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Abstract

We formulate a fractional master equation in continuous time with random transition probabilities 

across the population of random walkers such that the effective underlying random walk 

exhibits ensemble self-reinforcement. The population heterogeneity generates a random walk 

with conditional transition probabilities that increase with the number of steps taken previously 

(self-reinforcement). Through this, we establish the connection between random walks with a 

heterogeneous ensemble and those with strong memory where the transition probability depends 

on the entire history of steps. We find the ensemble-averaged solution of the fractional master 

equation through subordination involving the fractional Poisson process counting the number 

of steps at a given time and the underlying discrete random walk with self-reinforcement. We 

also find the exact solution for the variance which exhibits superdiffusion even as the fractional 

exponent tends to 1.

I Introduction

Anomalous diffusion appears in many natural processes in physics, chemistry, and biology 

when measurements of mean-squared displacement m(2)(t) show a nonlinear dependence on 

time: m(2)(t) ∝ tμ [1–5]. A variety of models has been suggested for anomalous diffusion 

including continuous-time random walk [6], fractional Brownian motion [7], generalized 

Langevin equation [8–10], and Lévy walks [11,12]. A typical feature of anomalous 

transport models involving temporal subdiffusion and superdiffusion is the appearance of 

memory effects. When a stochastic process depends on a series of previous events, it is 

often referred to as having non-Markovian characteristics or memory. In many natural 

phenomena, memory is a recurring theme, such as earthquakes [13], quantum physics 

[14–16], intracellular transport [17–20], and cell motility [21]. Another direction to model 

anomalous diffusion is through random walks that account for the whole history of its past, 

described as strong memory [22–27]. However, it is difficult to justify why natural processes 

should exhibit such strong memory effects as seen in elephant random walks [22], especially 

for inanimate objects such as intracellular organelles. In efficient search strategies [28] 
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that have an essential role in time-sensitive biological processes [29], strong memory has 

significant effects [30]. More recently, it was shown that strong memory and reinforcement 

can generate superdiffusion in a continuous-time and finite-velocity strong memory model 

[31], even in the presence of rests [32]. However, when including a trapping state, the 

superdiffusion caused by reinforcement was only transient [33].

In biology, cell motility and intracellular transport often exhibit anomalous characteristics 

and memory effects [17,20,34,35]. The movement of organelles is often subdiffusive due 

to the crowded cytoplasm [35], which is in direct contrast with the need to efficiently 

and quickly transport material to specific targets, accomplished by active transport. 

Apart from this, cellular populations are almost always heterogeneous [36], an example 

being the different molecular expression levels across individual cells in the brain [37–

39]. Furthermore, single cells contain ~ 102–103 heterogeneous vesicles with various 

sizes, morphology, and motion essential for all eukaryotic life such as lysosomes [40]. 

Mathematically, models accounting for static population heterogeneity need to be explored 

so that the “population-averaged assays” [36], which pervade much biological literature 

[19,35], can be accurately quantified and the effects of small yet important subpopulations 

properly identified [36].

The aim of this paper is to explore the effects of population heterogeneity, characterized 

by a distribution in transition probability, on the fractional master equation. Below, we 

demonstrate how heterogeneity changes the fundamental characteristic of the fractional 

master equation, used in modeling many biological processes that exhibit anomalous 

trapping [41,42]. The effective underlying random walk exhibits self-reinforcement due to 

the ensemble-averaged conditional transition rates increasing as previous steps accumulate. 

Moreover, by introducing heterogeneity into the fractional master equation, ballistic 

superdiffusion is generated even when the fractional exponent μ → 1. This is natural as 

ballistic superdiffusion is expected from the results of previous works [43–45]. However, 

what is surprising is that the ensemble of random walks with distributed transition 

probabilities leads to a master equation with self-reinforcement and strong memory. Thus, 

we show from a random-walk perspective the reason behind why heterogeneity is needed 

in natural phenomena for efficient transport of an ensemble. Furthermore, we show the 

mathematical link between population heterogeneity and strong memory. While the topic of 

random walks in heterogeneous, random environments has been covered extensively in the 

literature [46,47], it will not be treated in this paper.

II Fractional Master Equation With Random Transition Probabilities

The anomalous movement of particles on a lattice that experience trapping with heavy-tailed 

waiting times can be described by the fractional master equation [6]

∂p
∂t = − i(x, t) + qi(x − a, t) + (1 − q)i(x + a, t) .

(1)
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Here, p is the probability to find the particle at position x = ka (k ∈ ℤ) and time t. The 

anomalous escape rate i(x, t) is defined as

i(x, t) = τ0
−μDt

1 − μp(x, t), 0 < μ < 1,

(2)

and Dt
1 − μ is the Riemann-Liouville derivative

Dt
1 − μp(x, t) = 1

Γ(μ)
∂
∂t∫0

t p x, t′
t − t′ 1 − μdt′ .

(3)

Equation (1) describes a random walk where a particle leaves its current state x at time t with 

rate i(x, t) and either jumps with constant probability q or 1 – q to x + a or x – a, respectively 

[6]. The anomalous rate defined in Eq. (2) characterizes waiting times that are Mittag-Leffler 

distributed [48]. From (1), by setting q = 1/2 and taking the continuous-space limit, one 

can obtain the fractional diffusion equation ∂p/∂t = Dμ∂2Dt
1 − μp(x, t)/∂x2, with the fractional 

diffusion coefficient Dμ = a2/2τo
μ. Equation (1) with q = 1/2 and the fractional diffusion 

equation produces subdiffusive behavior characterized by the mean-squared displacement 

(and also the variance since the mean is zero) m(2)(t) ~ tμ where 0 < μ < 1. In order to model 

population heterogeneity, q, the probability of jumping one step in the positive direction, 

now becomes a random variable for each independent realization of a random walk. In this 

case, what is the behavior of the ensemble average of the heterogeneous population?

Clearly for many biological processes, such as intracellular transport [17], the value of q 
is heterogeneous across the population of particles. Since the bias parameter q is related 

to the speed as v ~ 2q – 1, therefore, q can be obtained from the speed distribution in 

experiments. Population heterogeneity in speeds is evident in many publications on the topic 

of intracellular transport [20,35,49] and cell motility [34]. To account for the heterogeneity 

across a population of particles, consider that q in Eq. (1) is a random variable that is beta 

distributed with a probability density function

f(q) = qα+ − 1(1 − q)α− − 1
B α+, α−

,

(4)

where B(α+, α–) is the beta function.

If q becomes random, how does the anomalous behavior in Eq. (1) change? One might 

reasonably expect that ensemble fluctuations in q will increase the dispersion of particles 

leading to randomness of the fractional diffusion coefficient. This idea for standard diffusion 

has been considered by theories of “diffusing diffusivity” [50–52] and such heterogeneity 

was demonstrated to be advantageous for biochemical processes triggered by first arrival 

[29]. Moreover, heterogeneity can be modeled in many ways such as a nonconstant diffusion 

coefficient [53–55] or a nonconstant anomalous exponent [41,48,56–58]. Dichotomously 
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alternating force fields in the fractional Fokker-Planck equation have also been used to 

model temporal heterogeneity [59].

In what follows, we will demonstrate that the randomness of q leads to the phenomenon 

of ensemble self-reinforcement and is also connected to random walks exhibiting strong 

memory. To show this, we need to find the explicit expression for the ensemble-averaged 

probability p(x, t) in continuous time defined as

p(x, t) = ∫
0

1
p(x, t ∣ q)f(q)dq,

(5)

where p(x, t|q) is the solution for the master equation (1) with a single value of q. In order 

to do this, we first consider the underlying discrete-time random walk for (1) and then utilize 

the idea of subordination [6,60].

III Ensemble Self-Reinforcement and Strong Memory Effects

The underlying discrete-time random walk for Eq. (1) is described by the difference 

equation

Xn + 1 = Xn + ξn + 1,

(6)

where the random jump ξn = ±a with probability q and 1 – q, respectively, and X0 = 0. The 

conditional probability

P (x, n ∣ q) = Prob Xn = x

(7)

obeys the master equation

P (x, n + 1 ∣ q) = qP (x − a, n ∣ q) + (1 − q)P (x + a, n ∣ q) .

(8)

The solution [60] is

P (x, n ∣ q) =
n

1
2 n + x

a
q

1
2 n + x

a (1 − q)
1
2 n − x

a .

(9)

The particle reaches the point x at time n if it makes 1
2 (n + x/a) positive jumps and 1

2 (n − x/a)

negative jumps.
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Next, we define a probability function

P (x, n) = ∫
0

1
P (x, n ∣ q)f(q)dq

(10)

which describes the effective underlying random walk for Xn such that

P (x, n) = Prob Xn = x .

(11)

By averaging (8) using f (q) from (4), we obtain the master equation

P (x, n + 1) = un
+(x − a)P (x − a, n) + un

−(x + a)P (x + a, n),

(12)

where the transition probabilities un
+(x) and un

−(x) are defined as follows,

un
+(x) =

∫0
1qP (x, n ∣ q)f(q)dq

∫0
1P (x, n ∣ q)f(q)dq

, un
−(x) = 1 − un

+(x) .

(13)

Transition probabilities (13) follow from averaging (8) with respect to f(q). By using the 

solution (9) we find

un
±(x) =

α± + 1
2 n ± x

a
α+ + α− + n .

(14)

Surprisingly, randomness of the parameter q generates effective transition probabilities un
±(x), 

which describes the ensemble self-reinforcement phenomenon. It follows from (14) that the 

probability to step in the positive or negative direction increases as more steps in those 

directions are made in the past, which is known as self-reinforcement. In what follows, 

we demonstrate the link between Eqs. (12) with (14) and random walks with transition 

probabilities dependent on the entire history of its past, a property called strong memory. 

Furthermore, we provide an explanation on how these two concepts are linked despite the 

difference in the underlying mechanism.

In fact, Eq. (12) describes a random walk with strong memory: Xn + 1 = Xn + ξn + 1. The 

conditional transition probability for the discrete steps, ξn, depends on its entire history 

such that
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Prob ξn + 1 = ± a ξ1, …, ξn = α± + n±
α+ + α− + n .

(15)

Here, n± is the number of steps taken in the positive and negative directions, respectively. 

Equation (15) can be obtained from the transition probabilities (14) by combining the 

current position x = a(n+ — n–) and the total number of steps n = n+ + n–. The transition 

probabilities (15) depend on the entire history because n± counts the number of steps taken 

in the positive and negative directions up to time n. This dependence of the conditional 

transition probability on the entire history of the random walk is known in the literature 

as strong memory [22–27,31,32]. The conditional transition probability (15) is exactly the 

same as that of a Pólya urn model [27,60] where initially the urn contains α+ red and α– 

black balls and then only one ball is added per draw with n± the number of red and black 

balls drawn, respectively.

Comparing Eqs. (14) and (15), it is clear that ensemble self-reinforcement generates strong 

memory effects. However, a key feature of the random walk governed by (12) is that the 

strong memory effect is a by-product of the heterogeneity in the ensemble. Does this mean 

that, through heterogeneity, particles performing the random walk in (12) are somehow 

more likely to step in the positive or negative direction dependent on their history? On the 

contrary, this ensemble self-reinforcement is a consequence of sampling a heterogeneous 

population. This type of effect that leads to reinforcement is discussed in probability theory 

as an aftereffect or spurious contagion [60]. Rather than steps becoming more likely given 

the previous step, particles with a very high propensity to always step to the right or left 

are more likely to be found at the positive or negative extremities of the population. This 

is especially pertinent in cell biology as often in microscopic scales, such as intracellular 

organelles, there is no internal mechanism of reinforcement or “contagion” and memory 

effects could be due to sampling a heterogeneous population. Equations (14) illustrate the 

fact that simply changing the transition probability q from a constant to a random variable 

completely changes the fundamental underlying mechanism of transitions in the ensemble.

IV Ensemble-Averaged Solution for the Fractional Master Equation

By using the concept of subordination [6,60], we can find the explicit expression for the 

ensemble-averaged probability distribution p(x, t) in continuous time defined in (5). The 

underlying random walk for the master equation (1) is the compound fractional Poisson 

process [61]

Xμ(t) = ∑
i = 1

Nμ(t)
ξi,

(16)
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where ξi are random jumps, Nμ(t) is the fractional Poisson process, and Xμ(0) = 0. The 

latter describes the number of steps taken at time t given the waiting time is Mittag-Leffler 

distributed [61]. Using subordination [6,60], we can write

p(x, t) = ∑
n = 0

∞
P (x, n)Qμ(n, t),

(17)

where P (x, n) is defined in (10) and Qμ(n, t) = Prob{Nμ(t) = n}. One can also write down 

p(x, t) in terms of the position of the continuous-time random walk

p(x, t) = Prob Xμ(t) = x ,

(18)

where

Xμ(t) = XNμ(t) .

(19)

From the master equation (12) or by averaging the solution (9) as shown in (10), one can 

obtain

P =
n

1
2 n + x

a

B 1
2 n + x

a + α+, 1
2 n − x

a + α−

B α−, α+
.

(20)

The probability Qμ(n, t) is given by [61]

Qμ(n, t) = t
τ0

nμ
∑

k = 0

∞ (k + n)!
n!k!

− t
τ0

kμ

Γ(μ(k + n) + 1) .

(21)

So substituting (20) and (21) into (17) gives the ensemble-averaged solution of the fractional 

master equation (1) through subordination involving the fractional Poisson process and the 

underlying discrete random walk with self-reinforcement.

Figure 1 illustrates the solution (17) obtained by Monte Carlo simulations for the 

symmetrical case (α+ = α–). One can see the unusually strong dispersion for the subdiffusive 

master equation, which is a result of the interaction between ensemble self-reinforcement 

described by P (x, n) and heavy-tailed waiting times with a divergent mean described by 

Qμ(n, t).
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Monte Carlo simulations

The simulations for all figures were performed in the following way:

(1) Initialize N particles at X(0) = 0. For each particle, the value of q is a random variable 

drawn from a beta distribution.

(2) Then, for each particle, draw a value for T from Mittag-Leffler distributed random 

numbers. Then X(t + T) = X(t) + Z where Prob[Z = 1] = q and Prob[Z = –1] = 1 – q.

(3) Iterate until a required end time tend.

Mittag-Leffler distributed random numbers were generated using the standard procedure 

[see (20) in Ref. [62] or [63]].

V Superdiffusion Generated by Ensemble Self-Reinforcement

Now, we will show how ballistic superdiffusion can arise due to ensemble self-

reinforcement. Although we could take (1) directly and find the first and second moments 

(using the results in Refs. [43–45]), we take a different approach to show intuitively why 

the ensemble heterogeneity leads to superdiffusion. To do this, we need to find the moments 

corresponding to the discrete case of (17),

M(m)(n) = ∑
x ∈ Ω

xmP (x, n), m ∈ 1, 2, … .

(22)

Here, the summation is over all the lattice positions Ω = {ka} with k ∈ ℤ. Using (10), we can 

rewrite (22) as

M(m)(n) = ∫
0

1
∑

x ∈ Ω
xmP (x, n ∣ q) f(q)dq .

(23)

Recognizing that the summation in (23) is simply the mth moment of the discrete random 

walk Xn governed by (8) for any fixed value of q, we find

M(m)(n) = ∫
0

1
E Xn

m f(q)dq .

(24)

First, we find the conditional moments of the underlying random walk for fixed q: Լ(Xn) = 

G’(1) and E Xn
2 = G″(1) + G′(1), where G(z) =[qza + (1 – q)z–a]n is the probability generating 

function [64]. Performing this calculation, we obtain

E Xn = an(2q − 1)
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(25)

and

E Xn
2 = a2(2q − 1)2n2 + 1 − (2q − 1)2 a2n .

(26)

The variance is proportional to n:

Var Xn = 1 − (2q − 1)2 a2n .

(27)

Now, we take the average of (25) and (26) to obtain the variance of the effective random 

walk. In contrast to (27), the variance involves a term proportional to n2,

Var Xn = (2q − 1)2 − (2q − 1)2 a2n2

+ 1 − (2q − 1)2 a2n,

(28)

where

q = ∫
0

1
qf(q)dq, (2q − 1)2 = ∫

0

1
(2q − 1)2f(q)dq .

(29)

The difference between (27) and (28) is fundamentally important because the term 

proportional to n2 generates ballistic superdiffusion.

Symmetric beta distribution: Zero average advection

To avoid the averaged advection caused by an asymmetric beta distribution, we only 

consider cases when the beta distribution is symmetric,

α+ = α− = α
2 .

(30)

The absence of averaged advection is emphasized in Fig.1, which shows symmetric 

distributions for different values of α. Figure 1 also shows that in the limit of large α, 

the distribution reverts back to the distribution typical for the subdiffusive regime.

For the symmetric case with q = 1/2, one can obtain
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Var Xn = M(2) − M(1) 2 = a2
1 + αn2 + a2α

1 + αn .

(31)

The reason why the variance has a term proportional to n2 can be explained by ensemble 

self-reinforcement expressed by the transition probabilities in (14), which leads to a greater 

dispersion of particles over time compared to standard random walks. Note that this result 

can be obtained by also finding the moments through a recursion relation from the master 

equation (12)[25].

One can find the variance for the effective continuous-time random walk

V ar Xμ(t) = a2
1 + αn2(t) + a2α

1 + α n(t) ,

(32)

where Xμ(t) is defined in (19), and ❬n2(t)❭ and ❬n(t)❭ are derived from the fractional Poisson 

process [61] as

n(t) = 1
Γ(μ + 1)

t
τ0

μ

(33)

and

n2(t) = 1
Γ(μ + 1)

t
τ0

μ
+ Aμ

Γ(μ + 1)
t
τ0

2μ
,

(34)

where

Aμ = π
22μ − 1Γ μ + 1

2
= Γ(μ)

Γ(2μ) .

(35)

Finally, the variance in continuous time is

Var Xμ(t) = a2
Γ(μ + 1)

t
τ0

μ
+ Aμ

1 + α
t
τ0

2μ
.

(36)

The appearance of superdiffusion is demonstrated by numerical simulations in Figs. 2 and 3. 

Figure 2 demonstrates numerically the relation in (36) and (37) since for values of μ < 0.5, 
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Var Xμ(t)  shows subdiffusion and for values μ > 0.5 shows superdiffusion. Moreover, for μ 

= 0.5, Var Xμ(t)  is exactly diffusive. Note that when μ = 1, Nμ(t) becomes a Poisson process 

with rate 1/τ0 and the variance becomes ballistic:

Var Xμ(t) = a2 t
τ0

+ a2
1 + α

t
τ0

2
.

(37)

This result is different from the case when an external force combines with the fractional 

master equation [44,45] where the first moment is m(1)(t) ~ tμ and so the second moment 

becomes m(2)(t) ~ t2μ. Although different, this result naturally follows when considering the 

heterogeneous population average of the first and second moments from previous results 

[43–45]. The superdiffusion caused in this process is a result of a heterogeneous population 

of particles and this generates ensemble self-reinforcement demonstrated by (14). A simple 

random walk with bias and fractional rates would be described by (1) where q is a constant. 

Explicitly, the mean position and variance of this random walk conditional on the transition 

probability are [43–45]

E[X(t) ∣ q] = a(2q − 1)
Γ(μ + 1)

t
τ0

μ
,

(38)

Var[X(t) ∣ q] = (2q − 1)2 t
τ0

2μ 2a2
Γ(2μ + 1) − a2

Γ(μ + 1)2

+ a2
Γ(μ + 1)

t
τ0

μ
.

(39)

Clearly, (39) exhibits superdiffusive behavior but the terms proportional to t2μ disappear 

when μ = 1. The reason for this is that the underlying random walk model Xn has variance 

proportional to n, as seen in (27). However, (36) exhibits ballistic superdiffusion when μ = 1 

because the effective random walk of the ensemble Xn has variance (26) proportional to n2 

and n.

Furthermore, from this heterogeneous population model we are able to achieve a smooth 

transition in time between subdiffusion and superdiffusion. This is evident by increasing 

the value of α → ∞. This is intuitive as the symmetric beta distribution approaches a 

delta function centered at q = 1/2 as α → ∞ and so we recover the standard fractional 

master equation and the resulting subdiffusion. However, when α ~ 1 and μ > 1/2, we 

obtain superdiffusion in the long-time limit. This transition between superdiffusion and 

subdiffusion is demonstrated using computational simulations in Fig. 3.
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VI Discussion

Although there is vast literature on strong memory effects in statistical physics [22–

27,31,32], many elephant random-walk-like models lack the mechanism of how the strong 

memory is produced. Given that a heterogeneous population of random walkers emulates 

strong memory, this opens another avenue for modeling biological processes that display 

strong memory properties and yet are heterogeneous ensembles of inanimate objects, such 

as organelles and micro-molecules. Might it be that nature has developed a mechanism 

such as ensemble self-reinforcement that we demonstrate in (14) as a proxy for strong 

memory? Such questions have plagued the field of intracellular transport for decades where 

brainless membrane-bound vesicles seemingly engage in random walks that appear to have 

correlations caused by strong memory effects [18,20]. For example, a high value of q might 

represent a higher affinity to attach to the dynein family of motor proteins and therefore the 

particle moves very directionally towards the cell nucleus whereas a low value of q would be 

a higher affinity to attach to kinesin which moves towards the cell periphery. A value of q ~ 

1/2 would imply that a particle may have an equal chance to move in either directions. The 

relationship between q and speed v of a vesicle is v ~ 2q – 1. So the bias parameter q can 

be obtained from experiments. Heterogeneity in velocities of intracellular vesicles is well 

established [20,35,49]. Ensemble self-reinforcement enables the organization of directional 

movement as an ensemble effect from heterogeneity. Furthermore, we showed that ensemble 

self-reinforcement can generate ballistic superdiffusion.

This finding also fits nicely with the emerging theory that, in biological processes, the first 

arrival times of a signal to a cell (or neuron) influence the subsequent system behavior far 

more than the average arrival times [65]. With ensemble self-reinforcement the cell can 

organize the movement of these particles such that it maintains efficiency of transport and 

overcomes the trapping that occurs in the crowded cytoplasm. We hypothesize that ensemble 

self-reinforcement is a way that the cell efficiently transports vesicles in a heavily crowded 

intracellular environment, which has been shown to be subdiffusive [19,41].

VII Summary

In this paper, we formulate a fractional master equation with random transition 

probabilities across the populations of random walkers. This population heterogeneity 

generates ensemble-averaged transition probabilities that increase with the number of 

steps taken previously, which we call ensemble self-reinforcement. These averaged 

transition probabilities open a different avenue to model strong memory effects through 

a heterogeneous ensemble of random walkers. Furthermore, we show analytical solutions 

for the variance and probability density function of the ensemble-averaged effective random 

walk.

Through this, we establish the connection between random walks with a heterogeneous 

ensemble and those with strong memory where the transition probability depends on 

the entire history of steps. We find the ensemble-averaged solution of the fractional 

master equation through subordination involving the fractional Poisson process counting 

the number of steps at a given time and the underlying discrete random walk with self-
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reinforcement. We also find the exact solution for the variance which exhibits superdiffusion 

even as the fractional exponent tends to 1. This paper demonstrates that heterogeneous 

populations of anomalous random walks can achieve effective transition probabilities 

describing strong memory, which we call ensemble self-reinforcement. We find that such 

heterogeneous populations overcome heavy-tailed waiting times with a divergent mean to 

exhibit ensemble superdiffusion, thus revealing an intrinsic advantage of heterogeneity. 

Moreover, this provides another mechanism through which seemingly unintelligent systems 

can exhibit strong memory.
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Fig. 1. 
Probability distribution of random walkers in continuous time with Mittag-Leffler 

distributed waiting times μ = 0.75, τ0 = 1, varying values of α+ = α– = α/2 for the beta 

distribution (4), a = 1, tend = 103, and N = 104.
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Fig. 2. 
Variance of random walkers in continuous time with Mittag-Leffler distributed waiting times 

with varying values of μ, τ0 = 1, α/2 = 1/2, tend = 103, and N = 104. The blue dashed line 

shows Var Xμ(t) ∝ t2. The red dotted line shows Var Xμ(t) ∝ t.
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Fig. 3. 
Variance of random walkers in continuous time with varying values of α/2, and Mittag-

Leffler distributed waiting times with μ = 0.75, τ0 = 1, tend = 103, and N = 104. The blue 

dashed line shows V ar Xμ(t) ∝ t2. The red dotted line shows V ar Xμ(t) ∝ t.
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