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Abstract
Background: The population-level summary measure is a key component of the estimand for clinical trials with time-
to-event outcomes. This is particularly the case for non-inferiority trials, because different summary measures imply dif-
ferent null hypotheses. Most trials are designed using the hazard ratio as summary measure, but recent studies suggested
that the difference in restricted mean survival time might be more powerful, at least in certain situations. In a recent let-
ter, we conjectured that differences between summary measures can be explained using the concept of the non-
inferiority frontier and that for a fair simulation comparison of summary measures, the same analysis methods, making
the same assumptions, should be used to estimate different summary measures. The aim of this article is to make such a
comparison between three commonly used summary measures: hazard ratio, difference in restricted mean survival time
and difference in survival at a fixed time point. In addition, we aim to investigate the impact of using an analysis method
that assumes proportional hazards on the operating characteristics of a trial designed with any of the three summary
measures.
Methods: We conduct a simulation study in the proportional hazards setting. We estimate difference in restricted mean
survival time and difference in survival non-parametrically, without assuming proportional hazards. We also estimate all
three measures parametrically, using flexible survival regression, under the proportional hazards assumption.
Results: Comparing the hazard ratio assuming proportional hazards with the other summary measures not assuming
proportional hazards, relative performance varies substantially depending on the specific scenario. Fixing the summary
measure, assuming proportional hazards always leads to substantial power gains compared to using non-parametric
methods. Fixing the modelling approach to flexible parametric regression assuming proportional hazards, difference in
restricted mean survival time is most often the most powerful summary measure among those considered.
Conclusion: When the hazards are likely to be approximately proportional, reflecting this in the analysis can lead to
large gains in power for difference in restricted mean survival time and difference in survival. The choice of summary
measure for a non-inferiority trial with time-to-event outcomes should be made on clinical grounds; when any of the
three summary measures discussed here is equally justifiable, difference in restricted mean survival time is most often
associated with the most powerful test, on the condition that it is estimated under proportional hazards.
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Background

Randomised clinical trials are often designed using a
time-to-event variable as primary outcome, especially
in disease areas (e.g. cancer)1 where interest is mainly
in estimating the effect of treatment on survival. Using
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a time-to-event outcome naturally allows us to account
for censoring2 and is more efficient than using simple
binary outcomes.3

When designing a trial, it is important to carefully
define the estimand(s) of interest. In the framework
recently proposed by ICH,4 one of the building blocks
in the definition of an estimand is the population-level
summary measure used to describe results. For binary
outcomes, commonly used summary measures include
the risk difference (absolute), risk ratio and odds ratio
(both relative).5 By contrast, for time-to-event out-
comes, the vast majority of clinical trials are designed
using the hazard ratio (HR) (relative) as the summary
measure.1

The HR is defined as the ratio of hazard rates
between the treatment and control arms. Its interpreta-
tion is clear under the assumption that the hazards in
the two groups are proportional over time. However,
this assumption is often not reasonable, for example
when the hazards in two groups only differ at early, or
later, stages of follow-up.

When interest is in an absolute contrast between the
arms or when the proportional hazards assumption
does not hold, alternative summary measures might be
preferable. Promising summary measures include dif-
ference in restricted mean survival time (DRMST),6

defined as the difference in the mean survival times in
the two groups up to a fixed time horizon t, or the dif-
ference in survival proportion at time t (DS).

In non-inferiority trials, rather than testing whether
an active treatment is better than a control one, we aim
to show that it is not worse by a certain amount (known
as the non-inferiority margin) or more; given ancillary
advantages of this active treatment, this is then consid-
ered enough to recommend its use. The margin is
defined on the scale of the chosen summary measure.

In superiority trials, if assuming proportional
hazards, the null hypotheses for different summary
measures are the same across the event rate range, so
choice of summary measure does not affect power.
However, this is not true for non-inferiority trials. As a
consequence, a test based on DRMST is often more
powerful for the same sample size than one based on
the HR. Uno et al.7 suggested this might always be the
case, providing examples, but without matching the
margins for different summary measures, that is, with-
out ensuring the smallest non-tolerable event risk in the
research arm was the same between different summary
measures in the comparison. Weir and Trinquart8 sub-
sequently matched the margins, showing similar results
but finding some situations where HRs might be prefer-
able. Freidlin et al.9 later investigated situations where
a test based on the HR is more powerful. In Quartagno
et al.,10 we explained these results using the concept of
Non-Inferiority frontiers,11 that is, curves that show the
non-inferiority regions defined by the null when plot-
ting research versus control event rates, rather than

focusing on the point margin only. We hypothesised
that, because of the different null hypotheses, a test of
non-inferiority based on DRMST would always be at
least as powerful as a test based on HR, provided we
estimate the two summary measures using the same
model, and hence under identical assumptions. That is,
when the HR appears to be more powerful than
DRMST, the comparison is confounded by the two
summary measures being based on different models
used for estimation.

The aim of this article is twofold: first, we introduce
and evaluate a method of estimating DRMST and DS
under the proportional hazards assumption using flex-
ible parametric survival models, comparing the power
of this estimation method to that of standard non-
parametric methods. Second, we test through simula-
tion the above hypothesis about the superior power of
DRMST, by estimating different summary measures
under the same flexible parametric survival model and
comparing with HR in terms of power, type I error and
interpretation of results. We include simulations for
superiority trials to show that power gains are unique
to the non-inferiority setting.

Methods

Suppose we wish to design a trial to test whether treat-
ment A is superior/non-inferior to control C in terms
of a time-to-event primary outcome. This might be, for
example, time to death, or time to disease progression.

We define SC(t) as the probability that an individual
in the control group survives up to time t, and SA(t) the
corresponding probability for an individual in the
research treatment arm. Similarly, we define hC(t) and
hA(t) as the hazard rates at time t for an individual in
the control and research arms respectively.

Population-level summary measures

What population-level summary measure could we use
to compare the two arms? Here we describe three
options, and later we explain how these can be
estimated.

HR. This is the most common measure used in trials. It
is defined as the ratio of the two hazard rates

HR=
hA(t)

hC(t)

This is easily interpretable under the assumption that
the two hazards are proportional, and hence that the
chance of experiencing an event in the research arm at
a specific time is always HR times that in the control
arm, whatever the time. The interpretation under non-
proportional hazards is less straightforward and gener-
ally requires some definition of average HR.12,13
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The HR is an ideal summary measure when (a) we
are interested in a relative difference measure and (b)
the hazards are likely to be approximately proportional.
When either condition does not hold, other summary
measures may be preferable.

DRMST. This is defined as the expected difference in
survival time between the research and control groups,
ignoring survival after a certain time t. Algebraically,
this is the difference between the integrals of the
survival functions for the two groups within a fixed
time horizon t

DRMST (t)=

ðt

0

SA tð Þdt �
ðt

0

SC tð Þdt

It corresponds to the difference between the areas under
the two survival curves. One advantage of DRMST is
that its interpretation does not rely on the proportional
hazards assumption. Another one is that it accounts for
survival at each time point within the selected interval
[0, t], rather than just focusing on survival at time t.
However, this can also be a disadvantage in situations
where interest actually lies in survival at time t only and
early differences are not considered important, or con-
versely whenever any difference after t would still be
relevant. Furthermore, the choice of t (required) is an
awkward complication compared with HR.

DRMST is a measure of absolute difference between
the arms; it can be estimated in various ways, and this
might be using a proportional hazards model, but does
not lose its interpretation in the absence of proportional
hazards.

DS. A common critique of DRMST is that it places too
much weight on early differences in survival. In certain
disease areas, only the final survival probability mat-
ters. An alternative summary measure is the difference
in the survival proportions at a specified time t

DS(t)= SA tð Þ � SC tð Þ

DS is an absolute summary measure, relevant in the
presence or absence of proportional hazards.

DS is a good summary measure when interest lies
only in survival by a certain time point, so that whether
events happened earlier or later does not matter as long
as they happened before that time point. As with
DRMST, this implies that we are not interested in what
happens after time t.

Estimation methods

Non-parametric methods. The most famous non-
parametric method is the Kaplan–Meier method for
the estimation of the survival curves.14 This can be used

to estimate both DRMST and DS. In the absence of
censoring, DS could also be estimated by methods that
do not estimate the whole survival curve, but only
dichotomise survival at the pre-defined time point.

While non-parametric methods for the estimation of
HRs have been developed,15 they are not commonly
used in practice.16

Semi-parametric methods. These, and specifically the Cox
proportional hazards model, are by far the most used
in clinical trials. They assume a parametric form for the
covariate effect, but leave the baseline hazard distribu-
tion unspecified. While this is an advantage when the
goal is to estimate the HR, it is not possible to estimate
DRMST and DS with associated confidence intervals
without resorting to bootstrap.

Fully parametric methods. These methods assume a para-
metric model for both parts of the hazard function.
Common options include exponential and Weibull
functions for the baseline hazard h0(t). However, in the
absence of prior knowledge about the likely distribu-
tion of the baseline hazards, flexible methods based on
estimation with spline functions17 might be preferable.
With flexible parametric survival models, it is straight-
forward to estimate HR, but even the estimation of
DRMST and DS under proportional hazards with the
associated confidence intervals only requires simple
post-processing of the model parameter estimates. See
the Supplementary material for details.

Choice of methods. In clinical trials, most often non-
parametric methods are used to estimate DRMST and
DS, while HR is almost always estimated using semi-
parametric methods (i.e. the Cox proportional-hazards
model). In this article, though, we additionally use fully
parametric models to estimate all summary measures,
in order to make a fairer comparison between them by
using the same model. While using flexible fully para-
metric models to estimate HR is not expected to lead to
noticeable differences compared to Cox models,18 we
hypothesise that using the same models to estimate
DRMST and DS under proportional hazards could
lead to substantial power gains compared to standard
non-parametric methods.

Non-inferiority trials

The choice of population-level summary measure is
particularly important in non-inferiority trials. In such
trials, the non-inferiority margin has to be chosen, and
this is expressed as a value of the population-level sum-
mary measure of treatment effect that would be consid-
ered non-tolerable even in the presence of secondary
advantages of the research treatment.
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The choice of summary measure is more important
than in superiority trials because different measures
imply different null hypotheses10 (see the Supplementary
material for further details).

Despite this issue, it is possible to match margins
between different summary measures by using the
expected values, though the null hypotheses remain
different.

Simulation study

We now describe a simulation study to investigate our
research questions.19

Aim. The aims of this simulation study are as follows:

1. To compare different summary measures when
analysing under the proportional hazards
assumption.

2. To compare the impact of assuming proportional
hazards in the estimation method on the properties
of the different summary measures.

Data generating mechanisms. We use the data generating
mechanisms described by Freidlin et al.9 Participants
are recruited uniformly over 3 years and are followed
until the end of 6 years from start of trial recruitment.
The baseline hazard is constant, so that survival times
follow an exponential distribution, and the scale para-
meter is chosen to lead to 3-year survival of 20%, 60%
or 90%. Data are generated from the null and alterna-
tive hypothesis of both superiority trials with varying
effect magnitude and non-inferiority trials with varying
margins. Sample sizes are chosen to lead to commonly
used power levels, that is, greater than 80%, when
designing the trial using HR. Precise parameter values
are listed in Tables 1 and 2.

For all scenarios, we simulate 10,000 repetitions,
which should give a Monte Carlo standard error
around 0.15% for type I error and below 0.5% for
power across scenarios.

Estimands. We assume that all patients are followed up
to the end of 6 years of the study, and adherence to
randomised group is perfect. Hence, our comparison
focuses on the population-level summary measure. We
compare HR, DRMST at 3 years and DS at 3 years.

Methods. We estimate all summary measures after fit-
ting a flexible parametric survival model under propor-
tional hazards, with two internal spline knots placed at
the 33% and 67% quantiles of the uncensored survival
times. We fit this flexible parametric model on the
time-since-randomisation scale, either using all avail-
able information or censoring after 3 years. These two

options correspond to the ‘staggered’ and ‘non-stag-
gered’ scenarios in Freidlin et al.9 and they are both
included to show how part of the expected power gain
with flexible parametric models comes from the fact
that, assuming proportional hazards, data after 3 years
would inform estimation through the proportional
hazards assumption. In addition, we estimate DRMST
and DS non-parametrically: for the former, we use the
Kaplan–Meier method with the Greenwood variance
formula20; for the latter, we compute the difference in
proportions at 3 years and a Wald confidence interval.
Note that non-parametric results are unaffected by
inclusion of data beyond 3 years, because of the lack of
distributional assumptions.

Performance measures. We focus on power and type I
error.

Implementation. For a handful of repetitions, flexible
parametric models experienced convergence issues.
Because our main interest is in comparing summary
measures, rather than methods, we decided to simply
discard and replace such repetitions. Of note, since this
happened in seven repetitions out of approximately
300,000 across scenarios, it is unlikely to have had any
impact even in the comparison of different methods.

Results

Simulation study

Figures 1 and 2 show the results in terms of type I error
and power respectively, for superiority trials and non-
inferiority trials. Corresponding numerical results are
in Tables a and b in the additional online material for
superiority trials (scenarios 1–12) and in Tables 1 and 2
for non-inferiority trials (scenarios 13–24).

Type I error evaluation. Type I error is controlled in most
scenarios and methods, although there are a few sce-
narios where the delta method approximation of the
standard error used for DRMST and DS leads to slight
inflation (Figure 1). This is most likely due to limited
sample size, as the inflation disappears with larger sam-
ples. We propose possible solutions to this in section
‘Discussion’.

Comparison of summary measures. When using standard
methods (i.e. non-parametric models for DRMST and
DS and proportional hazards models for HR), the rela-
tive performance of DRMST and HR varies with
scenarios as described in Freidlin et al.,9 while DRMST
is more powerful than DS only for 20% survival (Table
2, scenarios 21–24). However, if we compare DRMST,
DS and HR under the same assumptions, that is, estimat-
ing them with flexible proportional hazards parametric
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models using either data up to 3 years or all the available
data (Figure 2), as expected from theory, power is always
similar for superiority trials (scenarios 1–12). In non-
inferiority trials (scenarios 13–24), DRMST fares much
better in some scenarios, slightly better in some others,
and marginally worse in scenario 21.

When comparing DS with DRMST and HR, conclu-
sions depend on the specific scenario, but DRMST is

always at least as powerful as DS, and is more powerful
in several non-inferiority scenarios (Figure 2).

Impact of proportional hazards assumption. Estimating
DRMST and DS using flexible parametric models under
the proportional hazards assumption always leads to
gains in power compared to non-parametric estimation.
Using all the data, rather than censoring at 3 years, leads

Table 1. Comparison of type I error rates for tests based on different summary measures in proportional hazards non-inferiority
scenarios.

Scenario Design parameters Type I error (%)

S(3)
control
(%)

Sample
size

Non-inferiority margin Non-parametric Flexible parametric
under PH using data
to 3 years

Flexible
parametric under
PH using all data

HR DRMST(3) DS(3) (%) DRMST(3) DS(3) HR DRMST(3) DS(3) HR DRMST(3) DS(3)

13 90 250 2 0.143 9 2.84 2.04 2.63 3.60 2.69 2.55 4.02 2.78
14 90 450 1.75 0.108 7 2.95 2.11 2.73 3.32 2.77 2.59 3.58 2.83
15 90 1000 1.5 0.073 5 2.43 2.03 2.38 2.61 2.46 2.63 3.12 2.79
16 90 3750 1.25 0.037 2 2.53 2.30 2.53 2.58 2.52 2.45 2.84 2.68
17 60 75 2 0.469 24 2.39 1.76 2.49 2.72 2.32 2.36 2.92 2.23
18 60 125 1.75 0.366 19 2.51 2.01 2.72 3.00 2.64 2.61 2.81 2.41
19 60 250 1.5 0.253 14 2.51 2.13 2.84 2.75 2.60 2.65 2.65 2.52
20 60 1000 1.25 0.132 7 2.51 2.28 2.47 2.47 2.48 2.62 2.56 2.53
21 20 50 2 0.596 16 2.45 1.98 2.31 2.36 5.44 2.28 2.30 5.13
22 20 75 1.75 0.490 14 2.49 1.97 2.50 2.44 4.15 2.56 2.50 3.93
23 20 150 1.5 0.360 11 2.65 1.88 2.61 2.58 3.40 2.53 2.58 3.13
24 20 450 1.25 0.199 7 2.62 2.02 2.60 2.61 2.71 2.51 2.50 2.64

DRMST(3): difference in restricted mean survival time to 3 years, DS(3): difference in 3-year survival probability, HR: hazard ratio, PH: proportional

hazards, S(3): 3-year survival.

Monte Carlo standard errors can be computed as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(1� p)=n

p
, and are generally in the order of 0.15%. Entries in red indicate scenarios for which

type 1 error rate is greater than 3%.

Table 2. Comparison of power for tests based on different summary measures in proportional hazards non-inferiority scenarios.

Scenario Design parameters Power (%)

S(3)
control
(%)

Sample
size

Non-inferiority margins Non-parametric Flexible parametric
under PH using data
to 3 years

Flexible
parametric under
PH using all data

HR DRMST(3) DS(3) (%) DRMST(3) DS(3) HR DRMST(3) DS(3) HR DRMST(3) DS(3)

13 90 250 2 0.143 9 85.0 89.6 69.0 93.7a 91.9 83.5 98.2a 97.8
14 90 450 1.75 0.108 7 86.1 91.0 75.1 93.7a 92.5 88.9 98.5a 98.2
15 90 1000 1.5 0.073 5 85.6 92.2 81.3 93.7 93.2 92.8 98.5a 98.3
16 90 3750 1.25 0.037 2 83.8 91.3 85.8 92.3 91.9 95.7 98.3 98.2
17 60 75 2 0.469 24 84.8 82.1 75.6 92.5 85.9 85.9 97.2 94.0
18 60 125 1.75 0.366 19 84.2 82.7 78.7 91.6a 86.8 89.1 97.0 94.4
19 60 250 1.5 0.253 14 83.5 85.2 81.5 90.6 87.6 91.0 96.6 95.0
20 60 1000 1.25 0.132 7 86.7 90.3 88.8 92.8 91.8 95.4 97.4 96.9
21 20 50 2 0.596 16 81.9 48.7 87.0 86.0 62.0a 90.2 89.4 66.6a

22 20 75 1.75 0.490 14 82.0 54.2 85.8 85.7 66.9a 89.7 89.5 71.5a

23 20 150 1.5 0.360 11 84.8 61.6 88.1 88.4 75.7a 91.5 91.5 80.5a

24 20 450 1.25 0.199 7 82.0 67.7 85.0 85.4 79.3 89.6 89.9 84.2

S(3): 3-year survival probability; PH: proportional hazards; HR: hazard ratio; DRMST(3): difference in restricted mean survival time to 3 years; DS(3):

difference in 3-year survival probability.

Monte Carlo standard errors can be computed as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(1� p)=n

p
, and are generally in the order of 0.3–0.4%.

a
Scenario where type I error was .3%.

598 Clinical Trials 20(6)



to another increase in power, even for estimands defined
at 3 years, like DRMST and DS. This is because, under
the proportional hazards assumption, even later events
can help learn more about earlier time points.

The PATCH clinical trial

PATCH (ISRCTN70406718) is a non-inferiority
randomised controlled trial comparing two different

strategies of androgen suppression in men with prostate

cancer.21 Standard therapies (Luteinising hormone-

releasing hormone analogue injections) are effective at

lowering testosterone and controlling cancer, but can

cause serious long-term side effects, particularly

osteoporosis. Transdermal oestradiol patches are an

alternative approach with potentially a better side effect

profile.22

Figure 1. Type I error for different methods across scenarios. The nominal level is 2.5%.
DRMST: difference in restricted mean survival time; DS: difference in 3-year survival probability; HR: hazard ratio; Non-par: non-parametric analysis

method; Flex: flexible fully parametric survival model under proportional hazards; all: using all data; up to 3: using data to 3 years.

Figure 2. Power of different flexible parametric models under proportional hazards across scenarios, either using data up to
3 years only (left panel) or all the data (right panel).
DRMST: difference in restricted mean survival time; DS: difference in 3-year survival probability; HR: hazard ratio.
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Patients with locally advanced but non-metastatic
disease and those with metastatic disease were origi-
nally evaluated as a single group within the trial.
However, with evolving standards of care, expected
outcomes for these different groups of patients have
diverged. Consequently, the trial was recently divided
into two separate non-inferiority trials:

1. Non-metastatic disease trial: The primary outcome
measure is metastasis-free survival, and the trial is
85% powered to detect non-inferiority within a
non-inferiority margin on the HR scale of 1.27,
with a 5% one-sided significance level. This
assumes that 3-year metastasis-free survival would
be 83% in the control arm; it requires around 510
events, out of a target sample size of 1345 patients.

2. Metastatic disease trial: The primary outcome
measure is overall survival, and the trial is 80%
powered to detect non-inferiority within a margin
of 1.19 on the HR scale, with a 5% one-sided sig-
nificance level. This is under the assumption that
3-year overall survival in the control arm will be
around 66%; it requires around 822 deaths, out of
a target sample size 1,500.

Both trials have allocation ratio 1.08:1, because an
original phase II design with 2:1 allocation ratio was
expanded seamlessly to a larger phase III trial with 1:1
allocation ratio.

The HR margin was originally justified based on an
absolute DS; for example, for non-metastatic disease
the margin was set as a DS at 3 years of 4 percentage
points and the corresponding HR margin was back-
calculated from the control arm rate. The correspond-
ing DRMST margin with t= 3 years would have been
equally justifiable. To match the margins used for the
HR, we calculated a DRMST margin of 0.0658 and a
DS margin of 4.00 percentage points for non-metastatic
patients, and a DRMST margin of 0.0879 and a DS
margin of 5.00 percentage points for metastatic
patients. We generated data similar to the simulation
study, but using the trial design parameters, and

compared power for both cohorts to detect non-
inferiority using each of the three summary measures,
again using parametric and non-parametric methods.

Table 3 shows the results. Assuming proportional
hazards leads to greater power and should therefore be
preferred, since hazards are expected to be approxi-
mately proportional in the PATCH trial. In terms of
summary measures, DRMST seems preferable, leading
to power 6 and 4.5 percentage points higher in the two
cohorts.

Discussion

In this article, we have compared three population-level
summary measures for clinical trials with time-to-event
outcomes when analysed under a correct proportional
hazards assumption.

When the hazards are proportional, analysing the
data with a model that reflects their proportionality
leads to big improvement in power, compared to the
standard approach of estimating DRMST and DS non-
parametrically.

When using standard methods for estimation, that
is, Cox models for HR and non-parametric methods for

DRMST and DS, the relative performance of summary

measures varies substantially depending on the design

parameters, as previously observed.9 However, if using

the methods proposed here, which base the estimation

of all summary measures on fitting the same flexible

parametric model under proportional hazards, we can

conclude that:

� For superiority trials, the null hypotheses correspond
for all three summary measures, and therefore testing
on any summary measure leads to similar power
levels.

� For non-inferiority trials, DRMST assuming
proportional hazards is almost always at least as
powerful as – and often more powerful than – HR,
except in rare cases, for example, in scenario 21,
where survival probability at t approaches zero

Table 3. Power of the 2 cohorts in the PATCH trial using different summary measures to define the margin, and analysing the trial
either non-parametrically or parametrically using flexible parametric survival models under proportional hazards.

Scenario Design parameters Power (%)

S(3)
control (%)

Sample
size (total)

Non-inferiority margins Non-parametric Flexible parametric
under PH using all data

HR DRMST(3) DS(3) (%) DRMST(3) DS(3) HR DRMST(3) DS(3)

13 83 1345 1.27 0.0658 4 55.4 60.6 85.6 91.6 89.8
14 66 1500 1.19 0.0879 5 57.6 62.9 79.4 83.9 82.6

PATCH: prostate adenocarcinoma transcutaneous hormone; S(3): 3-year survival probability; PH: proportional hazards; HR: hazard ratio; DRMST(3):

difference in restricted mean survival time to 3 years; DS(3): difference in 3-year survival probability.
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and the non-inferiority margin is large. The relative
performance for DS depends on design parameters.

Thus, some of the apparent differences between HR
and DRMST observed in Freidlin et al.9 were due to
the different modelling assumptions of the estimators.
For readers interested in the reasons for these results,
the Supplementary material includes a short discussion
using our recently proposed graphical tool, the non-
inferiority frontier.10,11

In this article, we have assumed proportional
hazards throughout. Non-proportionality of hazards
may potentially have huge impact in terms of power
and/or type I error. Therefore, future work will investi-
gate this and possibly derive specific methods to
address it. For example, weighting could be used to get
an unbiased estimate of the average HR23 under non-
proportionality of the hazards,13 and the same
approach could be investigated in the future for other
summary measures. At present though, for DRMST
and DS, non-parametric methods should be preferred
when the hazards are not expected to be proportional.

The delta method that we used for estimating stan-
dard errors for DRMST and DS from the flexible para-
metric model relies on asymptotic arguments and can
hence be poorly calibrated with smaller sample sizes.
Preliminary simulations suggest that a non-parametric
bootstrap strategy might lead to better control of type I
error; however, while this might be preferable for a sin-
gle analysis, it was too computationally intensive for
this simulation study. Further, the non-parametric
bootstrap itself relies on asymptotic arguments so
would need to be studied further. Importantly, while
type 1 error might be wrongly controlled in some of
our scenarios, this did not appear to have the potential
to have any impact on the conclusions of our study in
terms of power.

While most trials that target the HR use Cox mod-
els, we used flexible parametric models here for com-
parability of models across summary measures, since
we could not find an analytic way to estimate standard
errors around DRMST based on Cox model estimates
without resorting to bootstrap. Nevertheless, results of
separate simulations (not shown) confirm18 that differ-
ences between Cox and flexible parametric models are
minimal. Relatedly, since both Cox and flexible para-
metric methods can handle various types of baseline
hazard function, while data were always generated
from exponential models in the proportional hazards
scenarios of our simulations, we expect results would
not differ under different baseline hazard distributions.

Recommendations

1. The choice between different summary measures
should be driven first by clinical considerations.

Power considerations should only determine choice
of summary measure among summary measures
that are acceptable clinically.

2. All assumptions and analysis methods being equal,
it is advisable to choose the most powerful sum-
mary measure. This is often the DRMST, provided
it is estimated under proportional hazards.

3. Whenever the proportional hazards assumption is
likely to hold, reflecting it in the analysis is recom-
mended in order to maximise power.

Conclusion

Both the choice of summary measure and analysis
method are very important for clinical trials designed
with time-to-event outcomes, particularly for non-
inferiority trials. Simply relying on the HR estimated
with a Cox model as a default should be discouraged.
Clinical considerations should come first to choose a
meaningful summary measure. If clinical considerations
are equal and the hazards are likely to be proportional,
then DRMST estimated under proportional hazards
seems preferable, since it nearly always has power bet-
ter or the same as HR or DS.
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