of LDNs in vivo remain unclear and include immune 

modulation or tissue repair37. Our data support the hypothesis that LDNs regulate local 

and/or systemic inflammation via cytokine production. Furthermore, mobilized LDNs might 

give rise to mature neutrophils in periphery and thus support increased cellular demands 

upon inflammation or damage. In the context of HSC-T, mobilized neutrophil precursors 

may thus sustain immune reconstitution, and therapeutic approaches that stimulate their 

production and release could boost recovery from neutropenia following preparative 

conditioning. Combining lineage tracing with single-cell genomics and functional analyses 

will elucidate the hierarchy and developmental connections between neutrophil precursors 

and their progeny, as well as highlight functional implications during homeostasis and 

disease.
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Single-cell transcriptome analysis of mobilized neutrophils exposed to inflammatory stimuli 

in the blood allowed us to dissect the complex interplay between differentiation and 

activation in vivo. Stress-elicited neutrophils underwent profound changes in the expression 

dynamics of developmental genes, and they concomitantly acquired stimulus-specific gene 

signatures. Notably, both the extent and the type of transcriptional responses to stimulation 

were different for cells at various maturation stages, with the most evident transcriptome 

dynamics being observed in differentiated neutrophils. These data support a model whereby 

combined mobilization and exposure to inflammatory factors elicit divergent neutrophil 

developmental trajectories that result in the acquisition of context-specific functional 

programs by terminally differentiated cells. We speculate that an integrated control of 

developmental and inducible gene expression in neutrophils enables persistent adaptations38, 

such as those seen in long-term setting of trained immunity to infection or cancer39,40.

Transcriptional reprogramming of neutrophils closely mirrored changes of blood cytokine 

profiles in subjects with stress myelopoiesis. A metabolic and proliferative response 

underlined neutrophils from G-CSF-treated donors, in line with the known biological 

actions of the latter molecule. An acute IFN cytokine signature was instead detected in 

the blood of HSC-T patients early after transplant, possibly reflecting chemotherapy-induced 

tissue damage, viral reactivation, exposure to pathogens, or acute graft versus host disease 

(GVHD)41,42; this response was associated with a marked induction of IFN-stimulated genes 

in circulating neutrophils. Strikingly, monocytes from the same HSC-T patients underwent 

minor transcriptional changes, as they upregulated a relatively small set of inflammatory 

genes. The molecular bases of differential IFN responses by neutrophils and monocytes 

in vivo remain to be elucidated. An intriguing possibility is that lower thresholds of IFN 

concentrations may be required to drive inducible gene expression in neutrophils; this 

behavior would be compatible with the existence of differential signal transduction pathways 

and chromatin dynamics at inflammatory response genes in the two cell types43,44. We 

propose that neutrophils act as powerful sensors of environmental stimuli - and of IFNs 

in particular - with the potential to provide accurate transcriptome readouts of signaling 

networks occurring in the blood. The high responsiveness of neutrophils to IFNs may 

underlie the relevance of these cells as biomarkers for severe infectious diseases, in line 

with the reported predictive power of neutrophil gene expression in blood transcriptional 

signatures of patients with bacterial or viral infection45–47. Future studies will be aimed at 

determining whether neutrophil transcriptome features can be used as biomarkers of clinical 

parameters of HSC-T, such as hematopoietic reconstitution, viral reactivation, infections 

with pathogens or GVHD.

By extending previous efforts to characterize neutrophil properties at the steady state9,24,25 

and in clinically relevant settings – including G-CSF administration18, lung or heart 

disease13,48, viral infection27,28,49 and cancer12,15,50, our study represents a step towards 

a mechanistic understanding of neutrophil diversity in humans. We anticipate that integration 

of current and future large-scale phenotypic, molecular, and functional analyses will enable 

the development of diagnostic and therapeutic strategies for diseases in which neutrophils 

are implicated.
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Methods

Experimental Methods

Study participants and sample collection—Collection of biological samples was 

compliant to the Declaration of Helsinki and to the General Data Protection Regulation 

and it was approved by Ospedale San Raffaele and Azienda Ospedaliera Universitaria 

Integrata di Verona ethics committee (Protocols: TIGET09; MIELO-GEN; NEU-IPMN; 

CMRI/55742). A total of 149 participant were enrolled to the study between June 2017 

and June 2022. Samples were collected into EDTA-containing sterile vacutainer tubes, 

stored at 25 °C, and processed within 2 hours. Informed consent was obtained by all 

participants. Participants received no compensation. Age and sex, as well as anonymized 

clinical information of enrolled participants are reported in Supplementary Tables 1-6.

Controls and G-CSF-treated donors: Healthy individuals were enrolled at Ospedale San 

Raffaele and Azienda Ospedaliera Universitaria Integrata di Verona. We collected peripheral 

blood (PB) from healthy donors before HSPC mobilization or bone marrow aspiration 

procedures (n=55). Bone marrow (BM) samples were harvested from the posterior iliac 

crests under anesthesia as standard HSPC donation procedure (n=14). Mobilized PB was 

collected from HSPC donors (n=49) after 5 days of treatment with G-CSF (Filgastrim, 

10μg/kg per day). Cord blood (CB) samples (n=10) were collected after C-section deliveries 

at term of gestion of healthy volunteers donating placental tissue.

HSC-T patients: Patients (n=16) with hematological malignancies in complete remission 

were enrolled at Ospedale San Raffaele. They received preparative myeloablative 

conditioning and underwent post-transplant pharmacologic prophylaxis regimen to prevent 

acute and chronic Graft versus Host Disease (GvHD) and infections. Patients underwent 

allogeneic HSC-T from either haplotype-mismatched related donor (MMRD, n=12) or 

haplotype-matched related donor (MRD, n=4). 14 patients received unmanipulated G-CSF-

mobilized PB cells, and 2 received unmanipulated BM cells. We collected samples at three 

time-points after HSC-T. 1st follow-up: early after transplant when white blood cell count 

reached 500 cells/μl for three days (PB collected 16-27 days post HSC-T); 2nd follow-up: 

at clinical recovery (PB and BM collected 28-40 days post-HSC-T); 3rd follow-up: long 

term after transplant (PB and BM collected >180 days post-HSC-T). Two patients (UPN34 

and UPN40) showed delayed or absent engraftment after HSC-T. Among patients receiving 

post-transplant G-CSF, we only retained UPN47 for scRNAseq analysis.

PDAC and IPMN patients: We collected PB from patients with suspect or proven 

diagnosis of pre-malignant and malignant lesions of the pancreas at Ospedale San Raffaele. 

Intraductal papillary mucinous neoplasm (IPMN) diagnosis was confirmed by Magnetic 

Resonance Imaging (MRI) and/or cytological examination on specimens collected via 

Endoscopic Ultrasound Fine Needle Aspiration (EUS-FNA) or by histological examination 

after resection. Pancreatic ductal adenocarcinoma (PDAC) diagnosis was confirmed by 

cytological examination. Samples were retained only for patients with confirmed IPMN 

(n=15) or PDAC (n=19) diagnosis. Exclusion criteria were chemo- and/or radiotherapy 
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treatments and occurrence of acute pancreatitis, cholangitis and surgical or invasive 

endoscopic procedure within 1 month prior to PB collection.

Cell isolation—Mononuclear cells and granulocytes were separated by density 

centrifugation over a Lymphoprep (Stemcell technologies) gradient. PB and CB samples 

were diluted 1:1 with PBS, while BM and G-CSF-mobilized PB samples were diluted 

1:4 with PBS and layered over Lymphoprep. Mononuclear cells were lysed with sterile 

ACK solution (0.15M NH4Cl, 10mM KHCO3, 0.1mM EDTA) 5 minutes at 25°C to 

remove residual erythrocytes and counted in the presence of Trypan blue (Sigma) to 

evaluate cell vitality. Monocytes and low-density neutrophils (LDN) were isolated from 

the mononuclear cell fraction either by FACS (see below) or by magnetic beads with CD14 

Microbeads or CD15 Microbeads (Miltenyi Biotec), respectively. Granulocyte enriched 

fraction was further purified over Hetasep (Stemcell technologies) gradient followed by 

erythrocytes lysis and vital count with Trypan blue. Normal density neutrophils (NDN) 

were isolated from total granulocytes by magnetic bead sorting using the Neutrophil 

Isolation kit (Stemcell technologies). Alternatively, mononuclear cells and granulocytes 

were isolated by Ficoll-Paque (GE Healthcare Life Sciences) gradient centrifugation and 

Dextran (Sigma) gradient, as previously described19. For Cytochrome C reduction assay and 

supernatant production, total CD66b+ neutrophils were isolated by magnetic bead selection 

by incubating mononuclear cells or granulocytes with fluorescence-conjugated anti-CD66b 

monoclonal antibody (mAb), followed by incubation with specific anti-fluorochrome 

microbeads (Miltenyi Biotec) according to the manufacturer’s protocol. Purity of bead 

sorted cell subsets was evaluated by flow cytometry analysis. A detailed reagent list is 

reported in Supplementary Table 44.

Flow cytometry

Whole blood staining: Whole blood flow cytometry analysis was performed as described17. 

Briefly, 500 μl of PB or 100 μl of BM were incubated with 3ml or 1ml, respectively, of 

ACK solution for 10 minutes at 25 °C and washed twice with PBS. After a final wash 

in PBS 1% BSA, cells were resuspended in 100 μl of PBS 1% BSA and incubated with 

fluorochrome-conjugated antibody mix for 30 min at 25 °C in the dark. Cells were washed, 

resuspended in 100 μl of PBS 1% BSA and incubated 15 minutes in the dark with PI 

at a final concentration of 0.25 μg/ml. Samples were acquired at LSR-Fortessa or BD 

FACSymphony A5 SORP Cytometer (BD Biosciences) using DIVA software v8.0.2 (BD 

Biosciences). Data were analysed using Flowjo software v10.8.0 (Treestar). Cell populations 

were gated as previously described17 with minor modification, as reported in Supplementary 

Table 7 and Extended Data Fig. 1a.

Mononuclear cells and granulocyte staining: Cells were resuspended in PBS containing 

1% BSA or 2% FBS and 2 mM EDTA, and then incubated with FcR blocking reagent 

human (Miltenyi Biotec) or with 5% human serum at 25 °C for 5 minutes. Finally, 

cells were incubated with fluorochrome-conjugated antibody-mix for 20 minutes at 4°C 

in the dark. Cell suspension was washed with PBS 1% BSA and acquired at Navios 

Flow Cytometer using NAVIOS software v1.3 (Beckman Coulter), MACSQuant 10 or 16 

Analyzers using MACSQuantify software v2.13 (Miltenyi Biotec). For IL-1β intracellular 
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staining, cells were fixed and permeabilized with IC Fixation Buffer (Thermo Fisher 

Scientific) and intracellular staining permeabilization buffer (BioLegend) according to 

manufacturer’s instruction and acquired at or FACSCanto II using DIVA software v8.0.2 

(BD Biosciences). Data were analyzed with FlowJo v10.6.2 (TreeStar)

Fluorescence activated cell sorting: PB monocytes, LDN and BM developmental 

intermediates were sorted from the mononuclear cell fraction. Samples were stained as 

described above and sorted at MoFlo XDP (Beckman Coulter) or FACSAria Fusion (BD 

Biosciences) cell sorters using Summit software v5.4 (Beckman Coulter) and DIVA software 

v8.0.2 (BD Biosciences), respectively. We sorted monocytes as CD3-CD56-CD19-CD34- 

(Lin-) CD33+ CD15- CD14+ cells and LDN as (Lin-) CD33+ CD14- CD15+ CD193- cells. 

BM neutrophils were identified as (Lin-) CD14- CD33 +CD15+ CD193- cells and further 

fractionated into: BM1 CD11b- CD16- cells, BM2 CD11b+ CD16- cells, BM3 CD11b+ 

CD16int, and BM 4 CD11b+ CD16hi CD10+ cells. For scRNAseq experiments, neutrophils 

were isolated from whole blood after lysis with RBC lysis buffer (BioLegend) and sorted as 

(Lin-) CD14- CD33+ CD15+ cells. See also Supplementary Table 7. A detailed reagent list is 

reported in Supplementary Table 44.

EdU incorporation—Mononuclear cells or total granulocytes were plated at 106 cells/ml 

with RPMI + 10% FBS + 1% Gln + 1% Pen/strep in the absence or in the presence of 10 

μM 5-ethylyn-2’deoxyuridine (EdU). After 18 hours of culture, cells were harvested, washed 

with PBS + 1% BSA, incubated with Fc blocking reagents (Miltenyi Biotec) and stained. 

Cells were fixed, permeabilized and incubated with reaction cocktail according to Click-iT 

Plus EdU FlowCytometry Assay kit (Thermo Fisher Scientific). Samples were acquired at 

Navios Flow Cytometer using NAVIOS software v1.3 (Beckman Coulter) and analyzed with 

FlowJo v10.6.2 (TreeStar). A detailed reagent list is reported in Supplementary Table 44.

ROS production—Cytochrome C reduction assays or Neutrophil/monocyte respiratory 

burst assay kits (Cayman chemical) were used. Freshly isolated CD66b+ LDNs and/or 

NDNs were washed and resuspended at 2x106 cells/ml in Hank’s Balanced Salt Solution 

(HBSS) pH 7.4, supplemented with 10 % FBS, 0.5 mM CaCl2 and 1 mg/ml glucose. 

O2
- production in response to 20 ng/ml PMA (Sigma) was assessed by the Cytochrome 

C reduction assay (Cayman), as previously described51. For flow cytometry analysis of 

ROS, 1x105 mononuclear cells or granulocytes were incubated with Dihydrorhodamine-123 

(Cayman chemical) and left untreated or stimulated with PMA 20 ng/ml for 15 or 30 

minutes. Cells were stained with fluorochrome-conjugated antibodies as described above, 

acquired at FACSCanto II using DIVA software v8.0.2 (BD Biosciences) and analyzed with 

FlowJo v10.6.2 (TreeStar). LDNs and NDNs were identified after gating on Lin- CD15+ 

cells in the PBMC and granulocyte fraction, respectively. A detailed reagent list is reported 

in Supplementary Table 44.

NETosis—The NETosis assay kit (Cayman) was used. Bead-sorted NDNs and LDNs 

were resuspended at 1x106 cells/ml and left untreated or stimulated with PMA 20nM 

and incubated at 37°C for 2 hours. Culture supernatants were removed, and wells were 

washed to remove soluble elastase. After treatment with S7 nuclease to induce the 
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release of NET-associated elastase, supernatants were collected, and elastase activity was 

evaluated according to manufacturer’s instructions. A detailed reagent list is reported in 

Supplementary Table 44.

Ex vivo stimulation of NDNs and LDNs—Purified LDNs and NDNs were plated at 

5x106/ml in the presence of RPMI 1640 medium supplemented with 10% FBS and treated 

or not with 5 μM R848 (InvivoGen). After 20 hours of culture at neutrophils were collected 

and spun at 300 x g for 5 minutes. Cell-free supernatants were immediately frozen and 

stored at -80°C until use. A detailed reagent list is reported in Supplementary Table 44.

Plasma collection—An aliquot of 300μl of blood collected into EDTA tubes was 

centrifuged 5 minutes at 10,000 x g. Plasma was transferred into a clean tube and re-

centrifuged 5 minutes at 10,000 x g. Plasma was frozen and stored at -20°C until use.

ELISA—Cytokine and chemokine concentration in culture supernatants or plasma were 

measured using Bio-Plex Pro Human Cytokine Screening Panel, 48-Plex (Biorad) according 

to the manufacturer’s instructions. Acquisition was performed using Luminex instruments 

and analyzed with Bio-plex manager (Biorad) software. A detailed reagent list is reported in 

Supplementary Table 44.

Cytospin and May-Grünwald Giemsa staining—We resuspended 100,000 cells in 

200 ml of PBS + 2% FBS and deposited on a slide with a Cytospin 4 centrifuge (Thermo 

Fisher Scientific). Slides were dried 30 minutes at 25 °C and stained with May-Grünwald 

solution (Carlo Erba) for 5 min. After washing with water, slides were stained with Giemsa 

(Merck) working solution (Giemsa solution diluted 1:10) for 15 min and washed with water. 

Slides were dried in upright position at 25 °C. Images were acquired in bright field using 

an Eclipse (Nikon) microscope and NIS-Elements 4.0 software. A detailed reagent list is 

reported in Supplementary Table 44.

Real-Time quantitative PCR—RNA was extracted using the ReliaPrep RNA Cell 

Miniprep System (Promega) and measured with Qubit RNA HS Assay Kit using a Qubit 

3.0. 0.5 ng of RNA were retrotranscribed with SuperScript II, and cDNA was PCR-amplified 

with KAPA HiFi HotStart. Target genes amplification was done with Fast SYBR Green 

Master Mix on a ViiA 7 Real-Time PCR System. A detailed reagent list is reported in 

Supplementary Table 44.

Ex vivo stimulation of CB neutrophils—We isolated mononuclear cells and 

granulocytes, as reported above, from three different CB samples. From the mononuclear 

cell fraction, we isolated LDNs by performing a double round of magnetic bead sorting 

using Neutrophil Isolation kit (Stemcell technologies). From the granulocyte cell fraction, 

we isolated NDNs by performing a single round of magnetic bead sorting using Neutrophil 

Isolation kit (Stemcell technologies). To ensure a sufficient representation of neutrophil 

precursors (less abundant cell population) and of NDNs (less efficiently detected by droplet-

based scRNA-Seq due to loe RNA content), LDNs and NDNs from each CB sample were 

mixed in a ratio of 1:3. We plated LDN-NDN mix at 106 cells/ml in RPMI 1640 + 10% 

FBS + 1% Gln + 1% Pen/strep alone or with G-CSF, IFN-β or IFN-g all used at 10ng/ml. 
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After 4h, cells were harvested, washed, counted and for each condition we mixed cells from 

different CB in a ratio 1:1:1. The pooled samples were processed for scRNAseq as described 

below. A detailed reagent list is reported in Supplementary Table 44.

Bulk RNA sequencing—We extracted total RNA using the ReliaPrep RNA Cell 

Miniprep System (Promega). RNA concentration was measured with Qubit RNA HS Assay 

Kit using Qubit 3.0 and RNA integrity was evaluated with Agilent RNA 6000 Pico Kit using 

Bionalyzer (Agilent). RNA-Seq libraries were generated using the Smart-seq2 method52 

starting from 0.5 ng of RNA. Retro-transcription was performed using SuperScript II 

Reverse Transcriptase, cDNA was PCR-amplified (18 cycles) with KAPA HiFi HotStart 

and purified with AMPure XP beads. After purification, we determined cDNA concentration 

using Qubit dsDNA HS Assay Kit at Qubit 3.0 and we assessed size distribution at Agilent 

4200 TapeStation system. We performed the tagmentation reaction starting from 0.5 ng of 

cDNA for 30 minutes at 55°C and we performed enrichment PCR using 12 cycles. Libraries 

were purified with AMPure XP beads, quantified using Qubit 3.0, assessed for fragment 

size distribution on an Agilent 4200 TapeStation system. Libraries were sequenced on an 

Illumina Next-Seq500 or NovaSeq6000 (single-end, 75bp read length) according to the 

manufacturer’s instruction. A detailed reagent list is reported in Supplementary Table 44.

Single-cell RNA sequencing—We isolated total CD15+ cells and LDN (from one 

G-CSF stimulated donor) by cell sorting. We generated scRNA-Seq libraries using the 

microfluidics-based approach of Chromium Single-Cell Controller (10X Genomics) using 

the Chromium Single Cell 3’ Reagent Kit v3.0 according to the manufacturers’ instructions. 

In each experiment we loaded sample in order to obtain a target cell recovery of 10,000 

cells. cDNA amplification was performed using 13 PCR cycles. The concentration of the 

scRNA-seq libraries was determined using Qubit dsDNA HS Assay Kit at Qubit 3.0 and 

size distribution was assessed using an Agilent 4200 TapeStation system. Libraries were 

sequenced on an Illumina NextSeq500 or NovaSeq6000 instruments (paired-end, 150bp read 

length) according to the manufacturer’s instruction. A detailed reagent list is reported in 

Supplementary Table 44.

Computational methods

Bulk RNA-Seq analyses on NDNs, LDNs, and monocytes

Data processing: Single-end reads (75 bp) were mapped to the GRCh38 reference 

genome using STAR aligner (v.2.6.0a)53. The FeatureCounts function from Rsubread 

package (v.3.7)54 was then used to summarize the aligned reads to NCBI Homo sapiens 
RefSeq genes (hg38) while setting the minMQS option to 3. Downstream analyses on 

the count matrix of expressed genes (25,064 genes and 210 samples) were performed 

in R environment (v 4.0.1) with edgeR R package (v. 3.20.7)55. First, genes with more 

than one count-per-million (cpm) in at least 15% of the total set of samples (NDNs, 

LDNs and monocytes) were retained for a total of 8,419 genes and 210 samples. Read 

counts of expressed genes were then normalized with the Trimmed Mean of M-values 

(TMM) method56 using calcNormFactors function. The weighted likelihood empirical 

Bayes method57,58 was used to calculate the posterior dispersion estimates through the 

estimateDisp function. The ComBat_seq function59 from the sva package (v. 3.38.0)60 was 
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used to model and correct the batch effects between the sequencing runs. The principal 

component analysis (PCA) of the samples was performed based on the batch-corrected reads 

per count million.

Heatmap of variable genes: Log2 (cpm +1) were calculated from the batch corrected 

counts and used to compute the gene-wise variance across all samples. The values above the 

80th percentile of the resulting variance distribution were selected, and the corresponding 

genes used to perform the unsupervised k-means cluster analysis on the standardized 

expression values with k equal to six. Hierarchical cluster analysis (HCL) was then 

performed on the gene modules and samples using the Pearson correlation as distance 

method and the ward.D2 agglomerative algorithm as hierarchical clustering method.

Differential gene expression analysis: Low density neutrophils (82 samples) were removed 

from the raw count matrix generated with the FeatureCounts R function. The resulting 

matrix was composed by 25,064 genes and 128 samples: 70 NDNs and 58 monocytes. 

Genes with more than one cpm in at least 15% of the NDNs or monocytes were selected. 

The resulting matrix was composed by 8,362 genes and 128 samples. Read counts were 

normalized and corrected for batch effects as above. Differential gene expression analysis 

of myeloid cells after stress with respect to the steady state was performed with edgeR for 

NDNs and monocytes independently starting from the adjusted count matrix containing both 

cell types. NDNs and monocytes were selected and the two datasets were further divided 

into three stress-related/steady state datasets, each composed by samples from one of the 

stress condition (G-CSF, HSC-T and PDAC) and samples at steady state. Only genes with 

cpm >1 in at least 30% of the samples composing each sub-dataset were retained. The 

differential gene expression analysis for each stress and cell type was performed by fitting a 

negative binomial generalized linear model with robust hyperparameter estimation57,61 using 

the glmQLFit function and after computing the dispersion with estimateDisp function. A 

quasi-likelihood (QL) F-test62,63 was then performed using the glmQLFTest function. The 

sequencing run ID was included in the design matrix of each comparison as covariate. Genes 

with abs(Log2FC) >=1.5 and FDR < 0.05 were considered to be differentially expressed.

Principal Component Analysis: Principal Component Analysis of NDN, LDN and 

Monocytes was performed on expressed genes with cpm > 1 in at least 30% of the total 

samples of each cell type and with a variance greater than the 95th percentile of the 

distribution of gene-wise computed variances.

Gene Set Enrichment Analyses: For each stress condition and cell type, differentially 

expressed genes were ranked by decreasing order of log2FC in stress versus steady-state. 

GSEA (v. 4.0.3)64 was performed on ranked gene lists using GO Biological Process 

ontology (c5.go.bp.v.7.4) as Gene Sets, with number of permutations equal to 1,000.

Single-cell RNA-Seq analyses of PB and BM neutrophils

Data processing: Fastq files were generated from raw Illumina BCL files using Cell Ranger 

v6.0.2 (10X Genomics) with cellranger mkfastq and default parameters. Cell Ranger count 

was then used to align sequencing reads to the reference transcriptome GRCh38, to perform 
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UMI filtering and barcode and UMI counting. Only confidently mapped reads with valid 

barcodes, unique molecular identifiers (UMIs) and non-PCR duplicated were retained by the 

tool. The overall sequencing quality was evaluated by looking at the summary metrics of 

the web_summary.html file generated by the cellranger pipeline for each sample. The Seurat 

v4.0.5 R package (https://satijalab.org/seurat/) was then used to perform all downstream 

analysis. First, we removed cells expressing less than 300 unique genes and genes expressed 

in less than 3 cells from the non-normalized UMI count matrix of each sample. Raw count 

matrices of all samples were then combined in a single Seurat object (17,625 genes and 

143,485 cells) with the use of the merge function. A cell/gene quality control was then 

performed. We jointly examined the distribution of the count depth (i.e. the number of 

counts per barcode), of the number of genes per barcode and of the fraction of counts 

from mitochondrial genes per barcode. Outlier peaks were then filtered out by thresholding. 

Cells with a total number of detected molecules < 500 indicating low quality cells or 

empty droplets were discarded. We also removed cells with a percentage of reads that 

map to the mitochondrial genes greater than 10% and cells with a number of detected 

genes > 4,000. The two filters were respectively used to remove low-quality/dying cells 

and cell doublets or multiplets with an aberrantly high gene count65. We also applied 

a gene-wise filter on the average counts to remove low-abundance genes62. The filter 

threshold was established looking at the distribution of the average counts. Genes with a 

value less than the 15th percentile of the distribution were removed. The final raw count 

matrix was composed by 15,020 genes and 130,628 cells. We then applied the sctransform 

normalization66 (SCTransform function) while adjusting for the following confounding 

sources of variation: the mitochondrial mapping percentage and the cell cycle scores 

computed with the CellCycleScoring function. Data were then scaled with ScaleData and the 

top 1,000 variable features were selected with the “vst” method of the FindVariableFeatures 

function. Shared Nearest Neighbor (SNN) graph was constructed using the FindNeighbors 

function taking as input the first 50 principal components, computed with RunPCA function. 

Cell clusters were defined using a resolution of 1.5, calculated with the FindCluster 

function and were visualized in two dimensions using uniform manifold approximation and 

projection (UMAP)67. Cluster-specific marker genes were identified using MAST method68 

through the FindMarkers function with option only.pos = TRUE, min.pct = 0.1 and setting a 

cut-off of FDR < 0.05.

The scRNA-seq data of patients with COVID-19 generated by Schulte-Schrepping27 

were downloaded from FASTGenomics database at https://beta.fastgenomics.org/

datasets/detail-dataset-7656cfe94fb14a01b787f4774e555036. The dataset used in our 

analysis was PBMC 10x from cohort2 (Bonn cohort) composed by 46,611 

genes and 3,154 cells relative to 22 COVID-19 patients. From the pre-analyzed 

seurat_COVID19_Neutrophils_cohort1_10x_jonas_FG_2020-08-19.rds file, we extracted 

the raw counts and re-analyzed the data by applying the quality control criteria used 

for our datasets to ensure the methodological consistency however conditioned to the 

distribution and features of the data. We first removed the cells expressing less than 300 

unique genes and genes expressed in less than 3 cells from the non-normalized UMI count 

matrix resulting in 13,957 genes across 3,138 cells. Based on the visual inspection of the 

distribution of the detected molecules across the retained cells, we removed cells with 
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less than 500 detected transcripts indicating low quality cells or empty droplets. We also 

removed cells with more than 10% mitochondrial reads, and with > 2,000 detected genes 

indicating putative doublets or multiplets. Genes with few counts (i.e. less than the 15th 

percentile based on the distribution of the average gene-wise counts across all cells) were 

considered uninformative and removed. According to the applied criteria for the quality 

control of cells and genes, the dataset was finally composed by 12,113 genes and 2,990 

cells. On this data we performed the normalization, the identification of the highly variable 

features, the scaling, the linear dimensionality reduction, and the clustering as described 

above. A batch-effect correction on the normalized expression matrix was performed to 

run cellHarmony, using ComBat from the sva package to adjust for potential batch effects 

between donors.

Gene Set Enrichment Analysis: Top 50 marker genes were ranked by decreasing order of 

log2FC > 0. GSEA (v. 4.0.3)64 was performed on ranked gene lists using GO Biological 

Process ontology (c5.go.bp.v.7.4) as Gene Sets, with number of permutations equal to 1,000.

Cell Harmony analyses: scRNA-seq raw count matrices of G-CSF-treated donors, HSC-T 

patients, PDAC patients and PB or BM healthy (HD) donors were merged for each condition 

and preprocessed and normalized with Seurat v4.0.5 using the same criteria and methods 

as described above with the following exceptions: cells with a percent of mitochondrial 

genes greater than 25%, 10%, 15% and 10% relative to G-CSF, HSC-T, PDAC and HD 

respectively, were removed. The threshold for putative doublets and multiplets was also 

changed and established to be 3,500 for G-CSF and 4,500 for PDAC after the joint 

visualization of the number of genes and counts. It remained unchanged for HSC-T and HD 

datasets. A batch-effect correction was additionally applied to the normalized count matrix 

of each dataset using ComBat69,70 from the sva package (v3.38.0) to adjust for potential 

batch effects between donors of the same condition. CellHarmony26 was then applied to 

match cells at the same differentiation stage between the healthy condition (the reference) 

and the stress (the query). First, the reference dataset (15,851 HD cells: 10,173 BM cells 

and 5,678 PB cells) was subjected to an unsupervised analysis with ICGS v2 (AltAnalyze 

version 2.1.2) that identified 8 distinct clusters corresponding to discrete differentiation 

stages of bone marrow and blood neutrophils. Two of them were considered contaminants 

and removed. Options were accepted by default except for the number of ICGS cluster 

(k) that was set to 15 and the column clustering method that was “hopach”. Cells from 

each stress condition (G-CSF: 30,787 cells, HSC-T: 39,479 cells, PDAC: 21,153 cells, 

COVID-19: 2,990 cells) were then matched to the reference with cellHarmony to identify 

analogous differentiation stages. Pairwise differential gene expression analysis between the 

query cells and the reference cells was performed for each cluster and for each stress 

independently with FindMarkers function of Seurat v4.0.5 R package using MAST method 

on jointly preprocessed and SCT-normalized expression matrices (i.e. Steady state + G-CSF; 

Steady state + HSC-T; Steady state + PDAC; Steady state + COVID-19). The minimum 

detection rate (min.pct) was set to 20%. Genes with Log2FC >=1 and FDR < 0.05 were 

further considered to be differentially expressed.
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Gene Set Enrichment Analysis: Due to the small gene set size of the gene lists generated 

by applying the Log2FC >=1 threshold, the full-length gene lists previously identified with 

FindMarkers by applying only the detection rate cut-off of 20% were used to run the GSEA. 

Genes were ranked by decreasing order of log2FC in stress versus healthy for each cluster of 

differentiation. The gene set enrichment analysis was performed on ranked gene lists using 

GO Biological Process ontology (c5.go.bp.v.7.4) as Gene Sets, with number of permutations 

equal to 1,000.

Single-cell RNA-Seq analyses of CB neutrophils—Chromium single-cell RNA-seq 

raw data were preprocessed with Cell Ranger v6.0.2 (10X Genomics) as described above. 

Filtered UMI count matrices of CB neutrophils unstimulated (control), stimulated with 

IFN-β, IFN-γ and G-CSF were analyzed with Seurat v4.0.5 R package. Data were first 

subjected to quality control and cells and genes were selected/removed based on the 

same criteria described above (i.e. min.cells = 3, min.features = 300, percent.MT < 10; 

nFeature_RNA < 4,000; nCount_RNA > 500). The 20th percentile of the overall distribution 

of gene expression levels was used as threshold to remove poorly expressed genes. Data 

(13,813 genes and 22,440 cells) were then SCT-normalized and scaled while adjusting 

for cell-cycle effects and the mitochondrial percentage. Top 1,000 variable features were 

selected with the “vst” method and used as input for the principal component analysis. 

Shared Nearest Neighbor (SNN) graph was constructed using the FindNeighbors function 

taking as input the first 50 principal components, computed with RunPCA function. Cell 

clusters were defined using a resolution of 0.3, calculated with the FindCluster function and 

were visualized in two dimensions using the t-distributed stochastic neighbor embedding 

(t-SNE). Cluster-specific marker genes were identified using MAST method through the 

FindMarkers function. Only genes expressed in at least 10% of either of the two groups were 

tested.

Statistics and Reproducibility—No statistical method was used to predetermine 

sample size. No data were excluded from the analysis. Datasets used for the specific 

analyses are reported in the Methods section. Statistical assumptions – including data 

distribution, independence of observations and homogeneity of variance – were considered 

for each dataset, and statistical tests were performed accordingly. The experiments were 

not randomized. The investigators were not blinded to allocation during experiments and 

outcome assessment.
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Extended Data

Extended Data Fig. 1. Leukocyte dynamics in G-CSF-treated donors.
a. Full gating strategy used to identify leukocytes subsets in whole PB or BM samples 

(blue: myeloid cells; green: lymphoid cells; red: HSPC; pink: CD45+ Lineage- CD34- 

cells; brown: CD45- cells). Neutrophil subsets are numbered from 1 to 4 (1: SSChi CD38+ 

CD11c- CD10- neutrophil precursors; 2: SSChi CD38- CD11c- CD10- immature neutrophils; 

3: SSChi CD38- CD11c+ CD10- immature neutrophils; 4: SSChi CD38- CD11c- CD10+ 
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mature neutrophils). b. Gating strategy used to identify low density neutrophils (LDNs) 

within PBMCs. c. Gating strategy used to identify normal density neutrophils (NDNs) 

within granulocytes. d. Representative May-Grunwald Giemsa staining of NDNs isolated 

by bead sorting (lower row) and LDN (upper row) isolated by FACS sorting from PB 

of healthy donors (steady state, n=3) and from G-CSF mobilized PB (n=2). e,f. Absolute 

HSPC counts in whole PB (e) and frequency of HSPC subsets (gated on Lin- CD45+ 

CD34+ cells) in whole BM or PB (f) of controls or G-CSF-treated donors (PB n=15; BM 

n=14). g-j. Absolute counts of phenotypically defined hematopoietic stem cells (HSC), 

multipotent progenitors (MPP) and multi-lymphoid progenitors (MLP) (g), of committed 

common myeloid progenitors (CMP) or granulocyte-monocyte progenitors (GMP) (h) and 

of differentiated myeloid and lymphoid cells (i,j) in whole PB of controls or G-CSF-treated 

donors (n=15). k. Representative contour plot showing immature and mature neutrophils in 

the whole PB of a representative G-CSF-treated donor. Gating strategies for the indicated 

cell types are also reported in Supplementary Table 7. Bar plot report data as mean ± SD. 

Numbers in red represent fold increases in the indicated conditions. Statistical analyses. e, 

g-j: two-sided Mann-Whitney test.
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Extended Data Fig. 2. Leukocyte dynamics in HSC-T and PDAC patients.
a. Expression of the indicated markers in NDNs and LDNs from controls (n>10) or G-CSF-

treated donors (n>12). b, c. Histogram (b) and cumulative histogram (c) plot showing the 

expression levels of CD49d in neutrophil precursors, immature, and mature neutrophils. 

d, e. Contour (d) and cumulative histogram (e) plots showing percentages of EdU+ cells 

within NDNs and LDNs from BM, CB and PB samples of the indicated patients (BM 

n=3, CB n=6, G-CSF n=8, HSCT 2° f.u. n=3). f, g. Representative histogram (f) and 

cumulative histogram (g) plot showing expression of the indicated markers in in NDNs 
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and LDNs from controls (n>11) or G-CSF-treated donors (n>11). h. Representation of 

leukocytes dynamics in HSC-T patients. i. Quantification of white blood cells (WBCs), 

neutrophil, monocyte, and lymphocyte count in HSC-T patients. Gray intervals highlight 

normal ranges. Arrows indicate the beginning of myeloablative conditioning; day 0 indicates 

the day of HSC-T. j. Counts of monocytes or lymphocytes in PB of controls (n=8) or HSC-T 

patients (1° f.u. n=8, 2° f.u. n=9, 3° f.u. n=3). k,l. Percentage of neutrophil precursors, 

immature and mature neutrophils within PBMCs (k) or LDNs (l) in controls (n=8) and 

HSC-T patients (1° f.u. n=7, 2° f.u. n=8). m-o. Absolute counts (m) and frequencies of 

HSPC subsets (n, o) in whole PB (n=15) or BM (n=14) of controls and PB of PDAC patients 

(n=8). p. Leukocyte counts in whole PB of controls (n=15) and PDAC patients (n=8). q. 
Neutrophil-to-lymphocyte ratio (NLR) in whole PB of controls (n=15) and PDAC (n=8) 

patients. NLR is calculated as the ratio between absolute counts (FACS) of neutrophils and 

total lymphocytes. r. Leukocyte counts (hemocytometer) and corresponding NLR values in 

whole PB of controls (n=10), IPMN (n=12) and PDAC (n=15) patients. s. Contour plots 

showing CD16 and CD11b expression in LDNs of three PDAC patients. t, u. Percentage 

of neutrophil precursors, immature and mature neutrophils within LDNs (t) and PBMCs 

(u) of controls (n=12), IPMN (n=12) and PDAC (n=18) patients. v. Percentage of EdU+ 

cells within neutrophil precursors, immature and mature neutrophils in PB of PDAC patients 

(n=6). Gating strategies for the indicated cell types are reported in Supplementary Table 7. 

Bar plots report data as mean ± SD. Statistical analyses. a, c, g, j, k, and r: Kruskal-Wallis 

test plus two-sided Dunn’s multiple comparison. m, o-q: two-sided Mann-Whitney test.
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Extended Data Fig. 3. Purity of isolated cell populations.
a-d. Representative contour plots showing cell purity before and after magnetic bead 

selection of LDNs (a, b), monocytes (c) and NDNs (d) from PB samples. e. Representative 

contour plots showing the gating strategy used to isolate LDNs and monocytes (left panel) 

and post-sort purity analysis of sorted cells (right panel). f. Representative contour plots 

showing the gating strategy used to isolate BM neutrophil subsets and post-sort purity 

analysis of sorted cells.
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Extended Data Fig. 4. Bulk RNA-Seq analysis of NDNs, LDNs, and monocytes.
a, b. Principal component analysis (PCA) plots of bulk RNA-Seq datasets of NDNs, 

LDNs and monocytes isolated from PB of healthy controls (n=19), G-CSF-treated donors 

(n=17), HSC-T (n=8), PDAC (n=15) and IPMN (n=14) patients, as well as of neutrophil 

differentiation intermediates from BM of healthy donors (n=3) and HSCT patients (n=7). 

Samples are colored based on cell type (a) or stress condition (b), as indicated by the 

legends. Filled area plot on the left show the frequency of neutrophil precursors (pre), 

immature (imm) and mature (mat) neutrophils for the corresponding NDNs and LDNs 

samples along PC2. c. PCA plots of bulk RNA-Seq datasets of NDNs, LDNs or monocytes. 

Colors represent stress condition, while shapes reflect the tissue of origin (PB circle; BM 

triangle), as indicated in the legend.
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Extended Data Fig. 5. Validation of RNA-Seq analyses in NDNs.
a, b. Representative contour plots (a) and cumulative bar plot (b) showing the basal 

expression of IL-1β in NDNs and LDNs isolated from controls (n=3) and G-CSF treated 

donors (n=3). c-e. Cumulative bar plots showing the expression of the indicated genes in 

NDNs isolated from controls and G-CSF treated donors (c), HSC-T patients (d) or IPMN 

and PDAC patients (e). f,g. Representative histogram plots (f) and cumulative histogram 

plots (g) showing the expression of the indicated markers in NDNs isolated from PB of 

controls (n>5) and G-CSF-treated donors (n>5). Bar plots report data as mean ± SD. 
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Statistical analyses. c and g: two-sided Mann-Whitney test. b, d and e Kruskal-Wallis test 

plus two-sided Dunn’s multiple comparison.

Extended Data Fig. 6. Plasma factors in G-CSF-treated donors, HSC-T or PDAC patients.
a,b. Concentration of selected factors in the plasma of controls (n=19) and G-CSF-treated 

donors (n=13) (a) or controls (n=19) and IPMN (n=15) or PDAC (n=18) patients (b). 

c. Correlation between plasma concentrations of the indicated factor and frequencies 

of neutrophils precursors or LDNs in the PMBC fraction. Colors indicate calculated 

Spearman’s correlation coefficients (p-value < 0.05). Gray, not significant. Data are shown 

for all experimental conditions (upper heatmap) or excluding G-CSF-treated donors (lower 

heatmap) (steady state n= 14; G-CSF n=9; HSCT 1° f.u. n=7; HSCT 2° f.u. n=8; IPMN 
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n=14; PDAC n=16) d, e. Correlation between plasma concentrations of the indicated factor 

and frequencies of LDNs in the PMBC fraction combining all samples together (d) or 

excluding (e) G-CSF-treated donors. Spearman’s correlation and p-values are shown for 

each plot. Bar plots report data as mean ± SD Statistical analyses. a: two-sided Mann-

Whitney test; b: Kruskal-Wallis test plus two-sided Dunn’s multiple comparison; c-e: 

Spearman’s correlation.

Extended Data Fig. 7. Single-cell RNA-Seq analyses of human neutrophils.
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a. Gating strategy used to isolate CD15+ neutrophils from whole BM (upper panel) or PB 

(lower panel) samples. Expression of CD16 and CD11b in sorted cells is shown. b. UMAP 

plot showing donor or patient identities. c-d. UMAP plots showing the expression of gene 

modules related to neutrophil maturation identified in the indicated studies. e. UMAP plots 

showing the expression of gene modules identified from bulk RNA-Seq analysis (see Fig. 

4a and Supplementary Table 9). f, g. Stacked bar plots showing the frequency of cells 

from PB or BM samples (f) or from donors and patients (g) for each neutrophil cluster. h. 
Model depicting divergent developmental trajectories in stress-elicited neutrophils, leading 

to diverse gene expression programs of mature cells.
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Extended Data Fig. 8. CellHarmony analyses of neutrophils from G-CSF-treated donors, HSC-T 
or PDAC patients.
a. Heatmap showing standardized average expression (computed on normalized expression 

levels) of developmental marker genes identified by Cell Harmony and expressed in at 

least 20% of cells from reference datasets for the indicated neutrophil subsets in controls 

(reference, white bars) and PDAC patients (query, black bars). Color bars represent stages of 

neutrophil development after alignment of scRNA-Seq data with Cell Harmony. The number 

of cells from reference and query datasets for each cluster is shown at the top, the number 
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of developmental marker genes for each cluster is shown on the left. Selected representative 

genes are highlighted on the right. b, c. Filled area plots showing mean expression in 

scRNA-Seq data of selected developmental marker genes in neutrophil subsets from controls 

(grey) and PDAC (green) (b) or controls and G-CSF-treated donors (dark blue) or HSC-T 

patients (light blue) (c). Numbers on the x-axis indicate the stages of neutrophil development 

identified by Cell Harmony. d. Box plots showing standardized average expression of genes 

up regulated (see Methods) in the indicated neutrophil subsets from PDAC patients versus 

controls. Each plot refers to induced genes in query versus reference scRNA-Seq datasets 

for neutrophils at each stage of development defined by Cell Harmony. Box plots represent 

the median, interquartile range (IQR), minimum (25th percentile, 1.5 × IQR) and maximum 

(75th percentile, 1.5 × IQR). Sample size corresponds to the number of cells indicated 

in the heatmap (a). e. Venn diagram showing the overlap between up-regulated genes in 

G-CSF treated donors and HSC-T and PDAC patients in the indicated stages of neutrophil 

development. A selection of genes up-regulated in all conditions and of stress-specific genes 

are shown (see Supplementary Table 37).
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Extended Data Fig. 9. CellHarmony analyses of neutrophils from COVID-19 patients.
a. Scheme depicting the experimental and computational strategies used to isolate and 

process for scRNAseq analysis cells from controls and COVID-19 patients. b. Heatmap 

showing standardized average expression (computed on normalized expression levels) of 

developmental marker genes identified by Cell Harmony and expressed in at least 20% 

of cells from reference datasets for the indicated neutrophil subsets in controls (reference, 

white bars) and COVID-19 patients (query, black bars). Color bars represent stages of 

neutrophil development after alignment of scRNA-Seq data with Cell Harmony. The number 
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of cells from reference and query datasets for each cluster is shown at the top, the number 

of developmental marker genes for each cluster is shown on the left. Selected representative 

genes are highlighted on the right. c. Box plots showing standardized average expression 

of genes up regulated (see Methods) in the indicated neutrophil subsets from COVID-19 

patients versus controls. Each plot refers to induced genes in query versus reference scRNA-

Seq datasets for neutrophils at each stage of development defined by Cell Harmony. Box 

plots represent the median, interquartile range (IQR), minimum (25th percentile, 1.5 × IQR) 

and maximum (75th percentile, 1.5 × IQR). Sample size corresponds to the number of cells 

indicated in the heatmap (b). d. Bar plots showing NES of selected GO categories enriched 

within genes expressed at higher levels in neutrophil subsets from COVID-19 patients as 

compared to controls. Colors represent stages of neutrophil development defined by Cell 

Harmony. e. Violin plots showing normalized expression levels of selected genes induced 

in mature neutrophils from COVID-19 patients as compared to controls. Colors represent 

stages of neutrophil development defined by Cell Harmony.
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Extended Data Fig. 10. Single-cell RNA-Seq analysis of IFN-stimulated neutrophils.
a. Experimental strategy used to enrich and mix LDNs and NDNs from CB samples, 

ensuring a sufficient representation of all neutrophil subsets (see Methods). b, c. 
Representative contour plots (b) and stacked bar plot (c) showing the percentage of 

neutrophil precursors (pre), immature (imm) and mature (mat) neutrophils in LDN, NDN 

and LDN-NDN mix (1:3). d. Schematic representation of CB neutrophil stimulation and 

processing for scRNA-Seq analysis. e. tSNE plots showing the expression of selected 

developmental marker genes. f. tSNE plots showing expression of cluster 3 marker genes 

(corresponding to CB neutrophils) in PB and BM neutrophils from steady-state controls.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Dynamics and phenotype of neutrophils elicited by G-CSF.
a. Absolute counts of neutrophils (gated as CD45+ CD33+/CD66b+ SSChi) in whole PB 

of controls or G-CSF-treated donors (n=15). b, c Absolute counts (b) and percentage (c) 

of neutrophil subsets (gated as shown in Extended Data Fig. 1a) in whole PB of controls 

(n=15) or G-CSF-treated donors (n=15). d, e. Representative contour plots (d) or cumulative 

histogram plots (e) showing the frequencies of low-density neutrophils (LDNs) in the PBMC 

fraction of controls (n=16) and G-CSF-treated donors (n=15). f. Histogram plots showing 

representative expression levels of the indicated markers in normal density neutrophils 

(NDNs) from PB of controls (n>10) or G-CSF-treated donors and LDN of G-CSF-treated 

donors (n>12). g. Gating strategy used to identify neutrophil precursors (pre), immature 

(imm) and mature (mat) neutrophils within LDNs. h, i. Percentage of neutrophil precursors, 

immature and mature neutrophils within the PBMC fraction (h) or within LDNs (i) in 

controls (n=12) and G-CSF-treated donors (n=17). j, k. Representative contour plots (j) 
and cumulative histogram plots (k) showing percentages of EdU+ cells within neutrophil 

precursors, immature and mature neutrophils in controls (n=3) or G-CSF-treated donors 

(n=8). Gating strategies for the indicated cell types are reported in Extended Data Fig. 

1a-c and Supplementary Table 7. Bar plots represent data as mean ± SD. Numbers in red 

represent fold increases in the indicated conditions. Statistical analyses. a, b, e, and h: 

two-sided Mann-Whitney test.
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Fig. 2. Dynamics and phenotype of neutrophils during HSC-T or PDAC.
a. Absolute counts of neutrophils in whole PB of controls (n=8) or HSC-T patients (1° f.u. 

n=8, 2° f.u. n=9, 3° f.u. n=3). b, c. Absolute counts (b) and percentage (c) of neutrophil 

subsets (gated as shown in Extended Data Fig. 1a) in whole PB of controls (n=8) or 

HSC-T patients (1° f.u. n=7, 2° f.u. n=8, 3° f.u. n=3). d, e. Representative contour plots 

(d) or cumulative histogram plots (e) showing the frequencies of LDNs in the PBMC 

fraction of controls (n=16) and HSC-T patients (1° f.u. n=8, 2° f.u. n=8, 3° f.u. n=5). f, g. 
Representative contour plots (f) and cumulative histogram plots (g) showing percentages of 

EdU+ cells within neutrophil precursors, immature and mature neutrophils in PB samples of 

HSC-T patients (2° f.u. n=3). h, i. Representative contour plots (h) or cumulative histogram 

plots (i) showing the frequencies of LDNs in the PBMC fraction of controls (n=16), IPMN 

(n=14), and PDAC patients (n=16). j. Representative contour plots showing percentages of 

EdU+ cells within neutrophil precursors, immature and mature neutrophils in PB samples 

of PDAC patients. Gating strategies for the indicated cell types are reported in Extended 

Data Fig. 1a-c and Supplementary Table 7. Bar plots report data as mean ± SD. Statistical 

analyses. a, b, e and i: Kruskal-Wallis test plus two-sided Dunn’s multiple comparison.
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Fig. 3. Functional analysis of G-CSF-elicited neutrophils.
a. Schematic description of ex vivo experiments performed to evaluate ROS production, 

NETosis, and cytokine release by neutrophils. b. Representative histogram plots showing 

Rhodamine 123 signal in PMA-stimulated NDNs and LDNs from controls and G-CSF 

treated donors. c. Line plot showing percentage of ROS+ cells in PMA-stimulated NDNs 

and LDNs from controls (n=2) and G-CSF treated donors (n=5). d. Representative histogram 

plots showing Rhodamine 123 signal in PMA-stimulated neutrophil precursors, immature, 

and mature neutrophils from G-CSF-treated donors. e. Line plot showing percentage of 
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ROS+ cells in PMA-stimulated neutrophil precursors, immature, and mature neutrophils 

from G-CSF-treated donors (n=5). f. Line plots showing ROS levels in PMA-stimulated 

NDNs and LDNs from controls (n=3) or G-CSF-treated donors (n=3). g. Cumulative 

histogram plot showing PMA-induced NET release in NDNs and LDNs from controls (n=5) 

and G-CSF treated donors (n=6). h. Cumulative histogram plots showing the concentration 

of indicated cytokines released by R848-stimulated NDNs and LDNs from controls (n=6) 

or G-CSF-treated donors (n=8). Gating strategies for the indicated cell types are reported 

in Supplementary Table 7. Bar plots and line charts report data as mean ± SEM. Statistical 

analyses. c, e, f, g and h: Two-way ANOVA plus Tukey's multiple comparisons test. In 

panel f asterisks refer to the comparison between NDNs from controls versus G-CSF-treated 

donors; hashes refer to the comparison NDNs from controls versus LDNs from G-CSF-

treated donors. * or # p-value < 0.05; ** or ## p-value < 0.01; *** or ### p-value < 0.001; 

**** or #### p-value < 0.0001; full p-values are reported in source data.
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Fig. 4. Bulk RNA-Seq of neutrophils and monocytes upon G-CSF, HSC-T, IPMN or PDAC.
a. Heatmap showing normalized expression levels (Z-score) of variable genes (n=1,684, see 

Methods) in NDNs, LDNs and monocytes isolated from PB or BM of healthy controls 

(n=19), G-CSF-treated donors (n=17), HSC-T (n=8), PDAC (n=15) and IPMN (n=14) 

patients as well as of developing BM neutrophils from healthy donors (n=3) and HSCT 

patients (n=7). The row dendrogram represents hierarchical clustering of gene modules 

identified by k-means, and the column dendrogram represents hierarchical clustering of 

RNA-Seq samples. Legends and color bars at the top indicate sample identities by cell type 
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and at the bottom by experimental condition. Numbers on the row dendrogram represent the 

identity and size of each gene module, with representative transcripts shown on the right. 

Gating strategies for cell sorting are reported in Extended Data Fig.3a-f and Supplementary 

Table 7. See Supplementary Table 8 for the full list of samples (n=210). b. Volcano plots 

showing differentially expressed genes in NDNs from G-CSF-treated donors, HSC-T (1st 

and 2nd follow-up) or PDAC patients as compared to steady-state controls. The x- and 

y-axes indicate the expression fold change (log2) and the false discovery rate (FDR) (-log10) 

for each gene versus controls, respectively. Legends highlight up-regulated (red) or down-

regulated (blue) transcripts, as well as genes not passing cut-off criteria for fold change 

(black) and FDR (grey) (see Methods). Selected representative genes are shown. c. Venn 

diagram showing the overlap between genes up-regulated in NDNs isolated form G-CSF 

treated donors or from HSC-T patients. Genes in green are also induced in NDNs isolated 

from PDAC patients. See Supplementary Table 13. d. Bar plots showing the normalized 

enrichment score (NES) of selected gene ontology (GO) categories enriched within genes 

up-regulated (red) or down-regulated (blue) in NDNs from the indicated experimental 

condition versus controls. e. Bar plot showing the number of genes induced (log2FC >1.5 

and FDR < 0.05) in NDNs and monocytes isolated from G-CSF-treated donors or from 

HSC-T patients.
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Fig. 5. Plasma factors underlying stress myelopoiesis upon G-CSF, HSC-T, IPMN or PDAC.
a. Bar plots showing the fold change of the mean concentration of the indicated factors 

in the plasma of G-CSF-treated donors, HSC-T, IPMN or PDAC patients as compared 

to controls (steady state n= 19; G-CSF n=13; HSCT 1° f.u. n=9; HSCT 2° f.u. n=9; 

IPMN n=15; PDAC n=18). b, c. Concentration of selected factors in the plasma of 

controls and G-CSF-treated donors (b) or controls and HSC-T patients at the indicated 

follow-ups (c) (steady state n=19; G-CSF n=13; HSCT 1° f.u. n=9; HSCT 2° f.u. n=9). 

d, e. Correlation between plasma concentrations of the indicated factors and frequencies 

of neutrophil precursors in the PMBC fraction, combining all samples together (d) or 

excluding (e) G-CSF-treated donors. Spearman’s correlation and p-values are shown for 

each plot (steady state n= 14; G-CSF n=9; HSCT 1° f.u. n=7; HSCT 2° f.u. n=8; IPMN 

n=14; PDAC n=16). Cumulative bar plots report data as mean ± SD. Statistical analyses. a: 

Wilcoxon signed-rank test followed by FDR calculation with two-stage step-up method of 

Benjamini, Krieger and Yekutieli; b: two-sided Mann-Whitney test; c: Kruskal-Wallis test 

plus two-sided Dunn’s multiple comparison; d and e: Spearman’s correlation. a: *p-value 
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< 0.05; **p-value < 0.01; *** p-value < 0.001; ****p-value < 0.0001; full p-values are 

reported in source data.
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Fig. 6. Single-cell RNA-Seq analysis of human neutrophils at steady-state and upon stress.
a. UMAP plot showing scRNA-Seq transcriptomes of 130,628 cells, sorted as CD15+ 

neutrophils from whole PB or BM samples of healthy controls (PB n=2, BM n=2), G-CSF-

treated donors (n=4), HSC-T (PB n=3, BM n=2) and PDAC (n=5) patients. Colors and 

numbers indicate clusters at resolution 1.5. Representative marker genes are shown for 

selected clusters. Groups of clusters corresponding to developing neutrophil subsets are 

indicated on the right. Pie charts report the frequency of PB or BM cells and of cells from 

controls, G-CSF-treated donors, HSC-T and PDAC patients. Clusters 25, 26 and 27 were 
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classified as contaminants. b. UMAP plots showing colored according to tissue of origin 

(PB/BM) and the stress condition. c. Heatmap showing expression of up to 50 marker 

genes for each scRNA-Seq cluster, with selected transcripts highlighted on the left or on 

the right. Color bars indicate cluster identities. Clusters of contaminants are not shown. d. 
Bar plots showing NES of selected GO categories enriched within combined marker genes 

of clusters 4 and 7 (corresponding to mature PB neutrophils from HSC-T patients at the 

1st follow-up). e, f. Box plots showing the expression levels of combined marker genes of 

clusters 4 and 7 in neutrophil precursors, early immature, immature, and mature neutrophils 

from PB (e) or BM (f) samples from steady-state controls and HSC-T patients at the 

indicated follow-ups. Sample sizes are reported in Supplementary Table 27. FDR-adjusted 

p-values were calculated by two-sided Wilcoxon rank-sum test. Box plots represent the 

median, interquartile range (IQR), minimum (25th percentile, 1.5 × IQR) and maximum 

(75th percentile, 1.5 × IQR).
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Fig. 7. Transcriptome reprogramming of human neutrophils upon stress.
a, b. Heatmaps showing standardized average expression (computed on normalized 

expression levels) of developmental marker genes identified by Cell Harmony and expressed 

in at least 20% of cells from reference datasets, for the indicated neutrophil subsets in 

controls (reference, white bars) and G-CSF-treated donors (a) or HSC-T patients (b) (query, 

black bars). The following samples were included in the Cell Harmony analysis: PB and BM 

for healthy controls; PB (all time points) and BM (day 30 and > 180 post-transplant) for 

HSC-T patients; PB from G-CSF-treated donors; PB from PDAC patients. Colored bars and 
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numbers represent stages of neutrophil development (1-precursors, 2-proliferating, 3-early 

immature, 4-immature, 5-mature BM, and 6-mature PB) after alignment of scRNA-Seq 

data with Cell Harmony (see Methods). The number of cells from reference and query 

datasets for each cluster is shown at the top, the number of developmental marker genes 

for each cluster is shown on the left. Selected representative genes are highlighted on 

the right. c. Filled area plots showing mean expression in scRNA-Seq data of selected 

developmental marker genes in neutrophil subsets from controls (grey), G-CSF-treated 

donors (dark blue) or HSC-T patients (light blue). Numbers on the x-axis indicate the stages 

of neutrophil development identified by Cell Harmony. d, e. Box plots showing standardized 

average expression of genes up-regulated (see Methods) in the indicated neutrophil subsets 

from HSC-T patients (d) or G-CSF-treated donors (e) versus controls. Each plot refers to 

induced genes in query versus reference scRNA-Seq datasets for neutrophils at each stage 

of development defined by Cell Harmony. Box plots represent the median, interquartile 

range (IQR), minimum (25th percentile, 1.5 × IQR) and maximum (75th percentile, 1.5 × 

IQR). Sample size corresponds to the number of cells indicated in the heatmaps (a, b). f, 
g. Violin plots showing normalized expression levels of selected genes induced in mature 

neutrophils from HSC-T patients (f) or G-CSF-treated donors (g) as compared to controls. 

Colors represent stages of neutrophil development defined by Cell Harmony. h, i. Bar plots 

showing NES of selected GO categories enriched within genes expressed at higher levels 

in neutrophil subsets from HSC-T patients (h) or G-CSF-treated donors (i) as compared to 

controls. Colors represent stages of neutrophil development defined by Cell Harmony.
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Fig. 8. Maturation stage-dependent transcriptome dynamics in neutrophils stimulated with IFNs.
a, b. t-distributed stochastic neighbor embedding (tSNE) plots showing scRNA-Seq 

transcriptomes of 22,240 cells, isolated as neutrophils (see Methods and Extended Data 

Fig. 10a-d) from CB samples and stimulated ex vivo with IFN-β or IFN-γ for 4 hours. 

Colors and numbers represent clusters at resolution 0.3 (a), or the type of treatment 

(b). Representative marker genes are shown for selected clusters. Groups of clusters 

corresponding to developing neutrophil subsets (precursors, immature and mature) are 

indicated. Clusters 7 and 8 were classified as contaminants. c. Stacked bar plots showing 
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the fraction of cells corresponding to control (blue), IFN-β (red) or IFN-γ (green) 

treatment conditions for the indicated scRNA-Seq clusters. d. Stacked bar plots showing 

the fraction of cells belonging to scRNA-Seq clusters for the indicated culture condition. 

e. Heatmap showing normalized expression (Z-score) of up to 50 marker genes for each 

scRNA-Seq cluster, with selected transcripts highlighted on the right. Cluster identities and 

corresponding classifications as precursors, immature or mature neutrophils is shown by 

color bars at the bottom. Color bars at the top indicate cells corresponding to control (blue), 

IFN-β (red) or IFN-γ (green) treatments. f, g. Violin plots showing mean standardized 

expression of top 25 marker genes of cluster 4 (mature neutrophils, IFN-β-treated) (f) 
or cluster 5 (mature neutrophils, IFN-γ-treated) (g) in cells corresponding to neutrophil 

precursors, immature and mature neutrophils from controls or the indicated stimulation 

conditions; p-values were calculated by two-sided Wilcoxon rank-sum test. h, i. Violin plots 

showing normalized expression of selected genes induced by IFN-β (h) or IFN-γ (i) in cells 

corresponding to neutrophil precursors, immature and mature neutrophils from controls or 

the indicated stimulation conditions. j, k. Violin plots showing normalized expression of 

the genes encoding for IFN receptors and signaling molecule STAT1 in cells corresponding 

to neutrophil precursors, immature and mature neutrophils from controls or the indicated 

stimulation conditions.
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