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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer entity characterized by a 

heterogeneous genetic landscape and an immunosuppressive tumor microenvironment. Recent 

advances in high-resolution single-cell sequencing and Spatial Transcriptomics technologies have 

enabled an in-depth characterization of both malignant and host cell types and increased our 

understanding of the heterogeneity and plasticity of PDAC in steady-state and under therapeutic 

perturbation. In this review, we outline single-cell analyses in PDAC, discuss their implications 

on our understanding of the disease and present future perspectives of multimodal approaches to 

elucidate its biology and response to therapy at the single-cell level.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a complex disease characterized by a dismal 

prognosis. The 5-year survival rate of 12% constitutes one of the lowest of all tumor 

entities1 and with its incidence on the rise PDAC is projected to become the second leading 

cause of cancer-related deaths within this decade2. There are many reasons for its poor 

prognosis, including late-stage diagnosis, high aggressiveness (often preventing surgical 

tumor resection), frequent metastasis formation and primary resistance to all forms of 

therapies. Large-scale molecular analyses of the PDAC genetic landscape revealed only 

a few predominant difficult-to-treat driver lesions, namely, mutations in KRAS, TP53, 
CDKN2A and SMAD4,-and multiple additional genetic alterations including profound copy 

number variations at lower frequency, contributing to the genetic diversity of the disease3–7. 

In addition, PDAC is characterized by an immunosuppressive tumor microenvironment 

(TME) encompassing a multitude of different cell types8. This includes variable numbers 

of infiltrating immunosuppressive cells, such as tumor-associated macrophages (TAMs), 

myeloid-derived suppressor cells (MDSCs), regulatory T cells (Treg cells), dysfunctional T 

cells and distinct cancer-associated fibroblast (CAF) subtypes, as well as a heterogenous 

extracellular matrix (ECM) composition, which impact patient prognosis and therapeutic 

outcome8–15. These features pose a challenge and identify an unmet need for more 

mechanistic understanding and the identification of novel therapeutic vulnerabilities that 

can be translated into effective treatment strategies.

Mutationally activated KRAS (KRAS-mut) drives more than 90% of human PDAC cases5,16 

and increased oncogenic KRAS gene dosage and signaling drive phenotypic diversification, 

including tumor cell differentiation, metastasis formation and clinical outcome5,7,17,18. 

Indeed, the most undifferentiated mesenchymal PDAC subtype, characterized by a basal-like 

gene expression program, high metastatic potential, therapy resistance and worse prognosis, 

shows the strongest increase in KRAS gene dosage5,7,17. In contrast, the gland-forming 

classical subtype is characterized by an epithelial differentiation state and transcriptional 

program and displays better treatment responses and prognosis5,7,16,19–25.

Subtype classifications are not only based on tumor cell-intrinsic features but also on 

differences in immune and stroma characteristics. On the level of morphology, classical 

gland-forming tumors are typically encompassed by a highly abundant ECM and CAF-rich 

tumor stroma, whereas basal-like mesenchymal tumors display higher tumor cell cellularity 

and less ECM deposition17,23,26–28. This implies that PDAC subtypes are capable of shaping 

their distinct TMEs; however, the underlying mechanisms remain poorly understood8,29.

Historically, PDAC profiling and classification studies used histochemistry and 

immunohistochemistry, magnetic or fluorescence-activated cell sorting (FACS), CyTOF, 

in situ hybridization and macro- or microdissection of tumor tissue. Transcription based 

profiling attempts employed bulk RNA sequencing (RNA-seq) approaches followed by 

bioinformatic deconvolution. Computational microdissection through non-negative matrix 

factorization or laser capture microdissection of specific cell types has been used to 

identify distinct tumor and stromal expression signatures16,21,30. While these attempts have 

uncovered the enormous heterogeneity of PDAC and revealed the existence of unique cancer 
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cell and TME subtypes with prognostic and therapeutic relevance5,8,16,20,25, the advent 

of single-cell sequencing-based profiling technologies opened fundamental new avenues 

to dissect PDAC heterogeneity and plasticity holistically. For example, such analyses, 

combined with novel lineage tracing and barcoding strategies, are indispensable in the 

delineation of intermediate states of tumor cells and their potential cellular plasticity, or 

mixed phenotypes (presence of classical and mesenchymal cancer cells within one tumor), 

as well as the composition, polarization and communication of cells within the tumor 

cell-TME niche (Figure 1 and 2).

In this Review, we discuss how single-cell technologies and approaches have revolutionized 

the PDAC field. First, we focus on key approaches that have enabled deep phenotyping 

of PDAC and discuss the discovery of important subtypes of the disease, including their 

immune phenotypes. Furthermore, we examine how standard-of-care chemotherapy and 

targeted therapies impact PDAC subtypes and phenotypes. Finally, we discuss fundamental 

open questions and corresponding single-cell approaches, which promise to uncover the 

drivers of tumor and TME heterogeneity and plasticity, as well as mechanisms of therapeutic 

response and resistance.

Single-cell profiling to disentangle the complexity of PDAC

Single-cell profiling approaches are powerful methods to unbiasedly investigate the complex 

biologic ecosystem of PDAC in high-resolution. In particular, droplet-based single-cell 

RNA-seq (scRNA-seq) analysis has been massively improved over the last decade, leading 

to the ability to interrogate the transcriptomic profile of thousands (and recently millions) 

of cells in parallel31–33. Single-cell technologies have evolved rapidly and now encompass a 

wide spectrum of applications, such as scRNA-seq (transcriptomics), scDNA-seq (genomics 

and DNA methylation), single-cell sequencing assay for transposase-accessible chromatin 

(scATAC-seq; epigenetics and chromatin accessibility), proteomics and metabolomics34,35, 

leveraging multiple stages of the central dogma beyond pure transcriptomics36 (Figure 1 and 

2 and Box 1).

Advanced spatial profiling technologies are crucial to resolve the complex tissue architecture 

of PDAC and the relationships between cells at the single-cell level37,38,39 (Figure 2 and 

3 and Box1). They provide fundamental insights into the spatial organization of cellular 

neighborhoods and interactions that for example support tumor growth or mediate immune 

escape. Spatial transcriptome-profiling technologies for single cells include sequential 

fluorescent RNA in situ hybridization (FISH) approaches, such as MERFISH or seqFISH37. 

Digital spatial profiling (GeoMx platform) enables transcriptome-wide spatial profiling by 

simultaneous hybridization of messenger RNA probes in selected regions of interest39,40. 

Furthermore, spot-based spatial transcriptomics methods assess cells transcriptome wide 

with the caveat of lower resolution (Visium and Slide-seq assays)41. Spatially resolved 

profiling of protein expression is achieved using multiplexed immunofluorescent staining 

and imaging approaches, such as co-detection by indexing (CODEX), which can visualize 

up to 100 proteins of interest simultaneously37.
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The rapid development of novel high-throughput assays necessitated a whole range 

of new computational tools and modeling approaches with the aim, among others, of 

determining cell types, modeling transitions and quantifying differences across conditions, 

for transcriptomics, multimodal and spatial measurements37,42–45. A particularly relevant, 

recent direction is data integration across modalities as well as datasets46. The latter 

allows the building of integrated cell-type maps across multiple resources as well as 

disease conditions, toward the initial lofty goal of single-cell organ atlases, as promised for 

example by the Human Cell Atlas47. These resources, combined with advances in machine 

learning, now allow the mapping of novel datasets on top of these references43,48, thereby 

automatically annotating cell types and reflecting differences compared with controls. While 

this was initially pioneered for single-cell transcriptomics, recent advances allow mapping 

across modalities and also the imputation of missing modalities49–51.

The recent development of a multitude of highly sophisticated single-cell profiling tools 

(Figure 1–3 and Box 1) holds great promise and has already provided invaluable novel 

insights that could not be achieved by other technologies 52.

Below, we will provide a comprehensive overview of such studies. Selected studies are listed 

in addition in Table 1.

PDAC heterogeneity and plasticity under steady-state and therapeutic 

perturbation

Genomic profiling of human and mouse PDAC has provided fundamental insights into 

its evolution and phenotypic diversification5,7,17,18. Moreover, transcriptomic profiling 

of bulk and microdissected tumors has revealed molecular subtypes of the disease; for 

instance, classical and mesenchymal/basal-like PDAC20 (Figure 4). By performing gene 

expression profiling of laser capture microdissection epithelium from 248 human tumors, 

followed by non-negative matrix factorization clustering, this classification has been further 

refined to five subtypes designated as basal-like A, basal-like B, hybrid, classical-A and 

classical-B. The basal-like subtypes are linked to allelic imbalances of KRAS, as previously 

described in PDAC mouse models7,17,18 and the hybrid cluster presents an overlap of basal-

like (mesenchymal) and classical gene expression signatures7. scRNA-seq of 15 PDAC 

specimens further uncovered the presence of both the basal-like and classical signature 

within the same tumor in individual patients, indicating the presence of cells of both 

subtypes within one tumor7.

scRNA-seq of disseminated circulating tumor cells in the peripheral blood, as well as 

metastatic PDAC cells, revealed an additional intermediate co-expressor cluster, which 

showed expression of classical and basal signatures in the same cell53,54 (Figure 4). PDAC 

circulating tumor cells were also enriched in stem cell markers and furthermore showed high 

abundance of ECM genes, such as SPARC, pointing to a connection of the ECM to cell 

states that lead to invasiveness and metastasis formation54.

Analysis of intermediate co-expressor cells from metastases demonstrated enrichment of 

RAS signaling, the inflammatory/stress response and developmental gene sets that might 

Bärthel et al. Page 4

Nat Cancer. Author manuscript; available in PMC 2023 December 09.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



represent a transitional state between classical and basal-like programs53. Importantly, the 

three distinct tumor cell clusters (classical, basal-like and intermediate co-expressor) were 

associated with distinct TME states. Classical and intermediate co-expressor tumors showed 

a greater TME diversity with infiltration of SPP1+ macrophages, which are enriched in 

genes involved in angiogenesis and co-localize with fibroblast activation protein-positive 

(FAP+) fibroblasts, while basal tumors had a lower diversity and were specifically infiltrated 

by immunosuppressive C1QC+ macrophages. The intermediate co-expressor state positively 

correlated with higher T cell infiltration, and particularly with IFNG expressing CD8+ T 

cells53.

Subtype classification was not only performed in patient specimens, but also on isolated 

matching organoids in vitro. Notably, organoids derived from the classical subtype displayed 

a stable classical state in culture. In contrast, the basal and intermediate co-expressor state 

could not be propagated in their original subtype and displayed a transition to an organoid-

specific or classical state in vitro. Subsequent investigation of paracrine signaling from 

nonmalignant cells based on the in vivo scRNA-seq dataset revealed TME-derived factors 

important for subtype specification; for example, transforming growth factor β (TGFβ), 

which leads to a basal-like organoid cell state53. Classical organoids were more sensitive 

to chemotherapy, reinstating what was observed in previous studies6,55. The subsequent 

integration of six scRNA-seq datasets of 70 patient samples established a first atlas of the 

refined subtype classification of classical, basal-like and intermediate malignant cell states 

of human PDAC56.

The advent of single-nucleus RNA-seq (snRNA-seq) in combination with spatial 

transcriptomics enabled the deep transcriptional and spatial characterization of 18 treatment-

naive and 25 neoadjuvant-treated primary PDAC specimens and revealed novel subtypes and 

their potential plasticity under therapy39 (Figure 4). The majority of treated patients received 

FOLFORINOX chemotherapy followed by radiotherapy and continuous fluorouracil/

capecitabine treatment. snRNA-seq has the advantage that it can be applied to frozen 

samples and shows an increased recovery rate of malignant and stromal cell populations, 

thus overcoming one major limitation of droplet-based scRNA-seq experiments. Profiling 

of the 43 human PDAC samples delineated several distinct tumor cell lineages partly 

overlapping with the previously described subtypes. Identified lineage programs include 

acinar-like (ACN), classical (CLS), basaloid (BSL), squamoid (SQM), mesenchymal (MES), 

neuroendocrine-like (NEN) and neural-like progenitor (NRP) malignant cell states. Thus, 

snRNA-seq of treated and untreated PDAC specimens enabled the fine-mapping of cancer 

cell states and led to a refined classification of PDAC subtypes (Figure 4). This is 

clinically relevant, because the NEN and NRP programs are enriched, whereas CLS and 

SQM signatures are decreased, in patients after neoadjuvant treatment, indicating therapy-

mediated lineage program induction and/or selection. Importantly, the NRP program is 

also associated with a poor prognosis in patients with PDAC. Mechanisms by which 

NRP malignant cells might mediate treatment resistance remain elusive but are potentially 

governed by NRP transcriptional program genes (e.g., ABCB1, BCL2, PDGFD and SPP1) 

having a role in negative regulation of cell death, chemoresistance and drug efflux, as well as 

neuronal migration, axon guidance and tumor-nerve crosstalk39.
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Integration of digital spatial gene expression profiling and snRNA-seq datasets allowed 

the linkage of these malignant programs with TME features and their spatially 

resolved distribution39. Thereby, three multicellular communities were identified-namely, 

the treatment-enriched, squamoid-basaloid and classical communities-displaying distinct 

malignant, stromal and immune cell-type compositions (Figure 4). The treatment-enriched 

community was preferably associated with the NEN, NRP, MES and ACN programs. 

Moreover, it was characterized by high infiltration of CD8+ T cells and neurotropic (NRT; 

neurogenesis and neuron differentiation pathway enrichment) and immunomodulatory 

(IMM; cytokine secretion and inflammation pathway upregulation) CAF signatures, 

reminiscent of the inflammatory CAF (iCAF) subtype initially identified in PDAC mouse 

models (see the section ‘CAF subtypes and function’). Conversely, the classical community, 

associated with the classical malignant program, showed exclusion of T cells and was 

characterized by infiltration of myeloid cells, specifically macrophages, neutrophils and 

conventional type 2 dendritic cells. This community also showed a high stroma content 

and upregulation of the myofibroblastic progenitor (MYO; high ACTA2 expression) 

and adhesive (ADH-F; enriched in cell-cell adhesion genes) CAF programs. Lastly, the 

squamoid-basaloid community, associated with the squamoid and basaloid malignant 

programs, displays a TME phenotype with higher and more diverse immune infiltration 

encompassing Tregs, B cells and myeloid cells, as well as lower stroma content compared 

with the classical community39. This novel community classification shows how distinct 

PDAC subtypes shape their TME and how treatment modulates this composition. Functional 

studies are needed to elucidate the instructing mechanisms and to uncover associated 

therapeutic vulnerabilities.

Additional studies that integrated scRNA-seq or snRNA-seq and spatial transcriptomics 

datasets from human PDAC samples confirmed the previously reported enormous 

heterogeneity and the coexistence of tumor cells with distinct expression signatures41,57. 

The analysis of 83 scRNA-seq or snRNA-seq samples and 15 spatial transcriptomics 

samples from 31 patients (ten treatment-naive and 21 chemotherapy treated) revealed 

cancer cell subpopulations characterized by proliferation, KRAS signaling, cell stress and 

epithelial-to-mesenchymal (EMT) gene expression signatures57. Multimodal intersection 

analysis was used for integration of scRNA-seq and spatial transriptomics datasets, resulting 

in a cell-type tissue region map that elucidates the spatial distribution of cell types. 

PDAC cells showing high abundance of a stress response gene expression signature 

colocalized with the iCAF subtype- a main source of the cytokine interleukin 6 (IL-6), 

which is linked to the identified stress response signature in cancer cells41. Furthermore, 

and in accordance with the above-described data, treated PDAC specimens displaying 

chemoresistance exhibited a threefold enrichment of inflammatory CAFs, indicating that 

changes in the TME, as well as the stress response signature of the tumor cells, contribute at 

least in part to therapy resistance57.

Single-cell profiling studies also shed light on the cells of origin of PDAC and 

its preneoplastic lesions, thereby providing clues on mechanisms underlying PDAC 

initiation57–60. scRNA-seq based mapping of genetic changes to cell populations of patient 

samples uncovered transition stages of tumor development from normal cells to malignancy, 

such as acinar-to-ductal metaplasia, confirming data from genetically engineered mouse 
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models (GEMMs) of PDAC57,61. These preclinical models recapitulate main aspects of 

human PDAC and are an invaluable toolkit for mechanistic studies. Accordingly, PDAC 

GEMMs have recently been extensively employed to functionalize and validate insights 

gained by single-cell profiling and to test therapeutic strategies, and we will discuss selected 

studies in the next paragraphs.

Acinar-to-ductal metaplasia is induced by tissue damage, such as acute and chronic 

pancreatitis, which promote KRAS-driven PDAC formation, but the underlying mechanisms 

remained largely unclear60. Multimodal genomic analysis, including scATAC-seq profiling 

in PDAC GEMMs, revealed that tissue damage in combination with activation of oncogenic 

KRAS induces a cancer-associated epigenetic chromatin state in pancreatic acinar cells, 

which promotes cancer initiation60. Mechanistically, tissue injury activates the cytokine 

IL-33 in epithelial cells, which cooperates with oncogenic KRAS to induce an acinar-

to-neoplasia chromatin switch, thereby driving gene-regulatory programs that mediate 

neoplastic transformation60. Single-cell analysis of tumor initiation in GEMMs of KRAS-

driven PDAC revealed six distinct metaplastic cell types and states that originated from 

acinar cells59. Although the contribution of the different metaplastic cell clusters to PDAC 

formation remains unclear, these data indicate that heterogeneity might occur at the earliest 

stages of PDAC formation59. Interestingly, acinar metaplastic cells seem to instruct an 

immunosuppressive TME as early as in the pancreatic intraepithelial neoplasia state, for 

example, via recruitment of suppressive myeloid cell types and induction of dysfunctional 

CD4 T cells59.

Tumor cell-TME interactions do not only have an important role in immunosuppression, 

but also in PDAC subtype specification. scRNA-seq analysis revealed that basal-like PDAC 

cells secrete C-C motif chemokine ligand 2 (CCL2), which is induced via bromodomain-

containing protein 4 (BRD4)-mediated cJUN/AP1 expression. This secreted protein 

mediates recruitment of TNF-expressing macrophages, which in turn manifest the aggressive 

basal-like cell state of PDAC cells, serving as a mechanistic example of how cellular 

plasticity can be shaped by the TME62. To target the highly therapy-resistant mesenchymal 

PDAC subtype more efficiently, a novel combinatorial therapy consisting of the MEK 

inhibitor trametinib and the multikinase inhibitor nintedanib has been identified by high-

throughput drug screening. This combination showed high selectivity for the mesenchymal 

subtype of the disease. Subsequent in vivo treatment studies and the integration of scRNA-

seq analyses with secretomics revealed reprogramming of the immunosuppressive TME by 

a therapy-induced change of the cancer cell-derived secretome, resulting in infiltration of 

CD8+ T cells, thereby sensitizing the tumors to anti-programmed death-ligand 1 (PD-L1) 

immune checkpoint blockade (ICB)63. These data show how the integration of scRNA-

seq with other omics technologies can be used to infer therapy-induced changes in cell-

cell communication or function and gain mechanistic insights into therapy response and 

resistance.

Subtype specification of PDAC substantially impacts TME diversity and the individual 

cell subsets and polarization states need to be investigated systematically to identify their 

biological function, as well as their therapeutic relevance. In the following section, we 

Bärthel et al. Page 7

Nat Cancer. Author manuscript; available in PMC 2023 December 09.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



will discuss recent single-cell approaches to deciphering the heterogeneity and function of 

individual cell subpopulations of the PDAC TME and their organization.

Composition and organization of the PDAC TME

Single-cell profiling has significantly contributed to the identification of distinct stromal 

and immune cell subpopulations and their phenotypic diversity. It not only enabled 

deconvolution of the context-dependent architecture and heterogeneity of the PDAC TME, 

as outlined above, but also provided first insights into the interaction, communication, 

organization and function of its various cell populations39,53,57,63. The first scRNA-seq 

studies of human premalignant pancreatic lesions and PDAC, as well as GEMM PDAC 

models, revealed a striking cellular heterogeneity of the TME during tumor progression that 

converged into immunosuppression58,59,64–66. In addition, approaches integrating scRNA-

seq analysis with highly-multiplexed immunohistochemistry or spatial transcriptomics 

methods represent invaluable resources with which to investigate the phenotypic diversity 

and the cell-cell communication networks of individual TME cell types and associated 

niches in a spatial context39,41,57,67,68. In the following paragraphs, we will focus on major 

cell types of the TME as discovered by single-cell profiling, as well as their functional 

relevance for the biology, phenotypic diversity and therapy of PDAC.

CAF subtypes and function

CAFs are attributed with a variety of functions, including ECM remodeling, crosstalk to 

immune and tumor cells, the secretion of growth and other soluble factors and regulating 

metabolic functions69. Consequently, the role of CAFs is diverse and CAFs have been 

shown to exert context-dependent functions that can either be tumor promoting or tumor 

restraining by influencing tumor growth, immunosuppression and potentially tumor cell 

dissemination28,69–72. While the origin of CAFs is controversial, experimental evidence 

suggests tissue-resident stellate cells (a cell population specific to the normal pancreas) as 

potential sources, which can be activated during tumorigenesis, leading to proliferation and 

formation of a dense fibroblast compartment28.

CAF subtypes

In PDAC, two distinct CAF subpopulations have been identified first using 

immunofluorescence and RNA in situ hybridization73. Myofibroblastic CAFs (myoCAFs) 

display high expression of α-smooth muscle actin (αSMA) and upregulation of TGFβ 
signaling and are localized proximal to the tumor cells. In contrast, iCAFs are characterized 

by a secretory phenotype, high expression of IL-6 and leukemia inhibitory factor (LIF) and 

dispersed appearance within the tumor stroma73,74. scRNA-seq of human and mouse PDAC 

tumors discovered a third CAF subpopulation termed antigen-presenting CAFs (apCAFs), 

which are characterized by high expression of major histocompatibility complex II and 

CD74, but lack the expression of costimulatory molecules75.
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Function of CAF subtypes and their specialized subsets

The advent of scRNA-seq enabled the fine mapping of the three major CAF subtypes and 

their specialized subsets69, and provided first insights into their biology, as well as their 

functional role in promoting or restraining PDAC progression.

CAFs that secrete CXCL12 have been shown to block antitumor immunity via T cell 

exclusion76, and CCL2 is implicated in the recruitment of immunosuppressive myeloid 

cells77. Accordingly, Fap+ CAFs that are characterized by the upregulation of CXCL12 and 

CCL2 signaling are indeed tumor promoting and linked to significantly decreased overall 

survival of patients with PDAC78–80. Genetic ablation of Fap+ CAFs in PDAC models 

resulted in a decrease of immunosuppressive myeloid cells and extended the survival time of 

the animals78–80. Importantly, this CAF subpopulation displays opposing functions in PDAC 

progression as compared to αSMA+ myoCAFs, which are tumor-restraining and associated 

with increased overall survival of PDAC patients. Depletion of this CAF subtype increased 

immunosuppressive Tregcells and decreased survival in mouse models71,78. iCAFs have been 

shown to secrete IL-6 and LIF in PDAC73, which drive immunosuppression by inducing 

the differentiation of suppressive MDSCs and the recruitment of TAMs, respectively57,77,81. 

apCAFs have the capacity to present antigens to CD4+ T cells, but lack costimulatory 

molecules75. Thus, T cell activation and proliferation cannot be induced. Instead, apCAFs 

ligate and induce Tregcell differentiation and proliferation from naïve CD4+ T cells in vivo 

and thus block anti-tumor immunity82. These data demonstrate that several CAF subsets 

mediate immunosuppression. Identifying new ways to specifically target and reprogram 

these populations is an important area of research and holds the promise of unleashing 

antitumor immune responses.

Two non-interconvertible fibroblast lineages in the pancreas that can be distinguished by 

expression of the marker gene CD105 have been recently identified. CD105+ CAFs display 

a tumor promoting phenotype, are more responsive to TGFβ and show a higher abundance 

in PDAC, while CD105- CAFs are tumor restrictive. Surprisingly, the CD105- cells express 

mostly apCAF markers (major histocompatibility complex II (MHCII) and CD74), despite 

their tumor suppressive functions83. Thus, specialized apCAF subtypes with opposing 

functions might exist, or their function might depend on the cellular and molecular context 

of the tumor, such as the molecular PDAC subtype and presence or absence of specific 

TME cell populations, such as CD4+ T cells and Treg cells). These findings add another 

layer of complexity and further mechanistic studies are needed to elucidate the functional 

role of these two specific CAF subsets in context. A similar finding has been reported 

for the myoCAF subtype84. scRNA-seq analysis of normal pancreas fibroblasts and CAFs 

revealed that a specific subset of myoCAFs, the TGFβ-driven LRRC15+ myoCAF lineage, 

which constitutes the most abundant myoCAF subset in late-stage PDAC in GEMMs and 

human patients, correlated with poor responses to ICB in clinical trials84. This suggests 

that LRRC15+ myoCAFs are another specialized CAF subpopulation that might exhibit 

immunosuppressive functions.

As described above, the advent of snRNA-seq enabled the in-depth single-cell multiomics 

and spatial characterization of human PDAC39,52,57, including CAF subsets and their 
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transcriptional programs and states39,57. Based on their expression profile, CAFs were 

defined as ADH-F, IMM, MYO and NRT39. The MYO program is characterized by high 

expression of ACTA2 and overlaps with the previously identified myoCAF expression 

signature. In addition, it shows upregulation of embryonic mesodermal development and 

Wnt pathway genes. The ADH-F, IMM and NRT CAF programs overlap with the previous 

described iCAF subtype and potentially represent different iCAF subsets, whereas apCAFs 

were not identified in this study. Upon therapy, the CAF compartment showed enrichment 

of the iCAF related ADH-F and IMM CAF transcriptional programs compared with 

untreated samples, indicating treatment-induced remodeling of the stroma and induction 

of iCAF subsets39,75. In line with this, a strong enrichment of iCAFs has been linked to 

chemoresistance in human PDAC, indicating that this subtype or specialized subsets thereof 

might be promising targets to reprogram the tumor stroma to overcome therapy resistance57.

The identification of distinct spatially confined subTMEs, which display deserted and 

reactive phenotypes linked to profound differences in the CAF and immune compartment, 

adds a spatial component to PDAC subtypes that has therapeutic and prognostic relevance85. 

Reactive subTMEs displayed an immune hot phenotype and antitumor immune properties, 

whereas the ECM-rich deserted regions had fewer activated CAFs, were enriched upon 

chemotherapy and displayed chemoprotective features. Cultured CAFs originating from 

reactive subTMEs were enriched in EMT and TGFβ signatures, as well as inflammatory 

gene sets, whereas cells derived from deserted subTMEs displayed growth-related gene sets 

(in line with a higher proliferation rate of these cultures) and lower expression of CAF 

activation markers85. These results indicate again that CAF subpopulations are associated 

with specific PDAC phenotypes; however, further insights into the origin, marker gene 

expression and exact function of the specialized CAF subpopulations that might drive 

PDAC subTME specification are needed to integrate these findings into the framework of 

CAF-subtype function in PDAC.

scRNA-seq analyses are powerful tools to dissect novel therapeutic approaches and 

better understand their consequences, for example, in the context of targeting the 

desmoplastic PDAC stroma. Previous attempts to pharmacologically inhibit paracrine 

Hedgehog signaling- a pathway activated in CAFs that signals to PDAC cells and thereby 

dictates their growth and self renewal86–89-failed in clinical trials90,91. Using scRNA-seq, 

Hedgehog pathway activity in distinct CAF subpopulations was interrogated, revealing 

that myoCAFs exhibit higher Hedgehog activity compared to iCAFs in mouse and human 

PDAC. Upon Hedgehog inhibition, the composition of the CAF compartment was altered 

and led to a decrease in myoCAFs but an increase in the iCAF subset and thereby a higher 

immunosuppressive activity92. This exemplifies the need to assess therapeutic responses of 

tumor cells and their TME holistically and to consider the phenotypic diversity and plasticity 

of cell types of the TME in PDAC subtypes.

CAF–cancer cell interactions

scRNA-seq of a human PDAC:CAF co-culture system revealed the existence of a 

proliferative (enriched in E2F target pathway signature) and EMT transcriptional PDAC 

cell program that is driven by CAFs93. Interestingly, high CAF-to-PDAC ratios (ratio 90:10) 
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induced the co-expression of proliferative and EMT genes within individual PDAC cells 

(double-positive phenotype), whereas pure PDAC cell cultures were mainly double-negative 

phenotype, indicating that CAF-derived factors drive these transcriptional programs. Indeed, 

secretomic profiling of CAF conditioned medium identified TGFβ-1 as a secreted factor 

inducing the transcriptional double-positive phenotype93. However, the CAF subtype(s) that 

drive this process remain unclear und more studies are needed to dissect their complex 

cell-cell communication network.

Together, single-cell profiling revealed deep insights into CAF heterogeneity in human 

and mouse PDAC, and showed the existence of three distinct CAF subtypes as well as 

several specialized subpopulations, which exhibit opposing and context-specific functions. 

The underlying mechanisms that drive CAF heterogeneity and the exact context-dependent 

role of the diverse subpopulations remain widely enigmatic. Thus, there is a clear unmet 

need to map the full spectrum of specialized CAF subpopulations, assess their mechanistic 

role in context and probe their value as targets for therapeutic interventions. This will aid 

the development of novel therapeutic targeting approaches in the clinic (which were largely 

unsuccessful in the past) by focusing on vulnerabilities of specific CAF subpopulations 

and their context-dependent function69,88. The systematic hierarchical classification of 

CAFs into broader populations and subpopulations with specialized functions, as proposed 

recently, will be an important step forward in the functional annotation of CAF subsets69.

Other stromal cell types, such as pericytes, endothelial cells and nerves, are so far 

underrepresented in PDAC scRNA-seq studies, but are important to be considered in 

future analyses. Indeed, endothelial cell activation and increased endothelial expression 

of vascular cell adhesion protein 1 (VCAM1) through senescence-associated secretory 

phenotype induction in PDAC cells led to higher infiltration of CD8+ T cells and a more 

favorable ICB response in combination with a targeted combination therapy94.

The immune landscape of PDAC

The PDAC immune TME is considered mainly immunosuppressive and often displays 

signs of T cell dysfunction or exclusion8,9,13. CD8 T cells, if present, often lack markers 

of activation and display an exhausted phenotype, expressing, for example, high levels 

of PD-1, TIGIT, EOMES and GZMK8,9,11,68. Besides, immunosuppressive myeloid cells 

infiltrate the PDAC TME at high levels95,96. Accordingly, immunotherapies, such as ICB or 

engineered T cells failed in clinical trials in patients with PDAC13,97. Only a small group 

of <1% of patients harboring microsatellite-instable (MSI) hypermutated or BRCA1- and 

BRCA2-mutated homologous recombination-deficient PDACs with higher tumor mutational 

burden have benefited so far from ICB98–100. However, response rates of MSI-high tumors 

are substantially lower than those of almost any other MSI-high cancer type101. Therefore, 

PDAC is considered one of the most immunotherapy-resistant tumors. This indicates, that a 

better understanding of the drivers of immunosuppression and T cell dysfunction that restrict 

immunotherapy response is urgently needed.

scRNA-seq unveiled unprecedented insights into the diversity and function of the PDAC 

immune landscape39,57,68,102,103. Integration of scRNA-seq and CyTOF analyses of 
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treatment-naive patients with PDAC and nonmalignant pancreas samples, established the 

first single-cell atlas that delineates the immune landscape of PDAC at large-scale68. 

Importantly, fine-needle biopsy samples of patients with nonresectable advanced-stage 

PDAC-underrepresented in previous bulk-sequencing studies of mainly surgically resected 

tumors-were analyzed. These advanced tumors showed the highest level of T cell 

exhaustion, indicating ongoing T cell dysfunction. Generally, expression of immune 

checkpoints varied across immune cells as well as patients, indicating the need to further 

stratify these tumors and to identify the mechanisms that drive the observed heterogeneity 

of the PDAC immune landscape. Expression of the immune checkpoint TIGIT, which has 

been shown to regulate T cell- and natural killer cell-mediated cancer recognition and is 

typically found at high levels on T and natural killer cells, was correlated with T cell 

exhaustion, indicating a new possibility for TIGIT-directed immunotherapies57,68,104. In 

line, the CD155/TIGIT ligand-immune receptor axis has been shown to mediate immune 

evasion in PDAC models, and targeting the axis in combination with PD-1 coinhibition 

and CD40 agonism induced anti-tumor immunity in vivo104. Because TIGIT expression in 

PDAC is positively correlated with its occurrence in the patient’s blood, it might represent a 

potential therapeutic biomarker of success of ICB or other immunotherapies68.

T cells

The T cell landscape was further profiled by scRNA-seq of T cells and their T cell 

receptor (TCR-seq) in a cohort of 57 human PDAC patients103. Thereby, distinct functional 

states of tumor-infiltrating lymphocytes (TILs) were characterized. Major CD8+ T cell 

subpopulations were annotated as CD8-GZMK (predysfunctional state), CD8-CXCL13 

(exhausted state) and CD8-ZNF683 (tissue-resident memory state) TILs103. The CD8-

GZMK predysfunctional T cell population is defined by an intermediate clonality and 

low/intermediate expression of immune checkpoints and high expression of GZMK and 

EOMES. T cell receptor profiling and cell-state trajectory analysis revealed an overlap 

with cytotoxic (CD8-GZMB/PRF1) and exhausted/dysfunctional (CD8-CXCL13) CD8+ T 

cell populations, suggesting that CD8-GZMK cells represent an intermediate state between 

these populations that give rise to dysfunctional T cells103. The CD8-CXCL13 T cell 

subset is characterized by high expression of the chemokine CXCL13 and multiple immune 

checkpoints (for example, CTLA4, PD1, TIM3, LAG3 and TIGIT) known to be present 

in dysfunctional and exhausted CD8+ T cells103. The cytotoxic CD8+ state (CD8-GZMB/

PRF1) is enriched in normal pancreas compared with PDAC and defined by expression of 

the effector T cell markers GZMB, PRF1 and TBX21. The CD8-ZNF683 state is a putative 

tissue-resident memory CD8+ T cell state with potentially increased cytotoxic activity and 

reported to correlate with improved survival in other cancer entities. It is characterized by 

high expression of ZNF683, as well as tissue-resident memory CD8+ T cell-associated genes 

(for example, XCL1 and GNLY), and low expression of KLF2103. This scRNA-seq analysis 

serves as reference atlas for functional T cell subpopulations and needs to be expanded to 

TIL states in treated patients with PDAC to characterize TIL trajectories upon therapy.
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The myeloid compartment

Integrating human and mouse PDAC scRNA-seq datasets provided novel insights into 

the myeloid cell compartment, specifically monocytes and macrophages105. TAMs are 

characterized by high expression of the complement factors C1QA, C1QB and TREM2, 

which have an important role in regulating myeloid-mediated T cell exhaustion106. 

Expression of C1Q complement factors induce the production of cytokines, as well as 

inflammatory responses107. In addition, expression of C1QA/B has been observed in the 

blood of patients with PDAC, which could be used as potential prognostic biomarker 

to identify patients with high macrophage infiltration108. Increased expression of Trem2 
in Arg1+ TAMs and monocytes has previously been linked to an immunosuppressive 

phenotype, and ablation of Trem2 in mice led to a decrease in exhausted T cells and 

an increase in cytotoxic T and natural killer cells, indicating that these cells might be 

one of the main executers of immunosuppression109. TAMs were further characterized by 

high expression of apolipoprotein E (APOE) in mouse and human PDAC. APOE has been 

shown to drive immunosuppression via nuclear factor κB (NF-κB) signaling by regulating 

Cxcl1 expression in tumor cells and macrophages, which thereby recruit immunosuppressive 

MDSCs and suppress CD8+ T cell infiltration110. In addition, APOE serum levels in patient 

with PDAC correlated with a poor outcome, indicating prognostic relevance110.

Immunosuppressive immune signaling and cell-cell communication

scRNA-seq has also been used to infer cell-cell interaction networks and immune cell 

signaling hubs102, and these approaches can also be applied to in situ datasets generated 

by spatial profiling techniques, such as multiplexed immunohistochemistry or spatial 

transcriptomics, to characterize the architecture and spatial organization of the cancer cell-

immune niche. Inference of ligand-receptor interaction pairs from scRNA-seq data has 

been employed to delineate cell-cell communication routes between malignant and TME 

cell types, such as the crosstalk between cell types, which mediate immunosuppression 

in primary and metastatic PDAC102. Epithelial cells showed the strongest connections 

with myeloid cells and potential immunosuppressive interactions with T cells, including 

the above-described and experimentally validated immune checkpoints PVR-TIGIT and 

PD1-PDCD1 (ligand expression on malignant cells)57,68,102,104. These data demonstrate 

the power of single-cell analyses and computational methods to improve not only our 

understanding of immune cell composition in PDAC, but also potential immune function 

and mechanisms of immunosuppression. However, as stated above, functional studies are 

needed to validate candidate mechanisms and cell types mediating such immunosuppressive 

phenotypes.

Outlook and future challenges

The application of scRNA-seq in PDAC has led to a multitude of biological insights 

into heterogeneity, plasticity and response to therapy. One future challenge will be to 

set these findings into context and interrogate dependencies and cell-cell communication 

networks in a subtype-specific manner, or even map novel subtypes and dependencies from 

a cross-patient integrated single-cell PDAC atlas. This will enable the functionalization 
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of individual cell types and reveal their potential as therapeutic targets. Integrating scRNA-

seq analyses and linking findings to the localization in the tumor by performing spatial 

transcriptomics approaches or histocytometry techniques will lead to important additional 

insights into the spatial organization of PDAC39,41,57,111. Longitudinal single-cell analyses 

of tumorigenesis and treatment regimens will shed light on treatment-mediated effects 

on PDAC cells, their TME, their plasticity and resistance mechanisms. Future challenges 

include the identification and testing of effective subtype-specific therapies that target both 

the tumor cells and their protumorigenic environment. Genetic dependencies and potential 

therapeutic vulnerabilities can be inferred by conducting drug perturbation or CRISPR 

screens with scRNA-seq or spatial read-outs112. Systematic large-scale screens, testing 

thousands of genes and hundreds of therapies in parallel113, can be integrated with machine 

learning to interrogate an interpolated perturbation space for designing optimal follow-up 

experiments114. These approaches offer the potential to rapidly advance our understanding 

of genetic and drug dependencies, and to identify new ways to target PDAC.
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Box 1

Advanced single-cell and spatial profiling technologies and tools

scRNA-seq and spatial profiling technologies are rapidly evolving31–35,37,38,42–46 

(Figure 1-3). The combination of scRNA-seq or spatial transcriptomics with DNA-

barcoded antibodies allows simultaneous surface protein profiling (cellular indexing 

of transcriptomics and epitopes by sequencing (CITE-seq)) to enhance phenotyping 

by using cell-type and functional markers118 (Figure 2). This method was further 

complemented to assess proteomic features, as well as the chromatin state of the 

respective cells, by combination with sparse scATAC-seq (ASAP-seq)119. In addition, 

scRNA-seq can be utilized to investigate cell-cell communication by assessing the 

gene expression of ligand-receptor pairs between specific cell types120, and more 

recently also leveraging spatial information using graph neural networks121 (Figure 

2). Sequencing physically interacting cells (PIC-seq) utilizes fluorescence-activated 

cell sorting to isolate physically interacting cells from dissociated tumors and assess 

crosstalk between neighboring cells using scRNA-seq122 (Figure 2). This overcomes the 

limitation of losing spatial organization due to tissue dissociation for scRNA-seq.37,38 

(Figure 2,3). Spatial transcriptomics is another powerful technology to assess spatial 

gene expression without the need to digest tissue samples by using an array of spatial 

capture spots (barcoded oligos) across a tissue section123. However, the currently used 

methods have several limitations, as they do not offer single-cell resolution but rather 

capture multiple cells on an individual capture barcode spot. To deconvolute distinct cell 

types, it is possible to integrate scRNA-seq data with spatial transcriptomics data and 

infer cell-type proportions111. Moreover, the resolution of spatial transcriptomics datasets 

can be enhanced computationally by the recently developed BayesSpace toolkit, which 

subsets each capture barcode spot into multiple subspots124. Integration of intracellular 

protein activity with scRNA-seq analysis can be used to identify specific functional 

subsets of different cell types with the intracellular staining and sequencing (INs-

seq) integrated technology109 (Figure 2), enabling investigation of signaling pathway 

activation, transcription factor expression or metabolic activity. INs-seq presents an 

approach with which to systematically investigate the molecular profile and signaling 

state of specific cell types of interest109.
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Figure 1. Single-cell profiling to uncover pancreatic cancer heterogeneity and complexity.
Left, single-cell profiling approaches, such as scRNA-seq (transcriptomics), scDNA-seq 

(genomics) and scATAC-seq (epigenetics), provide detailed insights into pancreatic cancer 

heterogeneity at various levels. Right, depicted are hallmarks of pancreatic cancer 

heterogeneity: (1) intratumor heterogeneity – tumors are composed of clonal tumor cell 

subpopulations, for which multiple tumor cell subtypes can co-occur within the same 

tumor, as well as diverse subTMEs, such as the deserted and reactive one; (2) stromal 

heterogeneity – the pancreatic cancer TME is characterized by a high abundance of CAF 

subsets (myoCAFs, iCAFs and apCAFs) with distinct functional phenotypes, for example, 

tumor-restraining (αSMA+ CAFs) and tumor-promoting (FAP+ CAFs) fibroblasts and (3) 

an immunosuppressive microenvironment – pancreatic cancer shows an exclusion of T 

cells or presence of exhausted, dysfunctional T cells, and tumors are highly infiltrated by 

immunosuppressive myeloid cells.

LAG3, lymphocyte-activation gene 3; PD-1, programmed cell death protein 1; TIM3, T 

cell immunoglobulin and mucin domain-containing protein 3; UMAP, uniform manifold 

approximation and projection.
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Figure 2. scRNA-seq approaches to decode cell-cell interaction and communication, as well as 
the spatial architecture of PDAC subtypes.
Left, using cellular indexing of transcriptomics and epitopes by sequencing (CITE-seq), the 

simultaneous expression of cell-surface protein markers, as well as gene expression, can be 

assessed. INs-seq enables the profiling of intracellular protein expression to infer signaling 

activity, transcription factor expression and metabolic states within single cells. Both 

approaches uncover distinct cellular phenotypic states. Middle, sequencing of physically 

interacting cells (PIC-seq) entails cell-cell communication analysis between two directly 

interacting cell subpopulations. Complex cell-cell communication networks are inferred by 

the expression of ligand-receptor interaction pairs of different cell types in the pancreatic 

cancer TME. Right, integration of scRNA-seq with spatial transcriptomics data allows 

analysis of spatial distribution and spatially resolved TME communities within a tumor.

PIC, physically interacting cells.
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Figure 3. Multimodal spatial single-cell profiling technologies.
Overview of spatial profiling technologies encompassing spatial genomics, spatial 

transcriptomics, spatial proteomics and spatial epigenetics approaches to assess inter- and 

intratumor heterogeneity and the spatial organization of pancreatic cancer. Spatial profiling 

methods are applied to analyze intact tissue sections without the need to dissociate the 

tissue, thereby preserving the spatial architecture of the tumor. Spatial genomics (spatial 

DNA-seq) identify tumor cell subclones and reveal differences in spatially defined regions 

within the tumor. Using spatial transcriptomics and proteomics, different cell types and 

functional cell states can be assessed. Besides, cell-cell communication channels and 

networks between neighboring cell types can be analyzed in a spatially resolved manner. 

Spatial epigenetics approaches allow the profiling of chromatin accessibility and chromatin 

modifications in distinct tumor regions.

TF, transcription factor.
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Figure 4. Timeline of subtyping classification advances in pancreatic cancer.
Overview of selected pancreatic cancer subtyping studies that used RNA-seq (top) and 

scRNA-seq (bottom) datasets for subtype classification. Collisson et al.21, Moffitt et al.16 

and Bailey et al.19 profiled large cohorts of patients with PDAC using RNA-seq and 

identified discrete tumor cell subtype states, as well as stroma subtypes. Mueller et al.17 

revealed that the two major PDAC subtypes (classical and basal-like) show differences 

in the dosage of mutationally active KRAS (KRAS-mut), with the basal-like subtype 

displaying the highest dosage and expression levels of mutated KRAS. Single-cell profiling 

enabled the identification of intermediate tumor cell states between the classical and 

basal-like subtypes, as well as extended and refined existing subtyping classifications. 

Moreover, through scRNA-seq analysis, distinct tumor cell states can be linked to subtype-

specific TME communities characterized by enrichment of different CAF and immune cell 

populations7,39,53.

C1QC, complement C1qC chain; SPP1, secreted phosphoprotein 1.
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Table 1
Selected scRNA-seq analyses uncovering PDAC subtype and TME heterogeneity

Study Cohort and sample type Sample size Single-cell 
platform Subtype analysis Biological insights/relevance

Ref. 
58

• Six primary 
human 
PDACs: two 
low-grade 
IPMNs, two 
high-grade 
IPMNs and 
two PDACs 
(resected)

5,403 cells SureCell 
WTA 3’ for 
ddSEQ 
system

NA • Cellular heterogeneity 
during progression of 
cystic PDAC precursor 
lesions (IPMNs) to 
invasive cancer

Ref. 
64

• Three PDAC 
samples of 
early-KIC, 
late-KIC and 
late-KPfC 
mice

• One normal 
pancreas 
sample

9,575 cells 3‘ scRNA-
seq (10x 
Genomics), 
v2 
chemistry

• Classical

• Mesenchymal

• Cellular heterogeneity 
during tumor 
progression

• Mesenchymal tumor 
cells enriched in late-
stage tumors

Ref. 
66

• 24 primary 
human PDAC 
(untreated)

• 11 normal 
human 
pancreas 
samples

57,530 cells 3‘ scRNA-
seq (10x 
Genomics), 
v2 
chemistry

• Squamous

• Immunogenic

• Progenitor

• ADEX

• Analysis of intratumor 
heterogeneity

• Characterization of 
ductal cell gene 
expression profiles

Ref. 
93

• PDAC:CAF 
co-culture 
model

• Human 
PDAC-3 line 
(GFP-Luc-
tagged)

• Human 
CAF-1 cells 
(mCherry-
tagged)

92 PDAC 
cells and 92 
CAF cells

SMARTseq 
(SMARTer 
Ultra Low 
Input v3 
kit; 
Clontech)

• Classical

• Quasi-
mesenchymal

• Integration of scRNA-
seq/RNA-ISH analysis 
with protein profiling 
(flow cytometry and 
CyTOF)

• Analysis of co-culture 
model of patient-
derived PDAC and 
CAF cell line to 
understand effect of 
CAFs on tumor 
cell heterogeneity and 
characterize cell-cell 
interactions

Ref. 
75

• Six primary 
human 
PDACs 
(untreated)

• Two adjacent 
normal tissue 
samples

• Four mouse 
PDACs (KPC 
model)

21,200 
human 
PDAC cells 
and 11,260 
mouse PDAC 
cells

3‘ scRNA-
seq (10x 
Genomics), 
v2 
chemistry

NA • Cellular heterogeneity 
of all cell types in 
PDAC

• Delineating fibroblast 
heterogeneity in a 
cross-species analysis

• Identification of novel 
CAF population 
described as apCAFs

Ref. 
59

• Nine mouse 
pancreas 
samples from 
PRT mice 
taken at 
different time 

41,139 
mouse 
pancreas 
cells and 
5,184 human 
PDAC cells

3‘ scRNA-
seq (10x 
Genomics), 
v2 and v3 
chemistry

NA • Time-point analysis of 
metaplastic acinar cell 
heterogeneity using 
a tamoxifen-inducible 
mouse model 
(Ptf1a-CreER,LSL-
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Study Cohort and sample type Sample size Single-cell 
platform Subtype analysis Biological insights/relevance

points after 
tamoxifen 
injection

• One primary 
human PDAC 
sample

KrasG12D,LSL-
tdTomato)

• Cell interaction 
analysis between 
metaplastic cells and 
TME cell types

Ref. 7 • 15 primary 
human PDAC 
samples (13 
resected and 
two 
metastatic)

31,195 cells 3‘ scRNA-
seq (10x 
Genomics), 
v2 
chemistry

• Classical A

• Classical B

• Hybrid

• Basal-like A

• Basal-like B

• Novel PDAC subtype 
classification from 
purified PDAC 
epithelium

• Hybrid subtype: 
overlap of classical 
and basal-like gene 
expression

• Co-occurrence of 
classical and basal-like 
cells in the majority of 
samples

Ref. 
84

• Two normal 
pancreas 
samples from 
albino Bl6 
mice (five 
mice per 
replicate)

• Two pancreas 
samples from 
KPP mice: 
adjacent 
normal tissue, 
small and 
large tumors 
(five mice per 
replicate)

13,454 cells 3‘ scRNA-
seq (10x 
Genomics)

NA • Analysis of fibroblast 
heterogeneity during 
tumor progression

• Optimized 
dissociation method 
to preserve PDPN+ 

fibroblasts for scRNA-
seq analysis

• Identification of 
novel LRRC15+ 

CAFs exhibiting an 
immunosuppressive 
activity

Ref. 
115

• Six primary 
patient-
derived PDAC 
organoids

8,934 cells SPLiT-seq • Classical

• Basal-like 
(mesenchymal)

• Intra-tumoral 
heterogeneity within 
classical tumor 
compartment

• Identification of basal-
like tumor cells 
within classical PDAC 
organoids

Ref. 
116

• Ten primary 
human 
PDACs 
(resected)

• Six 
metastases 
(five liver and 
one omentum) 
from patients 
with 
metastatic 
PDAC 
biopsies)

8,000 
primary cells 
and 6,926 
metastases

3‘ scRNA-
seq (10x 
Genomics), 
v2 
chemistry

• Classical

• Progenitor

• Squamous

• Quasi-
mesenchymal

• Basal

• Analysis of PDAC 
subtype signatures in 
distinct cell type 
compartments

• Correlative analysis 
of defined cell type 
signatures with patient 
survival

• High EMT tumor cell 
expression correlated 
with shorter survival

• Classical tumor 
cell expression not 
correlative of survival

Ref. 
41

• Two primary 
human 

1,926 PDAC-
A cells and 

inDrop NA • Multimodal 
intersection analysis 
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PDACs 
(resected)

1,733 PDAC-
B cells

by integrating scRNA-
seq with spatial 
transcriptomics data

• Identification of 
unique cancer 
cell subpopulations 
and their spatial 
localization

Ref. 
68

• 16 primary 
human 
PDACs 
(untreated, 
resectable and 
unresectable)

• Three 
nonmalignant 
pancreas

• 16 patient-
matched 
PBMC

• Four healthy 
PBMCs

46,344 
PDAC cells, 
8,541 
nonmalignant 
cells, 55,873 
PDAC 
PBMCs and 
14,240 
healthy 
PBMCs

3‘ scRNA-
seq (10x 
Genomics)

NA • Multimodal 
integration of scRNA-
seq with CyTOF 
and multiplexed 
immunohistochemistry

• Inclusion of fine-
needle biopsy 
samples, which 
present in patients 
with unresectable 
PDAC

• Characterization 
of immune 
TME landscape 
in treatment-naive 
patients with PDAC

Ref. 
65

• Orthotopically 
implanted 
mouse 
PDACs: 
KRAS-intact 
and KRAS-
knockout 
KPC tumors 
from two 
different 
experiments

10,000 cells 
from all 
conditions 
pooled

3‘ scRNA-
seq (10x 
Genomics), 
v2 
chemistry

• Classical

• Basal-like 
(mesenchymal)

• Ablation of KRAS 
in pancreatic cancer 
evokes antitumor 
immune response

• Loss of KRAS leads to 
changed immune cell 
infiltration (higher T/B 
cell infiltrates) and 
tumor cell phenotypes 
(change to basal-like 
subtype)

Ref. 
55

• 20 primary 
patient-
derived PDAC 
organoids

• Four patient-
derived 
metastasis 
organoids 
(matched 
liver, 
peritoneal and 
perivascular)

93,096 cells 3‘ scRNA-
seq (10x 
Genomics), 
v2 
chemistry

• Classical

• Basal-like 
(mesenchymal)

• Characterization of 
transcriptional PDAC 
subtypes in patient-
derived organoids

• Organoids showed 
uniformly classical 
or heterogenous 
(including basal-like) 
gene expression

• Heterogenous 
phenotype correlative 
to poorer patient 
survival

• Drug screen 
performed on patient-
derived organoid 
cohort revealed a 
better drug response of 
the classical subtype

Ref. 
117

• 13 normal 
human 
pancreas 
samples

> 120,000 
nuclei 
(snRNA-seq)

3‘ scRNA-
seq (10x 
Genomics), 
v2 and v3 
chemistry

NA • Characterization of 
human pancreas cell 
types

• Optimized protocol for 
nuclei isolation from 
normal pancreas
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• Identified distinct 
acinar cell populations

Ref. 
85

• Tenin vitro 
multiplexed 
(MULTI-seq) 
human 
pDAC-derived 
CAF cultures

6,331 cells 3‘ scRNA-
seq (10x 
Genomics), 
v3 
chemistry

• Classical

• Basal-like 
(mesenchymal)

• Identification of 
PDAC subTMEs 
(reactive versus 
deserted)

• Reactive subTME 
associated with basal-
like state

• Classical subtype 
associated with 
deserted subTME

Ref. 
53

• 23 human 
metastatic 
PDACs and 
matched 
patient-
derived 
organoids 
(19/23 
samples from 
liver 
metastases, 
two samples 
from 
peritoneal 
metastases, 
one sample 
from 
omentum and 
one from 
adrenal gland 
metastases)

7,740 
malignant 
cells, 15,302 
nonmalignant 
cells and 
24,995 
matched 
organoids

Seq-Well 
array

• Classical

• Intermediate 
co-expressor

• Basal 
(mesenchymal)

• Assessment of PDAC 
subtype cancer cell 
states

• Identification of 
drivers of 
transcriptional 
plasticity

• Analysis of 
relationships between 
subtype-state and 
TME phenotype

• Benchmarking of 
subtype-specific 
phenotypes in patient-
derived organoid 
models

Ref. 
102

• Nine primary 
and metastatic 
human 
PDACs (fine-
needle and 
core biopsies)

31,720 cells 3‘ scRNA-
seq and 
5‘ scRNA-
seq (10x 
Genomics)

• Classical

• Basal-like

• Hybrid

• Characterization of 
malignant and TME 
cell types

• Ligand-receptor 
interaction analysis 
between tumor cells 
and TME cell 
types identified 
potential cell-cell 
communication routes

Ref. 
63

• Orthotopically 
implanted 
mouse 
PDACs: three 
classical and 
three 
mesenchymal 
tumors (six 
libraries 
each9

• Treatment 
conditions: 
control, T/N 
and T/N+anti-
PD-L1

30,677 cells 3‘ scRNA-
seq (10x 
Genomics), 
v3 
chemistry

• Classical

• Mesenchymal

• Analysis of treatment-
induced effects on 
tumor and TME cells 
of novel combinatorial 
therapy in vivo in 
PDAC subtypes

• Mesenchymal 
subtype showed 
higher sensitivity 
and benefited 
from additional 
immunotherapy

• Integration of scRNA-
seq with tumor 
cell secretomes to 
delineate treatment-
induced tumor-
immune crosstalk
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Ref. 
56

• Four primary 
human PDAC 
samples 
(Osaka 
University 
cohort)

• Integration of 
five publicly 
availably 
scRNA-seq 
datasets

NA 3‘ scRNA-
seq (10x 
Genomics), 
v3.1 
chemistry

• Normal cells

• Both low

• Basal-like high

• Classical high

• Both high

• Integration of six 
human PDAC 
scRNA-seq datasets 
(five datasets were 
previously published) 
to build scRNA-seq 
reference atlas of 
human PDAC

• Refined clustering and 
annotation of tumor 
cell subtypes

• CAF subtype analysis 
and identification 
of tumor-CAF 
interactions

Ref. 
78

• Eight KPC 
mouse 
PDACs: 
early-stage 
(five libraries) 
and late-stage 
(three 
libraries)

31,861 cells 3‘ scRNA-
seq (10x 
Genomics), 
v2 
chemistry

NA • Profiling of CAFs 
from early- and late-
stage mouse PDAC 
(KPC model)

• Identification of 
aSMA+ and Fap+ CAF 
subpopulation with 
opposing functions 
and prognosis

Ref. 
103

• 33 primary 
human 
PDACs: MD-
Anderson 1 
cohort 
(enriched for 
CD3+ T cells) 
and MD-
Anderson 2 
cohort (all 
cells)

• 24 primary 
human 
PDACs 
(integrated 
from Peng et 
al.66)

39,694 cells 3‘ scRNA-
seq and 
5‘ scRNA-
seq (10x 
Genomics)

NA • Analysis of functional 
T cell states in human 
PDAC samples

• Reference atlas of T 
cell subpopulations

Ref. 
39

• 43 primary 
human 
PDACs: 18 
untreated and 
25 treated 
with 
neoadjuvant 
therapy

• Single-cell 
nuclei 
sequencing 
performed 
(snRNA-seq)

224,988 
nuclei

3‘ scRNA-
seq (10x 
Genomics), 
v2 and v3 
chemistry

• ACN

• CLS

• BSL

• SQM

• MES

• NEN

• NRP

• Analysis of treatment-
associated changes 
in TME composition 
and cancer cell gene 
expression programs

• Refined taxonomy 
of cancer cell 
expression signatures 
and association of 
PDAC subtypes with 
clinical outcome

• Refined classification 
of CAF subtypes 
and definition of 
multicellular TME 
communities

• Integration of whole-
transcriptome spatial 
digital profiling 
to identify the 
spatial distribution 
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and interaction 
of multicellular 
communities

Ref. 
57

• 83 primary 
human PDAC 
samples from 
31 patients 
(21 patients 
treated with 
standard-of-
care therapy, 
including four 
normal 
adjacent 
tissue samples 
and ten 
treatment-
naive patients)

• scRNA-seq 
and snRNA-
seq performed

232,764 cells 
(scRNA-seq) 
83,860 nuclei 
(snRNA-seq)

3‘ scRNA-
seq (10x 
Genomics), 
v3 
chemistry

• Duct-like-1

• Duct-like-2

• Acinar tumor

• Acinar normal

• Acinar REG+

• PanIN

• PDAC

• Analysis of 
transitioning cancer 
cell populations 
(untreated and 
standard-of-care 
treated) in 
combination with 
matched spatial 
transcriptomics 
datasets

• Assessment of spatial 
heterogeneity in 
treated patients with 
PDAC

• Analysis of treatment-
associated changes 
in TME composition 
and cancer cell gene 
expression programs

• Identification of 
distinct CAF subsets 
across treatment 
groups

• Enrichment of iCAFs 
in chemoresistant 
samples

• Characterization 
of myeloid 
and lymphocyte 
populations across 
treatment groups

ADEX, aberrantly differentiated endocrine exocrine; GFP, green fluorescent protein, IPMN, intraductal papillary mucinous neoplasm; 

KIC, KrasLSL-G12D/+Ink4afl/flPtf1acre/+; KPC, KrasLSL-G12D/+Trp53LSL-R172H/+Pdx1-cre; KPfC, KrasLSL-G12D/+Trp53fl/flPdx1-

cre; KPP, KrasLSL-G12D/+Cdkn2afl/flPdx1-cre; LRRC15, leucine-rich repeat containing 15; Luc, luciferase; NA, not applicable; PanIN, 
pancreatic intraepithelial neoplasia; PBMC, peripheral blood mononuclear cell; PD-L1, programmed death-ligand 1; PDPN, podoplanin; PRT, 

Ptf1acre/+KrasLSL-G12D/+R26LSL-tdTomato; RNA-ISH, RNA in situ hybridization; T/N, trametinib/nintedanib.
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