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Highlights
The therapeutic potential of interleukin
(IL)-2 in cancer and chronic infections
has triggered the development of novel
IL-2-based biologicals and combinatorial
treatment strategies to achieve high effi-
cacy and low off-target adverse effects
in mouse models, before being tested
in clinical trials.

Suboptimal IL-2 variants fused to an anti-
PD-1 antibody specifically promote
The therapeutic potential of interleukin (IL)-2 in cancer treatment has been
known for decades, yet its widespread adoption in clinical practice remains
limited. Recently, chimeric proteins of an anti-PD-1 antibody and suboptimal
IL-2 variants were shown to stimulate potent antitumor and antiviral immunity
by inducing unique effector CD8+ T cells in mice. A similar subset of cytotoxic
T cells is induced by depletion of regulatory T cells (Tregs), suggesting IL-2
sequestration as a major mechanism through which regulatory T cells suppress
activated CD8+ T cells. Here, we present our view of how IL-2-based biologicals
can boost the antitumor response at a cellular level, and propose that the role of
Tregs following such treatments may have been previously overestimated.
robust therapeutic effects in various
preclinical cancer and infection mouse
models (e.g., implanted lymphoma, pan-
creatic adenocarcinoma, glioma, colon
carcinoma, spontaneous pancreatic
cancer, and chronic viral infection). The
effect occurs by targeting IL-2 to PD-1+

T cells and enhancing IL-2 binding to
an ‘intermediate-affinity IL-2 receptor’
in cis.

Strong IL-2 signals are required to
induce the formation of a unique differen-
tiation state of antigen-stimulated CD8+

T cells, termed ‘better effectors’, with su-
perior antitumor and antiviral properties
in mice.

Based on preclinical mouse models, we
propose that regulatory T cells suppress
CD8+ T cells and the formation of ‘better
effectors’ via IL-2 sequestration, which is
disabled upon administration of exoge-
nous IL-2-based biologicals.

Significance
Strong IL-2 receptor stimulation of
antigen-activated CD8+ T cells induces
a unique gene expression program
in which the cells harbor a superior cyto-
toxicity and anticancer/antiviral potential.
This effect can be achieved by exoge-
nous IL-2-based therapy or depletion of
Tregs. Recent progress in the design of
targeted IL-2-derived biologicals and sin-
gle cell transcriptomics provide a novel
framework for the development of
IL-2 in T cell biology and immunotherapy
IL-2 is a key signaling glycoprotein produced by antigen-activated T cells, which promotes T cell
survival, proliferation, and differentiation. T cell antigen receptor (TCR) as well as IL-2 receptor
(IL-2R; see Glossary) signaling induces the expression of IL-2Rα (CD25), which is a part of the
high-affinity trimeric IL-2 receptor [1]. This constitutes a potent amplification of the IL-2-mediated
boost, which is more important for cytotoxic CD8+ T cells than for helper CD4+ T cells [2–4]. Due
to the unique biological properties of IL-2, various IL-2-based immunotherapies have been
considered for treating cancer and autoimmune diseases (Box 1) [5,6].

Recently, several studies combined IL-2 agonists with immune checkpoint therapies to treat cancer
and chronic infections in preclinical studies [7–11]. Here, we focus on these emerging findings to
present our view whereby we argue that a major mechanism of IL-2-mediated immunotherapy is
the alleviation of Treg-mediated suppression and the induction of superior cytotoxic CD8+ T cells.

Targeting intermediate-affinity IL-2 on PD-1+ T cells has a potent antitumor effect
Clinical usage of IL-2 is limited by not only severe adverse effects caused by off-target stimulation of
endothelial cells in lungs, brain, and liver [12–14], but also its short in vivo half-life [15]. Moreover,
until recently, the paradigm in the field proposed that IL-2Rα-binding IL-2-based molecules,
such as wild-type (WT) IL-2, predominantly stimulate Tregs and, thus, are largely tolerogenic,
whereas IL-2 variants with disabled/limited IL-2Rα interaction preferentially stimulate cytotoxic
CD8+ T cells and natural killer (NK) cells (Figure 1A,B). Accordingly, multiple engineered variants
of IL-2-based therapeutics, such as IL-2 immunocomplexes (IL2ICx), IL-2 immunocytokines,
or IL-2muteins, were developed to avoid the adverse effects of IL-2 and to target only one arm of
the immune system (i.e., cytotoxic CD8+ T and NK cells for anti-cancer treatment or Tregs in the
treatment of autoimmune diseases) (reviewed in [16]).

Immune checkpoint inhibitors represent a major advance in cancer immunotherapy [17].
However, because ICIs are efficient only in a subset of patients, combination therapies are
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putative therapies for treating cancer and
chronic infections in humans.

Box 1. The history of IL-2 therapies

The therapeutic potential of IL-2 was revealed ~40 years ago, when it was observed that in vitro IL-2-stimulated CD8+

T cells kill tumor cells [52,53]. A recombinant IL-2 therapy (aldesleukin) demonstrated clinical efficacy in metastatic renal
cell carcinoma and melanoma, leading to its US Food and Drug Administration approval during the 1990s [54–56]. How-
ever, this therapy also caused severe adverse effects, including vascular leak syndrome, resulting from an off-target ef-
fect on endothelial cells [12,13,57].

The second generation of IL-2-based antitumor therapies featured drugs with modified binding to IL-2R aiming to stimu-
late cytotoxic CD8+ T cells and NK cells, but not endothelial cells or Tregs in mouse models and, subsequently, in clinical
trials (NCT05267626i, NCT02983045ii, and NCT04855929iii) [18–20,48–51,58–69]. The respective strategies included
modifications of the IL-2Rα binding site [48–51,58,59], selecting IL-2 variants with increased affinity to IL-2Rβ [18,60],
complexes and fusion of IL-2 with anti-IL-2-antibodies [61–64] or IL-2Rα [65,66], or by designing novel IL-2-like drugs
[67,68]. These innovative strategies resolved the adverse effects, but have not yet shown promising results in clinical trials
[16], potentially due to their limited antitumor efficacy.

The third generation of IL-2-based antitumor drugs combined immune checkpoint blockade and specific IL-2 delivery to
CD8+ PD-1+ T cells, which are found particularly in tumors, using a chimeric molecule of anti-PD-1 antibody fused to IL-2
variants binding specifically to intermediate-affinity receptor (IL-2Rβγ) (henceforth termed ‘intermediate-affinity IL-2 variants’).
The promising effects of this approach in preclinical models of cancer and chronic infection [7–9] led to a current Phase 1
clinical trial (NCT04303858iv) (reviewed in [16]).

In contrast to antitumor therapy, low-dose IL-2 therapy can promote the expansion and differentiation of Tregs in
humans [70,71] and, therefore, has been tested for safety and effectivity in Phase 2 clinical trials in type 1 diabetes mellitus
(NCT01862120v) [72] and other autoimmune diseases (NCT01988506vi) [73].

Besides the rapid development of IL-2-based drugs for in vivo administration, IL-2 is routinely used ex vivo to stimu-
late cells for adoptive therapies, such as chimeric antigen receptor (CAR) T cells [74]. Moreover, T cells for adop-
tive transfer can be engineered in vitro to enhance their stimulation by IL-2 in vivo. One example is based on an
engineered IL-2:IL-2Rβ pair, which enables using modified IL-2 to stimulate adoptively transferred T cells expressing
the engineered IL-2Rβ, but not endogenous T cells [75]. A corresponding treatment using CAR-T cells reduced tumor
burden, prolonged mouse survival, and exhibited lower toxicity compared with the systemic administration of WT IL-2
in two xenograft tumor models using immunodeficient NOD scid gamma (NSG) mice implanted with human Nalm6
leukemia cells [76] or human Raji lymphoma cells [77].

Overall, multiple IL-2-based approaches have been developed aiming to treat cancer, chronic infection, or autoimmunity,
and over 100 clinical trials have been registered worldwide, suggesting that IL-2 is among the most promising candidates
for immunotherapy [16].
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being tested, including the potential synergy of PD-1 blockade and IL-2R agonists [18–20].
Several recent studies showed the robust antitumor effects of IL-2 variant (IL-2v), an
engineered variant of IL-2 not interacting with IL-2Rα, which is fused to monovalent or bivalent
anti-PD-1 antibody (PD1-IL2v) in various preclinical tumor models (orthotopic pancreatic adeno-
carcinoma Panc02-H7-Fluc [8] or PK5L1940 [10] in C57/BL6 mice; spontaneous pancreatic
tumors in RIP1-Tag5 transgenic C57BL/6 mice [9,10]; subcutaneous A20 lymphoma and
Renca adenocarcinoma in BALB/C mice; and MC38 carcinoma in C57BL/6 mice [7], as well
as orthotopic GL261 glioma in C57BL/6 mice [9]) (Figure 1C,D).

Blockade of PD-L1, together with WT IL-2 or PD1-IL2v, but not with nontargeted IL-2v,
reduced the titers of lymphocytic choriomeningitis virus (LCMV) clone 13 in the spleen and
lungs of infected mice during the chronic phase of the disease, relative to no treatment or
PD-L1 blockade only [8,11]. Blockade of IL-2Rα disrupted the effect of WT IL-2 in this model
[11]. These experiments showed that the binding of IL-2v to the dimeric receptor IL-2Rβγ
was sufficient to induce a therapeutic effect only if it was anchored to target T cells in cis,
and argued for the importance of the trimeric engagement of IL-2R. It is not clear whether IL-2R
anchoring needs to be via PD-1 or whether other T cell surface proteins would work in a similar
manner.
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Glossary
Better effector: differentiation state of
CD8+ T cells with superior antitumor
and antiviral cytotoxic capacity; these
develop in vivo after PD-1 blockade and
IL-2 treatment.
Bystander-activated CD8+ T cells:
CD8+ T cells, usually with memory
phenotype, that become activated in an
antigen-independent manner due to
inflammatory signals during an immune
response.
Chimeric antigen receptor (CAR)
T cells: T cells engineered to express a
synthetic receptor called a CAR. The
CAR combines the antigen-binding
domain of an antibody with TCR
signaling components, enabling T cells
to recognize specific antigens on target
cells and initiate signaling and ensuing
immune responses. CAR-T cells are
used to treat various malignancies,
mostly of hematopoietic origin.
Cis (interaction): in the context of
receptor–ligand interactions, cis binding
occurs when two molecules on the
same cell interact with the ligand. By
contrast, trans binding occurs when two
molecules on different cells interact with
the ligand.
FTY720 (fingolimod): sphingosine-1-
phosphate receptor modulator, which
induces the internalization of the receptor
and, thus, prevents T cells from egressing
the lymph nodes.
IL-2-based immunotherapies:
therapeutic interventions that utilize IL-2
and its engineered variants to modify
immune response to diseases, such as
cancer and autoimmunity.
IL-2 immunocomplexes (IL2ICx):
complexes of IL-2 and anti-IL-2 anti-
bodies. The immunocomplexes have a
longer in vivo half-life than IL-2 alone and
thus, are potent immunomodulators of
the IL-2 response. Based on the clone of
the anti-IL-2 antibody, different IL-2
immunocomplexes have different in vivo
effects (i.e., if the antibody blocks the IL-
2Rα binding site, IL-2Rα-expressing
cells are not preferentially stimulated).
IL-2 immunocytokines: engineered
therapeutic molecules that combine IL-2
with specific monoclonal antibodies or
antibody fragments to target immune
cells expressing a particular cell surface
receptor.
IL-2 mutein: mutated variant of the
natural IL-2 cytokine. Through alterations
in its amino acid sequence, it is designed
to have modified functional properties,
such as enhanced affinity for specific IL-2
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Figure 1. Interleukin (IL)-2 and IL-2 modifications used in immunotherapy approaches. (A) Wild-type (WT) IL-2
can bind to dimeric intermediate-affinity IL-2 receptor (IL-2Rβγ) or trimeric high-affinity IL-2 receptor (IL-2Rαβγ) [1].
(B) Multiple IL-2 variants (IL-2v) were designed with a mutated IL-2Rα-binding site. These variants can bind only to IL-2Rβγ
receptors, regardless of the availability of IL-2Rα [48–51,59]. (C,D) The apparent affinity of binding of IL-2 variants
(IL2v) to IL-2Rβγ is increased in cis by fusion to (C) monovalent [7] or (D) bivalent [8,11] anti-PD-1 antibodies, regardless of
the availability of IL-2Rα. These fusion proteins can impede PD-1 inhibitory signaling to some extent [8]. When PD-1 is not
expressed, PD1-IL2v can still bind to IL-2Rβγ, but with lower affinity. ‘+’ indicates the binding affinity of IL-2v to IL-2R.
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Based on the above-mentioned studies [7–11], which used various mouse models of cancer
and chronic infection, we propose that PD1-IL2v has multiple potential molecular mechanisms
of action: (i) targeting of IL-2v to PD-1+ tumor- or virus-specific T cells; (ii) strong IL-2Rα-
independent binding to IL-2R via its anti-PD-1 antibody-mediated targeting to the cell surface
in cis; (iii) prolonged interaction with IL-2R via anchoring to PD-1 and slow internalization of the
whole complex leading to the removal of PD-1 from the cell surface, as shown in human CD4+

T cells [8]; and (iv) PD-1 blockade. The inhibition of PD-1 signaling via PD1-IL2v appears to be
only partial, because the addition of a blocking antibody to PD-L1 on top of PD1-IL2v further
increases the antitumor effect in pancreatic adenocarcinoma in mice [7,9], as well as the antiviral
effect in chronic LCMV infection in mice [8].

Collectively, these studies attribute a candidate therapeutic potential for IL-2-based drugs largely
to the stimulatory effects of this cytokine on cytotoxic CD8+ T cells, particularly when combined
with checkpoint blockade [7–11], although further preclinical and clinical testing is warranted.

IL-2-based therapy can induce ‘better effectors’: a unique subset of cytotoxic
T cells
IL-2 enhances differentiation and cytotoxic effector cell formation in the CD8+ T cell compartment
[21]. However, single cell RNA sequencing (scRNAseq) of tumor-infiltrating lymphocytes
from murine subcutaneous Panc02-H7-Fluc tumors revealed that PD1-IL2v treatment also
increases the frequency of a population of ‘better effector’ T cells (CD8+ GZMB+ TIM-3− PD-1+

TCF7low/−) [8]. Similarly, PD1-IL2v treatment increased the frequency of better effector T cells in
another tumor model using RIP1-Tag5 transgenic mice, which spontaneously develop solid
tumors resistant to immune checkpoint blockade [9]. Taken together, better effector T cells can
Trends in Immunology, Month 2023, Vol. xx, No. xx 3
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receptors or reduced interactions with
regulatory immune cells, while retaining
the core immune-stimulating functions of
IL-2.
IL-2 receptor (IL-2R): cell-surface
protein complex that binds IL-2 and
triggers the intracellular IL-2 signaling
pathways. IL-2R has three subunits:
IL-2Rα (alias CD25, intermediate-affinity
IL-2 receptor, KD ~10 nM), IL-2Rβ (alias
CD122 or IL-15Rβ), and IL-2Rγ (alias
CD132, common γ-chain). Naïve and
memory T cells and NK cells express a
dimeric IL-2Rβγ receptor with
intermediate affinity to IL-2 (KD ~1 nM).
Tregs and recently activated T cells
express a high-affinity trimeric IL-2Rαβγ
receptor (KD ~10 pM). One mechanism
of Treg-mediated suppression of
conventional T cells is using high-affinity
receptors for sequestering IL-2 from the
environment. IL-2R signaling induces the
expression of IL-2Rα, which provides a
positive feed-back loop.
IL-2 variant (IL-2v):modified version of
IL-2 that has been engineered to alter its
properties, especially the receptor bind-
ing. Here, we use IL-2v as a synonym for
mutant IL-2, the binding of which to IL-
2Rα is reduced or eliminated.
Immune checkpoint inhibitors: anti-
bodies or other molecules that block
inhibitory receptors, such as PD-1 or
CTLA-4, on T cells, enhancing their
proliferative capacity and/or effector
function, mostly in the context of tumors.
These inhibitors are widely used in
cancer immunotherapy.
KILR T cell: differentiation state of
CD8+ T cells that develops in vivo after
antigenic stimulation in combination with
supraphysiological IL-2R signals,
occurring upon depletion of Tregs or
administration of exogenous IL-2R
agonists. It is characterized by expres-
sion of KLRK1, IL-7R, and other specific
markers. KILR effectors and better
effectors share striking gene expression
similarities.
Killer cell lectin like receptor K1
(KLRK1/NKG2D): activating cell
surface receptor expressed by NK cells
and some CD8+ T cells. Its expression is
characteristic of KILR+ effector and
better effector cells.
Low-dose IL-2 therapy: administration
of low doses of IL-2 in multiple dosing
schedules aiming to suppress
autoimmune responses in conditions
such as type 1 diabetes mellitus,
systemic lupus erythematosus,
rheumatoid arthritis, and graft-versus-
host disease, by expanding Treg cells.
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expand upon treatment with PD1-IL2v [8,9] (Figure 2A,B, data shown for illustrative purposes only).
Accordingly, the combination of anti-PD-1 antibody and IL-2 treatment in chronic LCMV infection
induced the formation of better effectors in splenic CD8+ T cells [11] (Figure 2C, data shown for
illustrative purposes only). These findings suggest that PD1-IL2v induces a unique gene expression
program in CD8+ T cells, which leads to the formation of a subset with superior effector functionality
in certain cancers and chronic infection.

The gene expression profile induced in murine intratumoral and splenic CD8+ T cells upon IL-2
treatment in the above-mentionedmodels of cancer and chronic infection [7–9,11] is characterized
by increased expression of genes encoding cytotoxic molecules (e.g., granzymes or cathepsins),
adhesion molecules, receptors for proinflammatory cytokines and chemokines (IL-18R, IFNGR,
and CCR5), transcription factors (e.g., TBET/Tbx21), interferon-response genes, NK receptors
(killer cell lectin like receptor K1; KLRK1/NKG2D), and proinflammatory S100 proteins [22]
(Figure 3A, data shown for illustrative purposes only). Collectively, these genes are associated
with a strong cytotoxic response, suggesting that induction of this gene expression profile provides
superior antitumor and antiviral killing properties to these better effector cells. Although it remains to
be rigorously demonstrated, we propose that the formation of better effectors is a key mechanism
mediating the potent antitumor effect of IL-2-based cancer immunotherapies in preclinical mouse
models.

Although a better effector signature has been reported by three studies [8,9,11], in another study,
PD1-IL2v treatment did not induce the better effector signature (NK receptors and cytotoxic
molecules) in A20 lymphomas in BALB/Cmice [7]. Although the differences among gene expression
signatures upon various IL-2 treatments need to be explained by further studies, we suggest that
the difference is caused by the monovalency of PD1-IL2v used in the latter study [7] (Figure 1C,D),
indicating a low-avidity interaction of this molecule with target T cells. Moreover, the actual
topology of the relative orientation of the IL-2v and anti-PD-1 antibody in the chimeric molecule
might be important for the spatial assembly of IL-2v with the IL-2Rβγ on the cell surface, which
also remains to be further tested.

The transcriptional profiles of CD8+ T cells from chronic LCMV infection in mice treated with
WT IL-2 or with WT IL-2 plus anti-PD-1 antibody are largely similar, which suggests that the
differentiation of CD8+ T cells into better effectors is induced by the IL-2 signal rather than
by PD-1 blockade [11] (Figure 2C). Accordingly, treatment of C57BL/6 mice bearing
B16F10 tumors with IL-2ICx selective for trimeric IL-2Rαβγ increased the frequency of
GZMB+ and KLRK1/NGK2D+ cells (corresponding to the better effector T cells) among splenic
and tumor-infiltrating CD8+ T cells evaluated by flow cytometry [3].

Better effector T cells are clonally expanded antigen-specific cells
Only some CD8+ T cells differentiate into better effectors upon PD1-IL2v treatment (Figure 2A–C).
Indeed, the preferential expansion of T cells specific to viral or tumor antigens, revealed as
increased frequencies of CD8+ T cells binding the LCMV-specific or tumor-specific MHCI-
tetramers in mouse models of chronic infections and cancer [7–9,11], has indicated that only
antigen-stimulated CD8+ T cells form better effectors. Accordingly, better effectors are highly
enriched in clonally expanded CD8+ T cells, as shown by the presence of multiple T cells with
the same TCR in the better effector subset isolated from pancreatic tumors of PD1-IL2v-
treated mice [8,9]. In somemouse tumor models, the therapeutic effects of IL-2-based treatment
only manifest in combination with immunogenic chemotherapy (B16F10 melanoma in C57BL/6
mice and BCL1 leukemia in BALB/C mice) [3] or irradiation (K5L1940 adenocarcinoma
in C57BL/6 mice) [10]. Most likely, the additional treatment might trigger the release and
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NOD scid gamma (NSG) mice:
mouse strain with a set of genetic
mutations (NOD.Cg-Prkdcscid Il2rgtm1Wjl/
SzJ); develop severe combined
immunodeficiency presenting with one
of the most severe phenotypes without
any mature T, B, or NK cells. Notably,
NSG mice carry a complete null
mutation in the gene encoding IL-2Rγ.
OT-I: transgenic OT-I mice produce
monoclonal CD8+ T cells expressing
OT-I TCRs specific to mouse H-2Kb

MHC-I loaded with a chicken ovalbumin
peptide (amino acid sequence is
SIINFEKL). OT-I mice are commonly
used for monitoring antigen-specific
responses in mouse studies.
PD1-IL15m: fusion protein comprising
an engineered variant of IL-15 that does
not interact with IL-15Rα and that has a
reduced affinity to IL2Rβγ, fused to the
anti-PD-1 antibody.
PD1-IL2v: chimeric protein comprising
an engineered variant of IL-2 not
interacting with IL-2Rα fused to the
anti-PD-1 antibody. It has superior
antitumor effects compared with the
IL-2v itself due to the increased in vivo
half-life and cis-interaction with target
T cells.
Single cell RNA sequencing
(scRNAseq): technology used to
quantify mRNA transcripts on a per cell
basis, providing a high-resolution view of
cell-to-cell variation in a biological
sample.
Stem-like T cells: have the properties
of stem cells (i.e., self-renewal potential
and ability to differentiate into terminal
effector T-cell stages: TCF7+). Stem-like
properties are generally associated with
memory T cells.
Synthetic effectors: genetically
engineered CD8+ T cells with transgenic
production of particular cytokines, which
could be used in an adoptive transfer
therapy to treat cancer. Synthetic
effector CD8+ T cells producing IL-2v
and IL-33 alarmin exhibited potent
antitumor activity in a preclinical model.
TCF7: transcriptional factor that is a
marker of T cell stemness; expressed in
central memory T cells and stem-like
T cells in chronic infection or in tumors.
Also known as TCF-1.
Vascular leak syndrome: increase in
vascular permeability causing the
escape of blood plasma through
capillary vessels into the tissue. This
results in edema and subsequent tissue
damage.
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subsequent presentation of cancer antigens, which is required for better effector formation from
tumor-specific T cells, although this remains conjectural.

Strong IL-2 signals are required for the formation of better effectors
While treatment with WT IL-2 or PD1-IL2v increased the frequencies of better effectors in chronic
LCMV infection or in Panc02-Fluc pancreatic adenocarcinoma, this effect was not observed
upon treatment with IL-2v, which was not targeted to T cells [8,11] (Figure 2B). Hence, we
propose that strong binding of IL-2 to its receptor, which is mediated via intact IL-2:IL-2Rα
interaction or via anchoring of IL-2v to PD-1 in cis, is required to make better effector T cells.
Accordingly, ‘synthetic effector’ T cells [i.e., genetically engineered chicken ovalbumin (OVA)-
specific OT-I CD8+ T cells secreting nontargeted IL-2v and IL-33 alarmin] have potent antitumor
activity in mice with implanted OVA-expressing B10 melanoma, but do not form better effectors
[23]. This suggests that ‘synthetic effector’ T cells work via a different mechanism compared with
PD1-IL2v treatment, perhaps based on the combination of stimulation of IL-2Rβγ by IL-2v, and
activation of tumor-associated dendritic cells by IL-33:IL-33R interactions, although this remains
to be further tested.

The better effector signature genes [8] appear to overlap with the profile of human and murine
bystander activated CD8+ T cells stimulated by IL-15 (reviewed in [24]), a cytokine that
binds to IL-2Rβγ and uses the identical signaling pathway to IL-2. IL-15-based biologicals repre-
sent another promising direction of experimental anticancer therapy (reviewed in [25]). Recently,
modified IL-15 conjugated to an anti-PD-1 monoclonal antibody (PD1-IL15m) was shown to in-
hibit the growth of B16F10 or MC38 tumors in C57BL/6 mice in a dose-dependent manner by
inducing proliferation (expression of Mki67) and cytotoxic effector gene expression (Gzmb,
Tbx21, and Ifng) in CD8+ T cells [26]; the results showed a striking analogy between IL-2 and
IL-15 targeted to PD-1+ T cells. Overall, IL-2 and IL-15 antitumor therapies might have a similar
mode of action, which includes the formation of better effectors, although this remains to be
further tested.

T cell priming in the absence of Tregs can induce a similar gene expression
program to IL-2-based therapy
It is well established that Tregs suppress effector T cell responses using multiple mechanisms
(reviewed in [27]), mostly based on experiments in which Tregs suppressed activated CD4+

T cells. However, we argue that Tregs use IL-2 depletion as a dominant mechanism for the
suppression of CD8+ T cells, as shown in several studies in mice [3,4,28,29]. These studies
provide multiple layers of evidence for such a conclusion. First, IL-2 serum concentrations are
increased in the absence of Tregs in mice [29]. Second, depletion of Tregs upregulates IL-2
signaling in activated CD8+ T cells in mice [3]. Third, although a high dose of IL-2 therapy causes
Treg expansion in mice, it also induces effector CD8+ T cell differentiation and renders mice
susceptible to CD8+ T cell-mediated experimental autoimmune diabetes to a similar extent to
Treg depletion [3]. This would not be expected if Tregs used predominantly IL-2-independent
mechanism(s) for CD8+ T cell suppression. Fourth, Foxp3CreIl2rafl/flRosa26Stat5bCA mice with IL-
2Rα-deficient Tregs (rescued by constitutive intracellular IL-2R signaling) develop
hyperproliferation of CD8+, but not CD4+ T cells in lymph nodes [4]. However, additional mecha-
nisms of Treg-mediated suppression of CD8+ T cells might also be important in particular
contexts, warranting further investigation.

In the absence of Tregs, OVA-specific OT-I CD8+ T cells form unusual effector KLRK1+IL-7Rα+

(KILR) CD8+ T cells after activation with their cognate antigen (intravenous injection of bone
marrow-derived dendritic cells pulsed with OVA peptide) in C57BL/6 mice, as revealed by
Trends in Immunology, Month 2023, Vol. xx, No. xx 5
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scRNAseq and flow cytometry [3]. Of note, KILR T cells resemble better effectors, as
documented by their upregulation of better effector signature genes (Figure 3B) and, reciprocally,
by the upregulation of KILR signature genes, such as Klrk1, Ifitm1-3, Cd7, and Nkg7 in CD8+

T cells upon IL-2-based treatment (Figure 3C) [3,7–9,11]. Moreover, KILR T cells showed
superior cytotoxic activity against adoptively co-transferred splenocytes loaded with cognate
antigen in C57BL/6 mice [3]. Putative strong cytotoxicity was also proposed as a feature of better
effectors [8]. Based on gene expression similarity and IL-2 dependency between KILR T cells and
better effectors, we propose that these subsets may be related (Figure 4, Key figure) or even
represent an identical subset, although this remains speculative.

Stem-like cells are putative precursors of KILR and better effector T cells
KILR and better effector CD8+ T cells express IL-7Rα, the receptor for the prosurvival cytokine IL-
7 [3,8,11]. This is paradoxical since: (i) IL-2 treatment ex vivo [30] or without antigenic activation
in vivo [3] decreases the expression of IL-7Rα; and (ii) the expression of IL-7Rα is typical for
memory, but not for effector T cells [31]. A possible explanation of IL-7Rα expression in KILR T
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Figure 2. Generation of ‘better effector’ CD8+ T cells upon PD-1–interleukin (IL)-2v treatment in mice. (A,B) Uniform manifold approximation and projection
(UMAP) plots based on single cell RNA sequencing (scRNAseq), constructed for illustration purposes only, showing (A) CD8+ T cells isolated from pancreatic carcinoma in
RIP1-Tag5 mice [9], (B) CD8+ T cells isolated from subcutaneous Panc02-H7-Fluc pancreatic carcinoma in C57BL/6 mice [8], (C) antigen-specific GP33+CD8+ T cells
isolated from spleens of C57BL/6 mice chronically infected with lymphocytic choriomeningitis virus (LCMV) clone 13 [11]. UMAP plots on the left show the localization
of different subpopulations in the dimensional reduction space. UMAP plots on the right show the density of cell populations upon different treatments. ScRNAseq data
were obtained from the following studies: Study 1 [9] (GSE197854), Study 2 [8] (E-MTAB-11773), and Study 3 [11] (GSE206739).
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Figure 3. Gene expression signatures of CD8+ T cells in response to interleukin (IL)-2 based therapies. (A,B) Heatmaps showing the relative gene expression
of selected genes in splenic or intratumoral mouse CD8+ T cells, constructed for illustration purposes only: (A) upon treatment with IL-2-based compounds [wild-type (WT)
IL-2 [11], PD-1-laIL-2 (intermediate-affinity IL-2 conjugated to anti-PD-1 monoclonal antibodies; mAbs; monovalent) [7], Erb-laIL-2 (intermediate-affinity IL-2 conjugated to
anti-EGFR mAb that serves as a control conjugate to PD-1-laIL-2 [7]), FAP-IL2v (intermediate-affinity IL-2 variant fused to a mAb against fibroblast-activating protein [8]),
PD1-IL2v (intermediate-affinity IL-2 variant fused to an anti-PD-1 mAb; bivalent) [8,9,11]), and/or checkpoint inhibition therapy (anti-PD-1 or anti-PD-L1 antibody)], or
(B) upon regulatory T cell (Treg) depletion [3]. Selected genes represent the signature genes of better effector cells [8,11]. (C) Bar plots, constructed for illustration
purposes only, showing the enrichment of KLRK1+ IL-7Rα+ (KILR) T cell signature genes (genes induced in activated CD8+ T cells upon Treg depletion) in splenic
CD8+ T cells upon treatment with IL-2-based compounds and/or checkpoint inhibitors [3]. (A–C) Single cell RNA sequencing data were obtained from the following
studies: Study 1 [8] (E-MTAB-11773), Study 2 [9] (GSE197854), Study 3 [11] (GSE206739), Study 4 [7], and Study 5 [3] (GSE183940). Abbreviations: NK, natural killer;
LMCV, lymphocytic choriomeningitis virus; OVA, ovalbumin.
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cells is their putative origin frommemory precursors rather than from effector T cells. Accordingly,
the formation of KILR T cells by the above-described OT-I T cell priming in the absence of Tregs
was accompanied by a decreased frequency of conventionalTCF7+ stem-likememory precursor
T cells, but not classical effector T cells, suggesting that TCF7+ stem-like precursor T cells are
precursors of KILR T cells [3].

One study described intratumoral CD8+ T cells as the major target of PD1-IL2v therapy, because
the inhibition of the T cell egress from the lymphoid tissues by FTY720 (fingolimod) did not
impact the treatment efficacy of PD1-IL2v in a renal adenocarcinoma mouse model [7]. Similarly,
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Figure 4. In this model, we propose that, under physiological conditions, antigen-activated CD8+ T cells produce the cytokine IL-2, which is largely sequestered by
regulatory T cells (Tregs), expressing the high-affinity IL-2 receptor (IL-2R). High amounts of exogenous IL-2 may not only activate both Tregs and CD8+ T cells, but
also lead to life-threatening adverse effects caused by damage to endothelial cells with subsequent vascular leak syndrome. Intermediate-affinity IL-2 variants (IL-2v)
may bind preferentially to an intermediate-affinity IL-2R expressed by CD8+ T cells, but are not potent enough to trigger full activation per se. Novel molecules,
represented by IL-2v fused to an antibody against inhibitory receptor PD-1 (PD1-IL2v), may act specifically on PD-1+ CD8+ T cells (enriched in tumor-specific cells),
which proliferate and differentiate into better effector cells with superior anticancer cytotoxic activity. A similar effect might be achieved by Treg depletion, increasing IL-2
availability for CD8+ T cells. Abbreviation: KILR, KLRK1+IL-7Rα+CD8+ T cells.
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a negligible effect of FTY720 administration was observed in a mouse model of B16F10
melanoma, when treated with PD1-IL15m [26]. Two studies proposed that better effectors were de-
rived from CD8+ PD-1+ TCF7+ stem-like T cells, based on observations that PD1-IL2v
expands CD8+ PD-1+ TCF7+ T cells in Panc02-H7-Fluc adenocarcinoma [8], in spontaneous
pancreatic tumors of RIP1-Tag5 mice [9], and in mouse GL261 gliomas [9], validating this T cell sub-
set as the putative target of this therapy. Overall, current evidence suggests that PD1-IL2v
therapy induces the differentiation of better effectors from intratumoral TCF7+ stem-like T cells,
which parallels the putative formation of KILR T cells from stem-likememory precursors in the spleen.

The ‘exaggerated’ role of Tregs in IL-2-based cancer immunotherapy
The development of IL-2-based therapeutics has been accompanied by significant concern
regarding its dual impact on tumor-specific T cells and immunosuppressive Tregs. Thus, IL-2v
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Outstanding questions
Howdoes strong IL-2 signaling induce a
unique gene expression program lead-
ing to the formation of better effector
CD8+ T cells? Although the proximal
IL-2 signaling pathway is relatively well
understood, it is unclear how strong IL-
2 signals synergizewith antigenic signal-
ing to induce this transcriptional pro-
gram leading to superior anti-cancer
activity. Uncovering the respective sig-
naling pathways leading to the triggering
of the causative transcription factors
and epigenetic regulators might reveal
molecular mechanisms required for bet-
ter effector formation that can be thera-
peutically induced or enhanced.

What is the role of Tregs in IL-2-based
cancer immunotherapy? We posit that
they might not be as crucial as once be-
lieved, especially in terms of their ability
to suppress CD8+ T cells, but this
should be thoroughly tested.

What is the optimal molecular structure
of the PD1-IL2v chimera to provide
strong targeted IL-2R signals and
block PD-1:PD-L1 interactions? Differ-
ent types of PD1-IL2vmolecules appear
to have different efficacies and potential
to induce a better effector CD8+ T cell
signature. Apparently, features such as
anti-PD-1 antibody valency and topo-
logical orientation of fused proteins
might have a role, but this has not
been extensively investigated. Emerging
PD1-IL2v drugs do not block PD-1 sig-
naling completely and their efficacy
can be improved in a combination with
anti-PD-L1 antibodies. Thus, it might
be possible to develop even more
potent PD1-IL2 chimeric biologicals.

Is the effect of PD1-IL2v similar in
humans? Since most of the emerging
findings in IL-2-based immunotherapy
are from preclinical mouse and human-
ized mouse models, the in vivo effects
of IL-2-based therapy need to be
addressed in humans, including the
eventual formation of better effector
human T cells.
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modifications have been developed to avoid/lower binding to the IL-2Rα subunit constitutively
expressed on Tregs. However, clinical trials with these variants have not been successful, yet
[16], perhaps because of their weak binding to the high-affinity IL-2Rαβγ expressed on activated
CD8+ T cells.

Based on the above-mentioned model that Tregs might suppress CD8+ T cells via sequestering
IL-2, we hypothesize that the concurrent stimulation of Tregs by IL-2-based biologicals does not
pose a significant complication, since Tregs would not be able to suppress CD8+ T cells in the
excess of exogenous IL-2R agonists. This is supported by experiments with mouse tumor
models indicating that the administration of IL-2Rα-biased IL2ICx [32] or IL-2-IL-2Rα fusion
protein preferentially stimulating IL-2Rα+ cells [33] can induce the potent antitumor activity of
CD8+ T cells (B16F10 melanoma in C57BL/6 mice; and BCL1 leukemia and CT26 colon carci-
noma in BALB/C mice) [3,34]. Moreover, antibody-mediated depletion of Tregs by anti-IL-2Rα
antibody did not improve the survival of C57BL/6 mice bearing PK5L1940 adenocarcinoma
that were treated with irradiation and PD1-IL2v [10], suggesting that Tregs did not efficiently
suppress antitumor CD8+ T cells in response to the excess of exogenous IL-2R agonist. These
observations are paradigm changing, since they challenge the scenario that IL-2-based biologi-
cals targeting IL-2Rα+ T cells are immunosuppressive by stimulating Treg cells [35–41].

A large proportion of Tregs express PD-1, especially in tumors, such as human gastric cancer
and nonsmall cell lung cancer [42,43]. Thus, PD1-IL2v might induce proliferation and boost a
suppressive phenotype in intratumoral Tregs, although this has not been demonstrated. How-
ever, CD8+ T cells outnumbered Tregs in the tumor of PD1-IL2v-treated mice, as shown in the
above-mentioned studies using pancreatic cancer and lymphoma models [7–10]; the resulting
anti-cancer effect was evidenced by the prolonged survival and/or reduced tumor burden of
mice. We propose a possible explanation for this phenomenon, whereby the intrinsic effect
of PD1-IL2v on CD8+ T cells would be higher than that on Tregs, perhaps because of lower
expression of PD-1 and/or or IL-2Rβ on Tregs, although this remains conjectural. A second
hypothetical reason might be the resistance of CD8+ T cells to Treg-mediated inhibition upon
IL-2 based therapy. In this scenario, Tregs might still use other mechanisms of suppression
to regulate other cell types, such as effector CD4+ T cells [4], which can also contribute to
tumor clearance [44,45].

Moreover, the effect of PD-1 blockade on Tregs upon PD1-IL2v treatment is unclear, since there
is controversy over whether PD-1 signaling is a positive [46] or negative [43,47] regulator of Treg-
mediated suppression, which further complicates the elucidation of the potential role of Tregs
during PD1-IL2v therapy.

Overall, we argue that the significance of off-target stimulation of Tregs upon IL-2-based immu-
notherapy is likely not as serious an issue as conventionally believed, which would open new
avenues for the development of novel candidate IL-2-based antitumor treatments. Certainly,
this warrants robust investigation.

Concluding remarks
Although the original idea of using IL-2 for therapeutic purposes is not new, we are currently
experiencing a boom of different strategies using IL-2 for antitumor and antiviral therapies. In
particular, these include the recent utilization of chimeric molecules of IL-2 and anti-PD-1 anti-
body, showing excellent efficacy in preclinical mouse models of cancer and chronic viral infection
[7–11]. Single cell transcriptomics has revealed that strong IL-2R agonists can not only promote
the differentiation of effector T cells, but also induce a unique gene expression profile in CD8+ T
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cells, which aligns with superior cytotoxic properties [8,9,11]. However, one of the
biggest concerns in the design of IL-2-derived biologicals is avoidance of the concomitant
stimulation of Tregs. This has motivated the design of IL-2 variants that do not act on Tregs
[48–51], but suffer from low efficacy on CD8+ T cells [8,11]. Based on recent data, we propose
that Tregs might not be able to suppress CD8+ T cell responses in the presence of strong
exogenous IL-2R agonists and, thus, might not substantially mitigate the effects of IL-2-based
therapy. However, their role might depend on particular immunological context, especially
based on disease and tumor type, which is not fully understood currently. Another potential
limitation of our proposed model is that the most of the underlying evidence has been generated
in preclinical mouse models and it is not clear to what extent they apply to humans. Therefore,
these and other open questions (see Outstanding questions) need to be resolved to bring optimal
IL-2-derived treatments into the clinic, representing a fruitful area of future investigation.
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