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Abstract

The paradigmatic hematopoietic tree model is increasingly recognized to be limited as it is based 

on heterogeneous populations and largely inferred from non-homeostatic cell fate assays. Here, we 

combine persistent labeling with time-series single-cell RNA-Seq to build a real-time, quantitative 

model of in vivo tissue dynamics for murine bone marrow hematopoiesis. We couple cascading 

single-cell expression patterns with dynamic changes in differentiation and growth speeds. The 

resulting explicit linkage between molecular states and cellular behavior reveals widely varying 
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self-renewal and differentiation properties across distinct lineages. Transplanted stem cells show 

strong acceleration of differentiation at specific stages of erythroid and neutrophil production, 

illustrating how the new model can quantify the impact of perturbations. Our reconstruction of 

dynamic behavior from snapshot measurements is akin to how a kinetoscope allows sequential 

images to merge into a movie. We posit that this approach is generally applicable to understanding 

tissue scale dynamics at high resolution.

Keywords

Differentiation rate; self-renewal; hematopoiesis; progenitors; stem cells; scRNA-Seq; dynamics; 
modelling; Hoxb5 

Introduction

A continuous flow of cells replenishes blood cells throughout life to maintain hematopoietic 

homeostasis. This flow originates from the hematopoietic stem cells (HSCs) and progresses 

through a complex hierarchy of multipotent, bipotent and unipotent progenitors, collectively 

called hematopoietic stem and progenitor cells (HSPCs). Decades of research have 

allowed to immunophenotypically identify HSPCs and define their functionality, thus 

positioning them within the hematopoietic hierarchy and establishing the hematopoietic tree 

model1,2. While the advent of scRNA-Seq provided high-resolution and allowed to resolve 

heterogeneity within HSPCs, scRNA-Seq is typically used to obtain snapshot measurements 

lacking temporal information. Thus, while undeniably useful, the classical hematopoietic 

tree model, even complemented by scRNA-Seq, remains static and qualitative, and does not 

capture the highly dynamic and complex biology of HSPCs in real time.

To pave the way for real-time modelling of HSPC dynamics under near-native conditions, 

a previous study3 induced a persistent fluorescent reporter within the HSC compartment 

and assessed label propagation into downstream progenitors and mature cells by flow 

cytometry. However, immunophenotyping has limited resolution, and HSPC populations 

defined by flow cytometry are known to be functionally heterogeneous. This is particularly 

evident within common myeloid progenitors (CMP)4,5 and lymphoid-primed multipotent 

progenitors (LMPP)6,7, whose subpopulations resolved by scRNA-Seq were found to 

be functionally distinct in transplantation experiments. Further high-throughput scRNA-

Seq studies charted putative gradual molecular transitions from HSCs toward 8 distinct 

lineages8, including specific stages of erythroid differentiation9. Nonetheless, while 

molecular states captured by scRNA-Seq can be predictive of progenitor fate potential when 

assessed in vitro10–12, gaining insights into single-cell fates in vivo during homeostasis has 

remained more challenging13.

Recent work in non-hematopoietic tissue demonstrated that lineage tracing and scRNA-Seq 

can be combined to understand progenitor cell differentiation into the airway epithelial 

lineage14. Nevertheless, such an approach has never been applied to a complex multilineage 

differentiation process, such as hematopoiesis. Furthermore, it has remained unclear 

whether predictive tissue-scale computational models of steady state-tissue homeostasis 

at single cell resolution can be constructed based on such approaches. Here, we 
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aimed to uncover high-resolution HSPC kinetics of multilineage bone marrow (BM) 

hematopoiesis in vivo. To achieve this, we combined inducible HSC-labelling to track 

label-propagation to downstream progeny during steady-state hematopoiesis with scRNA-

Seq at different time-points after label induction. This enabled us to reveal real-time 

dynamics (instead of mere pseudotime or latent time) and build quantitative cellular flow 

models. These models describe numbers of cells produced and transported across the 

stem and progenitor compartment, properties which have so far only been measured for 

a selected few subpoplations. Notably, the ample molecular information, allowed us to 

construct continuous models to associate gene expression changes with cell behaviors, 

such as increased proliferation or accelerated differentiation, thus directly connecting 

tissue and cellular behavior with the underpinning layer of molecular processes. Finally, 

we demonstrate that our dynamic HSPC model, unlike static immunophenotypic data, 

is transferable and able to predict HSPC fate outcomes based on published datasets. To 

showcase this, we compared the near-native haematopoiesis with an HSC transplantation 

setting, which revealed drastic upregulation of differentiation at specific stages of erythroid 

and neutrophilic differentiation.

Results

Hoxb5-CreERT2-Tomato reporter tracks HSC differentiation over time

To analyze HSPC dynamics, we aimed to employ a labelling approach (based on principles 

from Busch et al.3), in which an inducible HSC-specific CRE excises a STOP cassette 

in a Rosa26-LoxP-STOP-LoxP-tdTomato (R26LSL-tdTomato) reporter to permanently label 

HSCs and their subsequent progeny. We hypothesized that Hoxb5, which is specifically 

expressed in HSCs15, would be a suitable driver locus. To validate the specificity of 

Hoxb5 expression at the protein level, first we generated Hoxb5mKO2 mice, where the 

expression of the HOXB5 and mKO2 fluorescent reporter protein is driven by the 

endogenous Hoxb5 locus (Figure S1A). mKO2 expression was confined to the BM 

Lin−Sca-1+c-Kit+ (LSK) stem and progenitor cell compartment and was absent from 

Lin−Sca-1-c-Kit+ progenitors, and Lin+ differentiated cells (Figure S1B-D, E1A). Within 

the LSK compartment, Hoxb5mKO2 was highly expressed in the LSK CD48−CD150+ 

HSC fraction and enriched this population (Figure S1B-D). Low-level expression was 

also detected in LSK CD48−CD150− multipotent progenitors (MPPs), although the highest 

expression was exclusive to the HSC population (Figure S1C). At the functional level, we 

observed robust long-term multilineage repopulation activity of mKO2+ HSCs upon serial 

transplantation. Notably, chimerism in the HSC compartment of primary recipients was 

significantly lower in the mKO2- cohort, and mKO2- HSCs failed to efficiently propagate all 

lineages in secondary recipients (Figure S1E, E1B-D). These results point to Hoxb5-positive 

HSC fraction as a population with the most robust stem cell activity. To corroborate this 

observation, we investigated the molecular properties of mKO2+ and mKO2- HSC/MPP 

populations. For that we generated a Smart-seq2 plate-based scRNA-Seq dataset consisting 

of 384 cells sorted by FACS for mKO2 as well as surface markers. We then scored the 

cells for expression of HSC marker genes, which demonstrated that mKO2+ cells indeed 

express canonical HSC marker genes at protein and mRNA level and display the highest 

HSC-score based on full transcriptomic analysis16, a molecular signature associated with 
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LT-HSC function (Figure E2A-C). Projection of the newly sequenced transcriptomes on our 

previously reported, high-resolution HSPC landscape7 confirmed that almost all mKO2+ 

HSCs tightly occupy the region of the most immature stem cells (Figure E2D-F). Altogether, 

HOXB5 expression selectively marks HSCs with the long-term multilineage reconstitution 

potential and stem cell signature.

Having validated Hoxb5 as a suitable locus, we generated Hoxb5CreERT2 mice15 and crossed 

them with R26LSL-tdTomato reporter17 to establish the Hoxb5CreERT2; R26LSL-tdTomato mice 

(here referred to as Hoxb5-Tom, Figure 1A), which allow for inducible labelling of HSCs 

in situ by tamoxifen administration and subsequent tracking of HSC progeny over time 

(Figure 1B-D). To validate this system, we used flow cytometry to track label propagation 

across HSPC sub-populations in the BM and differentiated cell types in the peripheral 

blood (PB) at indicated intervals (Figure 1B-E, S1F-H, E3). Upon tamoxifen administration, 

we observed specific labelling of 1.8% of cells within the HSC compartment, which 

over 2 months gradually accumulated in downstream cell compartments (Figure 1C-D). 

Importantly, internal controls (i.e. vehicle-treated Hoxb5-Tom mice or those lacking the 

driver allele) show no background labelling (Figure E3A). Labelled differentiated cells are 

detectable in PB within 1-2 months after labeling HSCs; with particularly fast contribution 

to the platelet lineage, followed by erythrocytes and myeloid cells, and T and B cells 

appearing later (Figure 1D-E & E3B-D). We observed non-decreasing labelling for at least 9 

months after the treatment (Figure 1C-D, S1G-H), indicating that the label is persistent and 

inert.

Computational inference of population dynamics relies on a simple principle (Figure 1F): 

as heritable label propagates down from the label-rich upstream compartment, the speed of 

differentiation is proportional to label equilibration (Figure 1G, see methods). To benchmark 

our new experimental model, we compared flow cytometry data obtained from tamoxifen-

treated Hoxb5-Tom mice with previously published results of analogous label propagation 

obtained with the Tie2-YFP mouse line3. As shown in Figure 1H, our data are highly 

consistent for both MPP/HSC and HPC-1/HSC relative abundances across the entire time 

range, thus validating our new transgenic models and unlocking our next goal - modelling of 

population dynamics.

A unified reference HSPC landscape with time-resolved differentiation

Having validated the HoxB5-Tom system, we designed a strategy to capture scRNA-Seq 

profiles of cells traversing the HSPC landscape over time (Figure 2A). We harvested 

BM from tamoxifen-treated mice at 9 time-points ranging between 3 days (providing 

just enough time for Tom protein expression) and 269 days, when the label is mostly 

equilibrated. At each time-point we sorted cells together from two overlapping populations: 

(Lin-cKit+) and (Lin-Sca1+) from the bone marrow which contain all stem cells and a 

broad view of progenitor cells8 (Figure E3E). To ensure accuracy and reproducibility, 

we profiled multiple independent biological replicates for each time-point (36 animals 

in total). While our focus was labelled Tom+ cells, we also profiled Tom- cells at each 

time-point to obtain accurate background cell density in case it changes over time. We 

generated a common reference landscape by integrating all single-cell profiles followed 
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by clustering, embedding in a UMAP projection and manual annotation (Figures 2B,C, 

S2A-E). Clusters disjointed from the main landscape body (mostly mature cell types) and 

those representing technical artifacts (e.g. doublets or dying cells) were excluded (unfiltered 

data in Figure S2F-G). The refined landscape (>115,000 cells) served as the basis for 

our analysis. To place our data within the broader scope of hematopoiesis research and 

extend its interpretability, we provide multiple layers of annotation. Manual annotation8,11 

used lineage marker expression, cell cycle phases, HSC-score (molecular signature of long-

term repopulating HSCs16) and pseudotime (Figure 2A-D, Supplementary Table S1) to 

highlight the upstream cluster containing HSCs (Figure S2C) (cluster 0) and 8 terminal 

clusters (Figure 2C), where clear expression of definitive markers is observed. Please 

note that we refer to the populations as terminal within the constraints of our stem and 

progenitor landscape, but most of them are not mature cells and cells can progress to 

further differentiation stages beyond our landscape. To add more functional information, we 

mapped external scRNA-Seq datasets using our Cellproject package. Firstly, we overlaid 

canonical immunophenotypic subpopulations with our scRNA-Seq landscape (Figures 2D,E, 

S3A,B) (data from Nestorowa et al.7) comprising: highly purified LT-HSCs, multipotent 

progenitors (MPPs) 1 and 3, ST-HSCs, granulocyte-monocyte progenitors (GMPs), LMPPs 

and megakaryocyte-erythroid progenitors (MEPs). Secondly, we highlighted cell states 

associated with specific cell fate outcomes based on in vitro lineage tracing experiments11 

(Figures 2F and S3C). Importantly, the in vitro cell potency is broadly aligned with the 

manual cluster annotation. Finally, we included information about the active/inactive HSC 

status under proliferative challenge based on lineage tracing data from18 (Figure 2G). 

Together, these annotations place cell clusters into a functional framework to facilitate 

interpretation of the population dynamics models discussed below.

The HSPC landscape split by time-point shows clear propagation of labelled cells (Figure 

2H), a full quantification of labelled/unlabelled cell ratios for all time-points is provided 

in Figure S4A and follows the behaviour from label propagation experiments3 (Figure 

1F). Certain clusters (e.g. clusters 8 and 7) very quickly accumulate labelled cells, others 

are slower (clusters 11 or 10) and some very slow (clusters 13 or 14) (Figures 2H and 

S4A). Eventually the label largely equilibrated, as compared to the Tom- population (Figure 

S4A,B). Importantly, scRNA-Seq clustering resolves heterogeneity within cell populations 

defined by conventional flow cytometry gates (Figure S3A-B)4,7,19 and is predictive of cell 

fate11. To provide a quantitative description of population dynamics, we employed two types 

of models: discrete and continuous, each built for specific purposes. The former captures 

dynamics across the entire compartment and intuitively combines hierarchical tree models 

of hematopoiesis with a new quantitative view based on more precisely defined cell types. 

It also serves as a necessary reference for the latter, a more advanced continuous modelling 

approach, which focuses on specific trajectories, but provides cellular flux parameter 

estimates for each single cell and thus directly connects single cell transcriptomic profiles 

with tissue-scale cellular behavior.
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Discrete model reveals HSPCs with lineage-specific patterns of self-renewal and 
differentiation

To capture the flow of cells through the HSPC compartment in real time, we utilized the 

concepts from previous label propagation studies3,20 to build a discrete model consisting of 

multiple, interconnected cell clusters (Figure 3A-C). We explain two variables changing over 

time: number of labelled cells (Tom+ cells, Figures 3D and E4, Supplementary table S2) and 

size (Tom- cells, Figure E5, Supplementary Table S2) for each cluster (labelling frequency 

is provided in Figure E6). The model considers two basic properties of each cluster: net 
proliferation (number of divisions reduced by the number of cells lost e.g. by cell death) 

and differentiation rates (number of ingoing and outgoing cells between clusters per unit of 

time, scaled to a single cell). Thus, our model simultaneously estimates (net) proliferation 

balancing it with the influx, efflux and time-dependent cluster size. Importantly a common 

set of parameters fits both labelled and unlabeled cells (except cluster 0, see the next 

section) indicating similar dynamics. Additionally, we introduce two derived parameters that 

are useful for interpreting cell behavior (Figure 1G). Residence time, which corresponds 

to a half-time of one cell in a cluster, is the time required for the cluster to shrink by 

63% (to 1/e of original size, where e is the Euler’s number) in absence of any incoming 

cells. Residence time is defined as the inverse of ((death+differentiation)-proliferation) 

and thus residence time increases as proliferation rate rises, and death/differentiation rates 

decrease and vice versa. Finally, flux depicts the total number of cells transported between 

clusters in a unit of time (i.e. differentiation rate multiplied by cluster size). We limited the 

number of differentiation parameters by assuming that cells travel only between adjacent 

clusters (i.e. with highest PAGA21 connectivities – Figure 3A). While PAGA is a robust 

method with relatively few assumptions, there is currently no consensus in trajectory 

inference methodology. Thus, we also provide the tools to explore alternative topologies 

(see Methods) and apply a cluster-independent, continuous model (see later).

Of note, we observed changes in relative cluster size over-time (i.e. the background 

unlabelled cells), in particular a quick increase in relative abundance (compared to cluster 

0) of clusters 7 and 8 (>50% in <20 days) and a coordinated relative decrease in other 

major clusters (Figures E5, S5C). Cluster 0 size also modestly increases size in the same 

time-frame. Previous tamoxifen-based label propagation studies also observed a quick 

rise in ST-HSC, MPP2 and MPP3 total numbers (Figure S5D), but no explanations were 

provided22. It had previously been suggested that application of tamoxifen interferes with 

JAK-STAT signalling23. Consistent with recovery from cell depletion caused by tamoxifen 

interference with JAK/STAT, this pathway was most active in the depleted clusters 7, 8 in 

addition to cluster 0 (Figure S6A). To assess how recovery from short-term cell depletion 

may influence model parameters, we compared our main model with a bi-phasic fit, which 

permits a switch in differentiation/proliferation rates between the recovery and homeostasis 

phases, albeit at some cost of increased parameter uncertainty (Figure S6B-C). We observed 

changes in 14 out of 58 rates between the two phases (Figure S6D-E, Supplementary Table 

S3). Of note, all bar one of the homeostasis rates in the biphasic model are essentially 

the same as the rates in the main model. We thus explain and account for a previously 

overlooked side-effect of using tamoxifen for label induction.
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We formulated our main model into a graph in Figures 3C and S6F, where node sizes 

are proportional to the average cluster size, node color indicates residence time (or net 

proliferation in Figure S6F) and arrows indicate cell flux (differentiation rate in Figure S6F). 

Please note that some transitions occur infrequently (transition rates and their confidence 

intervals are provided in Supplementary Table S3) and we cannot exclude that some may 

be redundant (for the discussion on the minimal model, please see the methods section 

“Model selection”). Interestingly, differentiation rates poorly correlate with similarities 

between gene expression states (Figures 3E, S6G), indicating that discovery of real-time 

dynamics requires temporal information. Moreover, the compartment-wide view clearly 

shows lineage-specific dynamics (Figure 3C). Megakaryocyte progenitors emerge through 

a rapid transition via the fast-proliferating cluster 8, which also generates erythroid cells, 

albeit more slowly (cluster 1). Substantial erythroid output is achieved via sequential 

cell states with considerable self-renewal (clusters 1 and 9) and proliferation (cluster 9), 

followed by fast differentiation between clusters 9 and 11. Furthermore, myeloid progenitors 

transition from cluster 0 either into cluster 4 or via a shared route with the erythroid 

and megakaryocytic progenitors into cluster 8, with gradually increasing differentiation 

rates from cluster 2 onward. The myeloid branch therefore employs additional progenitor 

populations analogously to the erythroid trajectory, albeit with lower proliferation rates 

(Figure S6F).

The lymphoid trajectory is altogether different showing exclusively slow transitions via 

clusters 5 and 2 into cluster 14 (which overlaps mostly with a subset of MPP4 cells). 

Cluster 5, compared to the more myeloid-biased cluster 4, proliferates and differentiates 

more slowly, while expressing higher levels of key lymphoid factors, including Flt3, Satb1, 

Pou2f2 (and to some extent the monocytic factor Irf8, discussed later) (Figure E7A). The 

lymphoid program therefore displays restricted proliferation and differentiation rates already 

from its immature stages. Plasmacytoid dendritic cell (cluster 13, pDCs) differentiation 

through the lymphoid cluster 14 and myeloid clusters 6 and 16 is similarly slow. The 

emergence of mast cell, basophil and eosinophil progenitors in the adult BM is unclear24,25. 

Our results are consistent with a model whereby basophil and mast cell progenitors 

(cluster 12) are continuously generated and originate at least by a transition from the 

early myeloid cluster 2 but may also have some contributions from other clusters (dashed 

lines). Furthermore, despite limited cell numbers, we observed some label accumulation 

in eosinophil progenitors (cluster 17), most likely originating from neutrophil progenitors 

(cluster 10).

Interestingly, residence time (self-renewal) varies widely across the HSPC landscape, 

with lineage-specific patterns (Figure 3C, Supplementary Table S3). As expected, cluster 

0 contains the only perfectly self-sustaining population; intermediate populations show 

an extensive range of residence times, from just 2.5 days for Erythroid/Megakaryocytic 

progenitor (cluster 8), 11 days for Monocyte/Granulocyte progenitors (cluster 2) and up 

to 53 days for the medial cluster 4. The latter example falls close to the residence 

time previously estimated for MPPs (70 days)3 and highlights that progenitors can also 

show considerable self-renewal. Importantly, cells in clusters 8, 2 and 4 fall within the 

immunophenotypic CMP and MPP definitions (Figures 2D-E and S3A-B), illustrating how 

historically used flow cytometry gates capture populations with vastly different dynamics. 
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We also note that among some intermediate clusters our model permits a degree of forward 

and backward differentiation suggesting that some states may exist in an equilibrium, 

with each cluster having distinct differentiation properties. Thus, diverse hematopoietic 

progenitors exhibit widely different, lineage-specific dynamics consistent with distinct 

mechanisms maintaining cell output.

Composition of the top HSPC compartment changes over time

Based on immunophenotype annotations (Figure 2C), the top cluster 0 contains virtually all 

LT-HSC and a large subset of ST-HSC and MPP1 cells. The overall cluster size increases 

over time (Figure S5B,C), reminiscent of previous reports noting the expansion of ST-HSCs 

and MPP3s as mice age (Figure S5D)22. Of note, the Hoxb5-Tom labelled cells within 

cluster 0 grow almost exponentially (Figure S5A), which mirrors the previously reported 

behavior of Tie2-YFP labelled LT-HSCs22 and is consistent with the observation of dramatic 

expansion of Hoxb5-, Tie2- or Fgd5-labelled cells in aging animals26. This suggests that the 

Hoxb5 and Tie2 systems mark, in addition to the canonically quiescent LT-HSCs, a subset of 

immature cells with high self-renewal or proliferation capacity.

To take account of this experimentally revealed heterogeneity within cluster 0, we next 

tested multiple models and put forward a potential explanation, which assumes a logistic 

growth for cluster 0 and three sub-clusters within in it: a top, perfectly self-renewing 

cluster 0a, the megakaryocyte & myeloid-biased cluster 0b, and the multipotent cluster 

0c (Figure 3C, dashed box). We constrained cluster 0a size and differentiation rate to 

match previously reported LT-HSC numbers but left clusters 0b and 0c sizes unconstrained. 

We defined the tip cluster by finely subclustering cluster 0 and picking as cluster 0a 

the subcluster with the highest HSC-score (subcluster 8, Figure S5E, F). Reassuringly, 

this cluster size is compatible to that predicted by our model, is enriched as expected 

in Procr and Ly6a, and, most importantly, has a non-growing labelling frequency, as one 

would expect from the candidate tip cluster (Figure S5G-I). Cluster 0c remains stable over 

time but it proliferates quickly and feeds both downstream progenitors and cluster 0b, 

which in turn grows over time (Figure S5B,C). Hence, the flux between clusters 0b and 

8 increases with mouse age. This is in line with the increased myeloid output27,28 and 

relative proportion of megakaryocyte-biased and myeloid-biased HSCs in aged animals29. 

Of note, cluster 0b shows high self-renewal (residence time of 180 days), consistent with 

high repopulation potential of lineage-biased HSCs29. Altogether, our discrete model in 

addition to faithful recapitulation of cell flux through the HSPC compartment also provides 

a possible explanation of aging-associated changes in HSC behavior.

Continuous model of hematopoiesis connects dynamics of gene expression with cell 
behavior

While our discrete model has provided the HSPC compartment-wide dynamics, a 

complementary model is required to associate gene expression changes at the single cell 

level with cell behavior, such as increased proliferation or accelerated differentiation. To 

directly connect cellular behavior with the underpinning layer of molecular processes, we 

employed a continuous model based on the Pseudodynamics framework30. For tractability, 

we considered one lineage at a time, based on cells with highest fate probabilities towards 
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each lineage31,32(Figure 4A-B, E8, E9). The continuous model assigns differentiation and 

net proliferation rates to each cell (Figure 4A) by solving partial differential equations 

describing cell densities along pseudotime over real-time. Hence, model parameters 

and gene expression share a common pseudotime (and real-time) axis, enabling direct 

comparison. Of particular interest are states (i.e. pseudotime ranges) with changes in 

proliferation or differentiation rates. An increase in proliferation rates indicates an expansion 

stage, whereas a rise in differentiation rates marks a potentially irreversible molecular 

transition.

We set out to analyze gene expression dynamics occurring at such changes in cell behavior 

over time, for instance correlating the first derivative of the differentiation rates and gene 

expression highlights complex matching patterns and shortlists potential regulators driving 

cell differentiation in an unbiased manner (Figure E11, extended data Table E1). A more 

targeted approach tests for differential expression around specific stages of differentiation 

and changes in cell behavior. For brevity, we showcase the megakaryocyte and neutrophil 

trajectories (Figures 4, E9, 10) but also provide analogous analyses for the erythroid and 

monocytic/dendritic lineages (Figures E9 and Supplementary Tables S4, S5, extended data 

Table E2). As shown in Figure 4A megakaryocyte progenitors display characteristic changes 

in growth and differentiation rates. Cells rapidly increase their net proliferation early on, 

ahead of the peak in differentiation and around the stage where Pf4 (megakaryocyte 

marker) mRNA becomes detectable. In this growth phase, we identified 170 dynamically 

expressed genes with distinct patterns along pseudotime (Figure 4C-D, similar analysis of 

the differentiation phase is showed in Figure E9C-D). These genes are strongly enriched for 

cell growth and proliferation genes with almost all of them showing an upward trend in the 

relevant pseudotime range. This serves as a proof of principle, as the model based solely on 

total cell numbers, predicts the growth stage matching the respective gene signature.

While following the neutrophil differentiation kinetics (Figure 4B,E), we found gradually 

increasing differentiation rates (blue line) accompanied by a complex pattern of gene 

expression. Indeed, we observed two phases of neutrophil-affiliated gene expression (Figure 

4F), with Cebpe, Cst7, Elane, Fcgr3, and Gfi1 appearing almost simultaneously at the onset 

of differentiation, while Clec4a2, Wfdc21, S100a8 increasing at different intervals later. To 

gain insight into potential mechanisms regulating the process, we scrutinized transcription 

factors with dynamic expression along the trajectory (Figure E10A) and classified them 

into 4 groups based on their distinct expression patterns. Group 2 (Figure 4F) largely 

mirrored the expression of early neutrophil markers described above, and reassuringly 

contained Gfi1, a key determinant of the neutrophil fate, which indeed suppresses Irf8 

expression33, a member of the downregulated group 1 TFs. Group 3 (Figure E10B) 

contained factors with the highest expression in the most immature HSPCs (e.g. Gata2, 
Hlf, Meis1) and showed early and nearly synchronous decay in expression, suggesting 

involvement in self-renewal. Finally, Group 1 (Figure 4F) TFs exhibit unique patterns of 

expression with peaks at different stages, all of which ultimately decaying as late neutrophil 

markers appear. These contain multiple TFs associated with specific lineages such as: Irf8 
(Monocyte/DC fate33), Aff3 (lymphoid/B cells34), Dach1 (myeloid35), Hmga2 (myeloid, 

erythroid, megakaryocytic36, Pou2f2 (lymphoid/B cells37) or are important for HSPC self-

renewal, including Ikzf238 or Ssbp239. Thus, our analysis indicates that progenitors exhibit 
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transient expression of major lineage determinants at specific differentiation stages on their 

way to becoming neutrophils (see Gfi1, Flt3, Irf8 in Figure E10D,E). Early accumulation 

of these factors is correlated with increased differentiation rate but eventually a single 

programme takes over and accelerates the differentiation even further. Thus, the continuous 

model unlocks access to full single cell transcriptome data, and thus enables integrated 

analysis of cellular and molecular dynamics, revealing new mechanistic insights into cell 

behavior during differentiation.

HSPC models simulate cell journeys in real-time consistent with basic properties of 
hematopoiesis

Mathematical models combined with our new datasets offer unique prediction capabilities 

allowing us to unravel fundamental facets of hematopoiesis. Specifically, we focused on 

computing cell journeys in real-time and consequences of cluster ablation. Firstly, we 

estimate the ‘average journey times’ with the discrete model. We placed a single cell in 

cluster 0 and computed the average time required to accumulate one cell for each target 

cluster. The required time depends on the specific influx/efflux and proliferation rates, 

including the loss of cells out of the terminal populations (via differentiation/death). Highly 

transient populations can therefore take longer to be populated stably. As shown in Figures 

3F and S6H, average journey time widely varies between terminals states of different 

lineages (Supplementary Table S3). For instance, accumulating a cell in Meg progenitors 

(cluster 7) requires 27 days, neutrophil progenitors (cluster 10) or late erythroid progenitors 

(cluster 11) >80 days and finally producing pDCs takes about 150 days. Secondly, we 

predict what would happen if, under normal conditions, the self-renewing cluster 0 was 

ablated. As expected, without cluster 0 input, downstream cluster sizes would gradually 

decline over time (Figure 3G), due to limited self-renewal of intermediate progenitors. 

As we described above, progenitor self-renewal is lineage-specific, hence corresponding 

clusters wane at different rates, with megakaryocyte progenitors depleted to 50% after 2-3 

days, whereas lymphoid progenitors are maintained for >50 days. Of note, the substantial 

effect of the depletion in some compartments is due to the fact that we are simulating 

ablation of all cells in cluster 0, which includes progenitors immediately downstream of 

HSCs. For comparison, we also simulated the effect of the depletion of just cluster 0a and 

ascertained that the effect on the downstream populations is barely noticeable (Figure E7B).

Predictions revealed by our model agree with the order of lineage emergence inferred from 

transplantation11,29,40–42 or cell culture11,40 experiments. The time-frame of the process is 

expectedly much longer but is compatible with previous studies of HSPC dynamics in vivo3. 

Our approach is therefore anchored firmly in the long tradition of hematopoiesis research 

and opens the opportunity to serve as a predictive framework for in vivo experiments.

Integrative model is predictive and resolves the effects of transplantation on HSPC 
dynamics

Our models serve as a reference framework for near-native hematopoiesis, capable of 

transferring information across experiments and systems. To prove predictive capabilities 

of our models, we utilised data from an independent study (Upadhaya et al.43). In this 

setting, HSCs and their descendants were labelled using the Pdzk1ip1-CreER;tdTomato 

Kucinski et al. Page 10

Cell Stem Cell. Author manuscript; available in PMC 2024 February 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



system (analogous to Hoxb5-Tom but using a different HSC-specific driver) and analysed 

after 3, 7 and 14 days. Upadhaya et al.43 profiled cells by scRNA-Seq, thus we were able to 

integrate them into our HSPC landscape (Supplementary Table S6). As the limited number 

of replicates and cells was not sufficient for building a standalone model, we used the Hoxb5 

model parameters to predict expected cell abundances using the day 3 time-point as initial 

condition and compared the predictions with the observed data. As shown in Figures S7A 

and E12, both the discrete model and continuous models faithfully predict the evolution 

of the system over time for the majority of the large clusters and trajectories. Curiously, 

our model indicates faster differentiation towards megakaryocytes (see clusters 7 and 8) at 

the expense of erythroid (clusters 9 and 1). We noted that Upadhaya et al.43 used a milder 

tamoxifen treatment than our study, hence consulted the Hoxb5 bi-phasic model (Figure 

S6E) for potential explanation. Reassuringly, the bi-phasic parameters show that shortly after 

our tamoxifen treatment megakaryocytic differentiation occurs faster while erythroid slower, 

thus suggesting that the discrepancy is associated with the difference in tamoxifen dosage. 

Thus, our model, with some uncertainty, is able to quantitatively predict dynamics of adult 

in vivo hematopoiesis. Furthermore, our approach paves the way for future studies, which, 

avoiding the transient tamoxifen effect, will provide even more accurate models.

We next employed the same approach to predict multi-lineage differentiation trajectories 

in vitro (Figures E13) using previously published data11. We found that almost all clusters 

and trajectories accumulate differentiating cells much faster in vitro than in vivo, though 

interestingly megakaryocytic differentiation occurs at roughly the same speed as in vivo.

To demonstrate how our model can be used to generate new insights, we analyzed a 

previous study44, which used scRNA-Seq to track the progeny of highly-purified HSCs 

in transplanted animals over time (Figure 5A). After integrating the scRNA-Seq profiles 

into our reference landscape (Figure 5B-F), we derived cell frequencies per cluster at 

day 3, and used the discrete model to predict the cell abundance expected under non-

transplantation conditions (Figures 5G and S7B). While some general features match 

normal hematopoiesis, for instance megakaryocyte progenitors being the first emerging 

lineage, cells under transplantation conditions differentiate much faster in most directions, 

particularly towards the neutrophil fate (Figure 5G, cluster 10). The erythroid lineage 

behaves differently; while early megakaryocyte and erythrocyte differentiation is accelerated 

upon transplantation (Figure 5G, cluster 8), late erythroid progenitor cell emergence is 

delayed, compared to the steady-state counterparts (Figure 5G, cluster 11). To go beyond 

qualitative interpretation, we performed combinatorial model re-fit of the transplantation 

data to pinpoint the changes in differentiation rates and proliferation rates in each cluster/

transition most likely to be responsible for altered transplantation landscape dynamics 

(Figure E14A). This procedure highlighted stage and lineage-specific effects. For instance 

the erythroid lineage differentiates around 10 times faster between clusters 1 and 9, while 

myeloid progenitor cluster 2 exhibits 2-fold higher net proliferation and 7-fold faster 

differentiation towards neutrophil progenitors and 3-fold higher towards monocyte/DC 

progenitor (Figure E14B). In conclusion, we demonstrated that our model can be easily 

applied to other datasets, and provide quantitative predictions and interpretation, which 

would not be available from static measurements alone.
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Discussion

Quantitative models describing cell differentiation (e.g. Waddington landscape) were 

conceptualized decades ago45. However, the generation of dynamic and quantitative 

abstractions of native haematopoiesis has been hampered by lack of suitable experimental 

approaches, particularly in terms of getting down to single cell resolution. Here, we report 

a major effort, combining persistent HSC labelling, time-series scRNA-Seq analyses and 

mathematical modelling to build a predictive model of in vivo hematopoiesis dynamics. 

Analogously to the moving images in a kinetoscope, our approach employs multiple high-

resolution snapshots of differentiation to reconstruct the real-time cellular flow between 

single-cell states within the BM multilineage hematopoiesis. Our model describes cell 

behavior with self-renewal and differentiation rates, which intuitively can be represented as 

the shape of a Waddington-like landscape (Figure 6). Using this analogy, the discrete model 

is a set of fixed platforms connected with slides, whereas the continuous model follows the 

curvature for all observed states (here: single cells). Differentiation rate indicates the slope 

between two states, with steeper slopes indicating faster transition. In turn, stable states, the 

flat areas, have little or no downward slope and combined with proliferation, constitute areas 

of high self-renewal (Figure 1G).

Differentiation rate and cell fate are naturally connected, but, crucially, exist in specific 

experimental contexts. CMPs have been originally proposed as a multipotent population 

with combined erythroid, megakaryocytic, neutrophilic and monocytic potential46. 

However, later studies reported that most CMPs are transcriptionally and epigenetically 

primed towards specific lineages4, exhibit lineage bias and are primarily unipotent5 in 

transplantation cell fate assays. Importantly, transplantation, as we show in this work, is 

associated with greatly increased differentiation rates, most likely due to high proliferative 

demand, as other means of ablating cells, like 5-FU treatment also causes accelerated 

differentiation3. Furthermore, in vitro assays, performed under cytokine-rich conditions 

driving rapid differentiation, CMPs also rarely show combined megakaryocyte, erythroid, 

granulocyte and monocyte output11,46. However, if the differentiation is slowed down and 

cells given the opportunity to expand (for approx. 3 divisions) under cytokine-restricted 

conditions (SCF, IL-11, TPO only), >50% CMP clones generate multipotent output after 

switching to a cytokine-rich secondary culture46. Similarly, LMPPs have been described as 

largely unipotent cells in transplantation assays47 but in fact can produce multipotent output 

in two-phase culture assays analogous to the CMPs48, ie. given the opportunity to grow first 

under slower differentiation conditions. Our model, describing the physiologically-relevant 

slow differentiation system close to native conditions, suggests that intermediate clusters 

8, 4, 5, which largely overlap with CMPs, are able to slowly transition among each other. 

In particular, cells can shift from 8 to 4 between the transient megakaryocyte/erythroid-

biased cluster 8 and the long-lived myeloid-biased cluster 4, but potential bidirectional 

transitions are also permitted by our model (while transition 4 to 8 best fit value is small 

the upper bound is considerable). This prediction is consistent with cell fates estimated 

from the static data (using cellrank), where only a small subset of cells is assigned to a 

single lineage (e.g. ~5% to neutrophil fate), whereas within more mature cluster 2 60% 

of cells are predicted the become neutrophils (Figure E14C). Thus a subset of CMP cells 
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are balanced and behave as multipotent progenitor states. This is also consistent with the 

in vivo observation of progenitors with combined myeloid and megakaryocytic/erythroid 

outputs13,19,49. Importantly, we find that transitions between clusters 4 and 8 are slow, 

thus under strong differentiation conditions (e.g. transplantation or differentiation-promoting 

media), progenitor cells simply do not have time to ‘explore’ the multipotent states but 

instead roll down to a committed state and thus generate only a limited number of lineages. 

Moreover, if a primitive progenitor cell does not divide before being channeled down a 

particular lineage, alternative fates can never be realized (as illustrated in Figure E14D).

While tamoxifen has broadly been used to activate CRE in multiple studies3,22,50,51, we 

found that hematopoiesis upon tamoxifen treatment perturbs the steady-state in the short 

term (i.e. first two weeks). Indeed, we observed changes in cluster sizes and differentiation 

rates associated with tamoxifen treatment, which we teased apart using a bi-phasic model 

(Figure S6B-E). Development of tamoxifen-independent models will help avoid such 

confounding effects. In the long-term, as mice age, we observed only modest differences of 

most cluster sizes but observed striking differences in cluster 0 composition. While further 

work will be required to better resolve the HSC sub-populations (in cluster 0) and their 

age-related dynamics, we consider the tentative sub-structure provided here as a critical first 

step in this endeavor, as it fits both our data and experimental evidence of HSC behavior in 

aging mice3,22,26,29.

We fully leverage the scRNA-Seq approach to extend our model’s applicability. To ensure 

broad accessibility and interpretability, we integrated published annotation from multiple 

sources.7,11,18 This places our unified landscape (and its sub-populations) in the biological 

context of previous immunophenotyping and lineage tracing experiments. Moreover, 

static cell properties (cluster, pseudotime) and model parameters (differentiation rates, 

self-renewal) are transferable. Crucially, new scRNA-Seq data can be readily incorporated 

into our landscape and our model is capable of predicting differentiation outcomes for 

chosen time-points given initial conditions, as we demonstrated using an independent time-

course data43. Finally, our model can be used to simulate putative explanations for changes 

in cell abundance, e.g. between healthy and disease tissues, even if only few snapshot 

measurements are available. We showcased this capability by shedding new light on 

changes cell dynamics after HSC transplantation, which displays stage and lineage-specific 

acceleration of differentiation in the erythroid and neutrophilic/monocytic-DC lineages (see 

transitions 1-9 and 2-3/2-6 respectively).

Differentiation and growth involve coordinated up- and down-regulation of thousands 

of genes, where it remains unknown for the vast majority of those genes whether 

and if so, how, they play a role in controlling cell behavior. To access the relevant 

molecular states with high precision, we introduce the continuous model of near-native 

hematopoiesis, which includes per-cell growth and differentiation rates, thus providing a 

direct comparison between cellular behavior and underlying gene expression. We observed 

complex, sequential gene expression patterns, some of which overlap with increasing 

differentiation rates, implying irreversible molecular changes. For example, we show that 

neutrophil differentiation is coupled with expression of multiple lineage determinants (Irf8, 
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Flt3, Pou2f2, Gfi1) followed by a single programme taking over and a further increase in 

differentiation.

The current and predominant view of haematopoiesis has been constructed through 

the identification of progenitor populations by FACS and definition of their potential 

by transplantation1. This approach not only lacks resolution, but more importantly, 

transplantation defines potential in a non-homeostatic assay and therefore does not reveal 

the actual contribution of any given population to steady-state haematopoiesis. The 

revolution of single cell transcriptomics has provided evidence for additional progenitor 

populations4,6,7,19, but so far had been severely limited by having to place those putative 

populations on a static transplantation-defined map of hematopoiesis. Here we have 

overcome all these shortcomings by observing near-native haematopoiesis in situ and over 

time.

The combination of lineage tracing with a single cell transcriptomics chase delivered a truly 

quantitative and dynamic model of hematopoiesis including previously unknown dynamic 

relationships between precisely defined stem and progenitor cells. The model also reveals 

fundamental quantitative system properties from cell trajectories, cell division rates, and 

number of cell divisions to individual lineage-specific differentiation rates.

Unshackling the field from the static transplantation-defined view of haematopoiesis shifts 

the paradigm from qualitative models with limited predictive capabilities to integrative, 

quantitative and predictive models. The latter are highly transferable and thus key to 

providing insight into human hematopoiesis, where experimental options are limited. As 

recently demonstrated scRNA-Seq can be integrated across species52–54 thus potentially 

enable mapping HSPC dynamics onto human counterparts. Self-renewal and differentiation 

capacities are particularly relevant to leukemia research, because they are the precise cellular 

behaviors whose dysregulation causes the malignant phenotype. As we show here and 

supported by previous studies3,20, progenitors can also operate close to self-renewal and 

a small proliferative advantage may be sufficient to immortalize them. Finally, population 

dynamic models are universally applicable across biological fields, as adult tissues are 

commonly replenished from their own stem cell pools55. To inspire such future endeavors, 

we showcase how to build a model connecting high-resolution molecular information with 

tissue-scale cell behavior.

Limitations of the Study

Despite vastly improved resolution over immunophenotyping, scRNA-Seq does not capture 

cellular states in full. Additional variables such as chromatin state or protein levels 

also affect cell behavior and may manifest in unappreciated heterogeneity and dynamic 

properties. These characteristics may be heritable in which case they may be tractable 

with lineage tracing approaches. In addition, the discrete model relies on hard clustering, 

which averages any finer cell heterogeneity. While most of the early cell fate decisions will 

occur within the landscape presented in this work, with increased throughput a BM-wide 

landscape could be generated, thus providing better insight into the entire lymphoid and 

myeloid differentiation trajectories.
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STAR Methods

Lead contact

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the lead contact, Berthold Göttgens (bg200@cam.ac.uk)

Materials availability

Plasmids and mouse lines generated in this work are available upon request.

Method details

Hoxb5CreERT2 and Hoxb5mKO2 mouse lines

The Hoxb5CreERT2 and Hoxb5mKO2 alleles were generated using CRISPR-Cas9 gene editing 

technology employing fertilized 1-cell zygotes on the B6CBAF1/Crl genetic background. 

For the Hoxb5CreERT2 allele, we injected a single 15 ng/ul sgRNA (tcctccggatgggctca)15 

together with 25 ng/ul CAS9 mRNA and 17.5 ng/ul single strand donor DNA encoding 

the P2A-CRE-ERT2 protein flanked by 70 nucleotides of homology arms (Supplementary 

Table S7). For the Hoxb5mKO2 allele, we used the same concentrations of sgRNA 

(tcctccggatgggctca), CAS9 mRNA and single strand donor DNA encoding the mKO2-P2A-

mKO2-CAAX (Supplementary Table S7). The F0 offspring was screened by PCR and 

Sanger sequencing. The Hoxb5CreERT2 and Hoxb5mKO2 lines were established from one 

founder animals, respectively, and back-crossed several times to the C57BL/6N genetic 

background. Mice were genotyped by PCR using primers detailed in Supplementary Table 

S7.

Transplantation assays and hematopoietic reconstitution analysis

Primary and secondary transplanted recipient mice (CD45.1+/CD45.2+) were lethally 

irradiated with a split dose of 8 Gy (two doses of 4 Gy administered at least 4 hours 

apart). For primary transplantations, mice were tail-vein injected with 200 Hoxb5+ or 

Hoxb5- HSCs (LSK CD48−CD150+) sorted from Hoxb5-mKO2 animals, together with 

2x105 support CD45.1+ unfractionated BM cells. For secondary transplantations, 3 000 

CD45.2+ LSK cells sorted from BM of primary recipients were mixed with 2x105 support 

CD45.1+ unfractionated BM cells and re-transplanted. Peripheral blood of all recipient mice 

was analyzed up to 21 weeks after primary and secondary transplantations. Leukocytes and 

HSCs (LSK CD48−CD150+) were stained as described below for flow cytometry analysis 

of PB and BM, except cells were also incubated with CD45.1-BV605 (Biolegend 110738) 

and CD45.2-PercP (Biolegend 109826) antibodies. For each mouse, the percentage of donor 

chimerism in the analyzed cell compartment was defined as the percentage of CD45.1−/

CD45.2+ cells among total CD45.1−/CD45.2+ and CD45.1+/CD45.2- cells, after exclusion of 

recipient fraction (CD45.1+/CD45.2+).

Induction of reporter gene expression by tamoxifen

Tamoxifen (1g) was dissolved in 10 mL absolute ethanol and 90 mL corn oil at 37ºC. 

Aliquots of tamoxifen (10 mg/mL) were stored at -20 ºC. 8-12 weeks Hoxb5CreERT2; 

tdTomato mice were injected intraperitoneally (i.p.) with tamoxifen at 100 mg/kg body 
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weight for 7 days. As controls for subsequent lineage tracing experiments, mice with 

same genotype were injected with equivalent volume of corn oil to determine whether any 

labelling was present in the absence of induction. Hoxb5WT; tdTomato mice treated with 

tamoxifen were also analysed to confirm no background or tamoxifen-induced changes.

Flow cytometry

At end point analyses, the fraction of mKO2+ and Tom+ cells was determined in various 

hematopoietic compartments of BM, PB, spleens, thymi and lymph nodes. Cells from those 

tissues were prepared and analyzed as described previously56,57.

For HSC and progenitor cell analyses, unfractionated BM cells were incubated with 

Fc block, followed by biotin-conjugated anti-lineage marker antibodies (CD4, CD5, 

CD11b, B220, CD8a, Gr1 and Ter119, cKit-BV711, Sca1-APC/Cy7, CD48-APC and 

CD150-PE/Cy7 antibodies. Biotin-conjugated antibodies were then stained with Pacific 

blue-conjugated streptavidin. DAPI was used for dead cell exclusion.

For staining of megakaryocyte and erythroid progenitors, unfractionated BM cells were 

incubated with antibodies against lineage markers as described above, except Ter119 

antibody was replaced by biotin-conjugated anti-CD19. Cells were stained together with 

cKit-BV711, Sca1-PB, CD150-PE/Cy7, CD16/32-APC/Cy7, CD41-BV605, CD105-APC 

and Ter119-FITC antibodies. Biotin-conjugated antibodies were then stained with PerCP-

conjugated streptavidin.

For analyses of differentiated cells in the BM, cell suspensions were stained with B220-APC 

and CD19-APC/Cy7 antibodies for B cells, CD11b-PB and Gr1-PE/Cy7 for myeloid cells 

and Ter119-FITC for erythroid cells.

PB samples were collected from tail vein into EDTA-coated capillary tubes (Sarstedt). 1-2µL 

of unfraction-ated PB were used for analysis of erythrocytes, mixed with 10uL of platelet 

solution. Platelets were separated by centrifugation of PB samples at 100g for 10 min 

at room temperature. Platelets were identified as Ter119-PE/Cy5−CD150-PE/Cy7+CD41-

BV605+, and Ter119-PeCy5+ cells were erythrocytes.

For analyses of leukocytes in PB, spleen and lymph node, myeloid cells were stained as 

above for BM cells, T cells with CD8a-APC and CD4-APC antibodies, and CD19-APC/Cy7 

antibodies were used to detect B cells.

Cell suspensions from thymus were incubated with the biotin-conjugated anti-lineage 

marker antibodies described above together with CD4-APC, CD8b-APC/Cy7, CD25-PB 

and CD44-PE/Cy7 antibodies. Biotin-conjugated antibodies were then stained with PerCP-

conjugated streptavidin.

Flow cytometry data were acquired by LSRFortessa (BD) and analysed with FlowJo 

software (TreeStar, v10).
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Cell isolation for the scRNA-Seq experiments

Hoxb5-Tom experiments—All steps in this section (unless otherwise indicated) were 

performed on ice, and centrifugation steps performed at 300g, 4°C for 5 min. 8-12 weeks old 

mice carrying the Hoxb5-Cre and the Rosa26-LoxP-STOP-LoxP-tdTomato constructs were 

treated with 7 daily injections of tamoxifen (as described above) and sacrificed at indicated 

time-points. BM cells were extracted from ilia, tibiae and femora by grinding with mortar 

and pestle in PBS supplemented with 2% Fetal Bovine Serum (cell buffer). The suspension 

was filtered through a 50µm filter, centrifuged and resuspended in 3 ml of cell buffer. Red 

blood cells were removed using the ammonium chloride solution: 5 ml of 0.8% Ammonium 

Chloride was added to the suspension and incubated for 10 min with intermittent mixing. 

Afterwards cells were diluted with 7 ml of cell buffer, centrifuged and resuspended in 1 

ml of cell buffer. Subsequently, lineage depletion was performed as follows: added 20 µl of 

the EasySep mouse hematopoietic progenitor cell isolation cocktail, incubated for 15 min, 

added 30 µl magnetic particles, incubated for 10 min, added 1.5 ml of cell buffer and placed 

tubes in a magnet, incubated for 3 min at room temperature and eluted cells twice (with 

additional 2.5 ml of cell buffer). Afterwards, cells were centrifuged, resuspended in 200 µl 

of cell buffer and stained with the antibody panel as follows: antibody mix was added, cells 

were incubated for 30 min, washed with 2 ml of cell buffer, centrifuged, resuspended in 200 

µl cell buffer. For the secondary staining Streptavidin-BV510 was added, cells were washed 

with 2 ml of cell buffer, centrifuged, and resuspended in 1000 µl of cell buffer supplemented 

with 7AAD. Afterwards cells were sorted with BD influx sorter into either 96 well plates 

containing 2.3 µl lysis buffer (for the Smart-Seq2 protocol) or 100 µl of PBS with 0.04% 

BSA in eppendorf tubes (‘droplet buffer’) when used for the 10x Genomics scRNA-Seq 

protocol. The Smart-Seq2 plates were vortexed, centrifuged at 800g for 2 min and stored at 

-80°C.

Both Tom+ or Tom- cells within the Lin- (cKit OR Sca1)+ gate were sorted. (cKit OR Sca1)+ 

is a superset of the cKit+ gate used previously8 which contains more lymphoid progenitors 

and pDCs.

Hoxb5-mKO2 experiments—All steps in this section (unless otherwise indicated) were 

performed on ice, and centrifugation steps performed at 500g, 4°C for 5 min. 8-12 weeks old 

mice carrying the Hoxb5-mKO2 reporter were sacrificed and cells were isolated from bone 

marrow (femurs and tibia) by grinding with mortar and pestle in PBS supplemented with 

2% Fetal Bovine Serum (cell buffer). Cells were stained as described under Flow cytometry 

section for analysis of HSPCs. Cell suspension was filtered as above and sorted with BD 

influx sorter into 96-well plates containing 2.3 µl lysis buffer (for the Smart-Seq2 protocol). 

The Smart-Seq2 plates were vortexed, centrifuged at 800g for 2 min and stored at -80°C. 

The isolated populations were Lin-, Sca1+, cKit+, CD48-, CD150- (MPPs) and Lin, Sca1+, 

cKit+, CD48-, CD150+ (HSCs).

scRNA-seq data generation

Smart-Seq2—When cell numbers were limiting single cells were profiled with a modified 

version of the Smart-Seq2 protocol58,59 rather than 10x Genomics kit. Single cells were 

sorted into 96-well plates with 2.3 µl lysis buffer containing 0.115 µl of SUPERase-In 
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RNase Inhibitor at 20 U/µl concentration and 0.23 µl of 10% Triton X-100 solution, plates 

were vortexed and stored at -80°C. After thawing 2 µl of the annealing solution (0.1 µl 

of ERCC RNA Spike-In solution (1:300,000 dilution), 0.02 µl of the oligo-dT primer (100 

µM stock concentration) and 1 µl of dNTP (10 mM stock concentration)) was added. The 

plate was incubated at 72°C for 3 min, cooled down on ice and reverse transcription was 

performed by adding 5.7 µl of RT buffer (0.1 µl of Maxima H minus reverse transcriptase at 

200 U/µl concentration, 0.25 µl of SUPERase-In RNAse Inhibitor at 20 U/µl concentration, 

2 µl of the Maxima enzyme buffer, 0.2 µl of TSO oligo at 100 µM concentration, 1.875 µl of 

PEG 8000 solution at 40% v/v concentration and 1.275 µl water) and incubation at 42°C for 

90 min followed by incubation at 70°C for 15 min. Immediately after, cDNA was amplified 

by PCR by adding 1 µl of the Terra PCR Direct Polymerase (1.25 U/µl), 25 µl of the Terra 

PCR Direct buffer and 1 µl of the ISPCR primer (10 µM stock concentration) to a total 

volume of 50 µl using the following PCR conditions: 98°C for 3 min, 98°C for 15 s, 65°C 

for 30 s, 68°C for 4 min (21 cycles), 72°C for 10 min. The amplified cDNA was purified 

using AMPure XP beads, quantified using the PicoGreen assay (ThermoFischer P7589) and 

used for Nextera library preparation. The libraries were generated using either a standard 

protocol (batch 7d and mKO2 data) or modified protocol (batches 3d7d, 2w4w and 3dr2, 

see the corresponding metadata) described below. No obvious batch effects were observed 

among cells analyzed with either of the protocols.

The standard Nextera protocol: cDNA was diluted to approximately 50-150 pg/µl and 1.25 

µl of the solution was used, 2.5 µl of Tagment DNA buffer 1.25 µl of Amplicon Tagment 

Mix (Nextera XT kit) were added, samples were incubated at 55°C for 10 min, and the 

reaction was stopped by addition of 1.25 µl of NT buffer. Tagmentation products were 

amplified by PCR by adding 1.25 µl of each N and S primers and 3.75 µl of NPM solution 

and using the following thermocycler settings: 72°C 3 min, 95°C 30 s, 12 cycles of 95°C 

30s, 55°C 30s, 72°C 60s and a final extension at 72°C for 5 min.

The modified Nextera protocol follows the same principle as the standard Nextera protocol 

and includes the following steps: cDNA was diluted to approximately 50-150 pg/µl and 1.03 

µl of the solution was used, 1.63 µl of Tagment DNA buffer and 0.6 µl Amplicon Tagment 

Mix was added, samples were incubated at 55°C for 10 min, the reaction was stopped by 

adding 0.82 µl of NT buffer. Tagmentation products were amplified by adding 1.23 µl of 

each N and S primers (as above but diluted 5 times), 2.3 µl of Phusion HF buffer, 0.1 µl of 

dNTP (25 mM stock concentration), 0.07 µl of Phusion polymerase and 2.5 µl of water and 

using the following thermocycler settings: 72°C 3 min, 98°C 3 min s, 12 cycles of 98°C 10s, 

55°C 30s, 72°C 30s and a final extension at 72°C for 5 min.

Libraries were sequenced using the Illumina Hiseq4000 or NovaSeq instruments, obtaining 

an average of 1, 271,307 reads per cell.

10X genomics—For the 10x Genomics scRNA-Seq protocol up to 20,000 cells were 

pooled in pairs corresponding to male and female animals, centrifuged and resuspended 

in a volume of droplet buffer optimal for recovery of up to 10,000 cells and immediately 

processed with the 10x Genomics Single Cell 3’ v3 protocol following the manufacturer’s 

instructions.
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Libraries were sequenced using the Illumina NovaSeq instrument, obtaining at least 20,000 

reads per cell in each run (33,843 reads per cell total average).

Quantification and statistical analysis

scRNA-Seq data analysis—Smart-Seq2 sequencing reads were aligned to the mouse 

genome (mm10) using the STAR aligner (version 2.7.3a) with default parameters. Reads 

mapping to exons were counted with featureCounts (version 2.0.0) using the ENSEMBL 

v93 annotation. Each cell was subjected to a quality control, cells with: <100,000 reads, 

<23% of reads mapped to exons, >8.5% of reads mapped to ERCC transcripts, >10% 

mitochondrial reads or <2000 genes detected above 10 counts per million were discarded. 

1288 out of 1533 cells passed quality control. Data were normalized 10,000 total counts and 

ln(n+1) transformed.

10x genomics reads were pre-processed using cellranger (version 3.1.0, reference genome 

and annotation version 3.0.0) with default settings. Downstream analysis was performed 

mainly using the scanpy60 framework with additional packages where indicated. Low 

quality barcodes with less than 1000 genes were excluded from the analysis, doublet scores 

were estimated using the scrublet tool (using 30 principal components), potential doublets 

were removed. Male and female cells were distinguished based on the expression of the Xist 

gene and Y chromosome genes. Cells with detectable Xist expression and undetectable Y 

chromosome gene expression were classified as female and vice versa, ambiguous cells or 

potential doublets were excluded. Data were normalised to 10,000 total counts and ln(n+1) 

transformed.

To determine highly variable genes, scanpy’s highly_variable_genes function was used to 

select top 5000 genes within the 10x genomics data. From the list of highly variable genes, 

genes associated with cell cycle, Y-chromosome genes and the Xist were excluded. Genes 

associated with cell cycle were a union of cell-cycle genes from8 and genes with at least 0.1 

Pearson correlation with the following gene set: Ube2c, Hmgb2, Hmgn2, Tuba1b, Ccnb1, 

Tubb5, Top2a, Tubb4b, following previously established method11. Putative cell cycle phase 

was assigned using scanpy’s ‘score genes cell cycle’ function to assign putative cell cycle 

phase to both 10x and Smart-Seq2 cells. Following that, 10x and Smart-Seq2 data were 

combined and subjected to Seurat CCA batch correction61. Among a variety of batch 

correction tools (Harmony62, Scanorama63, BBKNN64, fastMNN65, MNNcorrect) only 

Seurat CCA generated seamless integration best matching the cell frequencies based on flow 

cytometry analysis. After applying batch correction, we observed no obvious segregation 

of Smart-Seq2 and 10x scRNA-Seq profiles (Figure S2E). Corrected log-normalized counts 

were scaled and used to compute 50 principal components, find nearest neighbors and 

calculate a UMAP projection66. A minor batch effect between 10x samples was corrected 

using Harmony batch correction tool62. The corrected principal components were used 

to calculate 12 neighbors followed by cell clustering using the leiden algorithm67 and 

calculation of the UMAP projection. Clusters were manually annotated based on the marker 

gene expression as described in Supplementary table S1. To reduce the complexity for the 

discrete model clusters with the following criteria were excluded from the further analysis: 

clusters that appeared disjointed from the main landscape body, represented low-quality/
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dying cells or with unclear origins based on the UMAP projection and PAGA analysis. This 

included: T cells, innate lymphoid cells (ILCs), cells with high mitochondrial gene counts, 

mature B cells, interferon-activated cells, cells with high complement expression and small 

clusters with unclear annotation, likely to represent doublet cells. Unfiltered landscape is 

displayed in Figure S2G.

To visualize the relative proportions of cells per cluster over time (Figure S4A), we averaged 

fractions of Tom+ cells in each cluster for each time-point and divided by the respective 

values for matching Tom- cells.

mKO2 cells analysis—Smart-Seq2 sequencing reads were aligned to the mouse genome 

(mm10) using the STAR aligner (version 2.7.3a) with default parameters. Reads mapping to 

exons were counted with featureCounts (version 2.0.0) using the ENSEMBL v93 annotation. 

Cells with: <100,000 reads, <10% of reads mapped to exons, >10% of reads mapped 

to ERCC transcripts, >10% mitochondrial reads. 374 out of 384 cells passed quality 

control. Counts were normalized using the scran package in R and ln(n+1) transformed. 

Log-normalized counts were used to generate the corresponding violin plots, compute HSC-

scores16 and the projections on the7 landscape. Particularly, the projections were performed 

within the scanpy module: log-normalized counts of the mKO2 experiment and of the 

published datasets were combined, subsetted to highly variable genes, and scaled. 50 PCs 

were then computed and corrected with the mnn_correct package65. Adjacency scores were 

determined based on the fraction of cells in the reference landscape that are neighbours of 

the cells to be projected according to the euclidean metric (method adapted from Dahlin et 

al.8).

Subclustering of cluster 0—To verify whether the HSC tip population has a constant 

labelling frequency, we subset cluster 0 from our landscape. We then focussed on 10x data 

only, to avoid artefacts deriving from the integration of different data types when it comes 

to very high detail. We then subclustered cluster 0 cells with higher resolution (1.3) of the 

Leiden algorithm. Among these subclusters, we identified the subcluster that has the highest 

HSC score16 as the putative cluster 0a.

Embedding external datasets into the integrated HSPC landscape—For each 

external datasets the log-normalised counts for cells passing quality control were used as 

in the original work. Annotation was either obtained from the respective GEO repositories, 

literature or kindly provided by the authors.

Each dataset was integrated with the HSPC landscape (below denoted as reference) using 

the indicated batch correction tools and the Cellproject package as follows. Log-normalized 

counts for7 were concatenated with the reference and batch effect was removed using 

Seurat CCA method61 only highly-variable genes selected in the reference landscape were 

used. The corrected values were scaled and used to compute PCA (50 components) in 

the reference dataset. The correct values of Nestorowa et al.7 dataset were fit into the 

reference PCA space, in which 15 nearest neighbors were identified between the datasets. 

These nearest neighbors were used for two purposes: (1) transfer the cluster identity to 

the new data (based on the most frequent label) and (2) to predict coordinates in the 
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original reference PCA space (used as a basis for UMAP projection) using nearest-neighbor 

regression. Finally, the new PCA coordinates were used to embed the new data into UMAP 

space. As immunophenotypic populations we used the ‘narrow’ classification provided in 

the original study.

Bowling et al.18 data was concatenated with the reference and a common PCA space 

was calculated, which was subsequently corrected with the Harmony batch correction tool. 

Within the corrected space 8 nearest neighbors were identified across the datasets, followed 

by label transfer and UMAP embedding as described above.

Weinreb et al.11 and Upadhaya et al.43 data were integrated analogously to the Nestorowa 

et al.7 data. For Figure 2F, S3C only ‘state-fate’ clones were used, ie. cells captured at an 

early time-point (day2) with measured fate outcomes at later time-points. Only fates with 

more than 7 cells were considered for the analysis. To enable model predictions (Figures S7, 

E12-14) all cells and time-point were integrated using the same method.

Trajectory inference and selection—To pinpoint the most immature stem cells the 

HSC score was calculated (default parameters)16 and denoised by averaging values over the 

nearest neighbors for each cell. As diffusion pseudotime the cell with the highest smoothed 

HSC score was selected, diffusion map was calculated and served as the basis for trajectory 

inference and continuous populations models described below.

To infer putative trajectories Tom+ cells were used (matching the Pseudodynamics analysis 

below) for calculating cell transition probabilities using the Pseudotime Kernel method 

(based on the Palantir tool32) from the CellRank package31. To define the end states clusters 

6, 7, 10, 11, 13, 14, 15, 16, 17, 18, 19 were selected and within them 50 cells with the 

highest pseudotime values. These states are largely consistent with an unsupervised method 

of macrostate selection Generalized Perron Cluster Analysis with Schur decomposition31. 

To assign cell fate probabilities Cellrank’s compute_absorption_probabilities function was 

used.

Cells belonging to trajectories for the continuous models were selected as follows. In case 

of megakaryocytic trajectory cells belonging to cluster 0, 7 and 8 and with the respective 

fate probability >0.3 were chosen. For the erythroid trajectory cells with respective fate 

probability <0.2 and falling within the pseudotime range 0.015 and 0.294 (to exclude 

variable small number at the end of the trajectory) were used. Neutrophil and monocyte 

share a long stretch of progenitors with high probabilities towards both lineages, thus 

a different approach was used, motivated the apparent locations of bipotent cells with 

neutrophil and monocyte/DC potential based on cell fate assays (Figure 2F)11. Neutrophil 

progenitors (terminal state 10) were selected with fate probability >0.24 and Mono/DC 

probability <0.38 and excluding a small number of cells falling into clusters 12, 17 and 

14. Conversely for the Mono/DC progenitors (terminal state 6) cells were selected with 

Mono/DC fate probability >0.18 and neutrophil probability <0.49 and a small number of 

cells falling into clusters 12, 17 and 14 was excluded.
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Discrete population model analysis—As input to the discrete models the estimated 

total number of Tom+ or Tom- cells per cluster was used (Supplementary Table S2). The 

numbers were estimated based on the fraction of cells assigned to each cluster adjusted by 

the total number of cells (based on the flow cytometry analysis of the entire sample). One 

out of 5 mice analyzed at day 3 exhibited abnormally high labelling frequency, the sample 

was excluded to avoid introducing bias but we provide the corresponding data within the 

GEO submission files and source code for individual assessment.

To assess the kinetics of differentiation and growth of the different hematopoietic 

populations, we first considered a discrete compartments model, using the HSPC landscape 

clusters as compartments. To establish the available differentiation pathway, PAGA 

connections and pseudotime ordering were considered. We used a relaxed lenient PAGA 

connectivity threshold of 0.05 preserving the majority of connections between ‘adjacent’ 

clusters, consistent with the hematopoiesis models9,11,13,19. The relaxed PAGA connectivity 

threshold of 0.05 This reduced the number of model parameters and prohibted ‘jumps’ 

between distant states (e.g. from HSC to neutrophil progenitor directly), in line with 

the common assumptions of trajectory inference methods. Beyond identifying putative 

transitions the connectivity weights do not feed into our dynamics models. Furthermore, no 

back differentiation (ie. against pseudotime ordering) was permitted into cluster 0 and from 

most differentiated clusters with clear expression of commitment genes: 1, 3, 6, 7, 9, 10, 11, 

12, 13, 14, 15, 16, 17, 18, 19. Other transitions above-threshold were considered potentially 

bidirectional. Each compartment is assigned a growth rate and as many differentiation rates 

as the number of its progeny compartments. Assuming the following:

• the label is neutral and stably propagated

• the kinetics parameters of each cluster are constant over time and independent of 

the size of any cluster

• the labeled and unlabeled cells have identical kinetics,

Population dynamics can be modelled as an ODE system of coupled equations:

ẋi t = βi − ∑
j = 1

nc
αi, j xi t + ∑

j = 1

nc
αi, j xj t

where xi(t) is the number of cells in population i, αj,i is the differentiation rate from 

compartment j to i, and βi the growth rate of population i. For the terminal and initial 

clusters, the equations take form respectively:

ẋi t = βi xi t + ∑
j = 1

nc
αj, i xj t

ẋ0 t = β0 − ∑
j = 1

nc
α0, j x0 t

Please note that differentiation rates are set to zero if they have not passed the thresholding 

criteria as explained above. The differentiation rates were allowed to vary between 0 and 4 
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per day, with the exception of cluster 0a’s rates, which were bounded to vary between 0 and 

0.02 per day, based on previous knowledge of HSCs low activity22,41. The growth rates were 

bounded between -4 and 4 per day, to allow for death rate (negative values) or additional 

differentiation towards more mature cell states outside the presented HSPC landscape, or 

cell migration. The number of clusters, nc, is equal to 22, one per each of the 20 Leiden 

clusters, plus 2 additional subpopulations within cluster 0, the most immature cluster. The 

reason for this choice lays in 2 observed characteristics in the data: cluster 0 ratio of labelled 

to unlabeled cells (labelling frequency) grows over time, and some downstream clusters’ 

labelling frequency overshoots the one in cluster 0. Based on Barile et al.22 and Takahashi 

et al.20, this implies that the progenitor cluster must be heterogeneous. Indeed, the most 

immature HSCs occupy only the tip of cluster 0 (Figure 2C).

Particularly, we chose to add 2 more sub-compartments to allow for differentiation bias in 

the HSCs.22,41 The growth rate in the most immature subcluster 0a was fixed in such a 

way to balance the differentiation rates, given the a priori knowledge that pure functional 

haematopoietic stem cells show only limited growth over time. The proliferation estimates 

range, we chose from one division per 145 days to in 50 days3,22,26,41. We accounted for 

this upon modelling cluster 0 overall number of cells with a logistic function, and thus 

added a logistic parameter ρ and a carrying capacity K. Both parameters are positive and 

unconstrained. Specifically, we implemented the following equations for cluster 0a:

ẋ0(t) = ρ x0 1 − x0(t)/K

ẋ0a(t) = ẋ0(t) − ẋ0b(t) − ẋ0c(t),

while the time evolution of clusters 0b and 0c is analogous to that of all other clusters. Since 

we calibrated the ODE system to both the labelled and unlabeled cells time courses, we also 

included as parameters 22*2 initial conditions (corresponding to labelling frequencies and 

cluster sizes), all positive and unbounded, except for the number of cells in cluster 0a, set 

to range between 500 and 1500 based on previous HSC number estimates68 and factoring in 

cell isolation efficiency. The model allows the initial number of labelled cells to be greater 

than zero, thus accounting for any unspecific labelling.

We calibrated our model to 4 types of observables:

• The number of labeled cells in each cluster over time and relative to cluster 0 as 

computed via scRNA-Seq analysis

• The number of unlabeled cells in each cluster over time and relative to cluster 0 

as computed via scRNA-Seq analysis

• The number of labeled cells in cluster 0 over time as computed via FACS sorting 

and scRNA-Seq analysis

• The number of unlabeled cells in cluster 0 over time as computed via FACS 

sorting and scRNA-Seq analysis
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To estimate the parameters, we minimized a cost function of the squared sum of residuals. 

Each residual is weighted by the squared error, which was computed as pooled variance per 

time course. We computed the 95% confidence bounds on the parameters’ best fit with the 

profile likelihood method as in22,69. To compute error bounds on the model, we ran ≈4000 

bootstrap simulations, where data is resampled with replacement per time-point, and the cost 

function is re-minimized on the new dataset. For each simulation, a new parameter vector is 

found, and a model curve generated. 95% bootstrap confidence bounds are then determined 

cutting upper and lower 0.025 quantiles per time-point.

The bi-phasic model was generated analogously for data split into to the recovery phase 

(days 3-27) and the homeostasis phase (remaining time-points). We observe vast majority of 

changes in Tom- cell abundance within the first 12 days, thus we conservatively chose day 

27 as a boundary.

To simulate the ablation of any population, the initial condition of the unlabeled cells for the 

corresponding compartment can be set to 0. To ablate the HSCs, we simultaneously set to 0 

the initial condition of all 3 subclusters.

To compute the journey times, we generated the model in the time interval 1-300 days with 

1 day steps, assuming that cells are initially only in cluster 0 and with the unlabeled cells 

initial condition. We then computed the smallest time for which the number of cells in a 

population reaches one and dubbed that journey time.

Generalized model for testing alternative topologies—As explained in the main 

text and in the above section of the methods, our model constrains the topology based 

on the PAGA-predicted edges. In principle, though, one could test any topology, including 

backwards differentiation and unlikely connections such as HSC differentiating directly into 

a terminal compartment. We have thus implemented an additional code where the user 

can test the performance of any model upon setting to 1 the entries of a 22 X 22 table 

representing the existence of a differentiation rate from any cluster to any cluster.

Model selection for perturbed systems—To infer what parameters may change 

in non-homeostatic conditions, we developed a model selection-based method. We first 

fixed the parameters describing the challenged system to our best fit, and then allowed 

the parameters of specific populations to change. We considered 14 populations whose 

proliferation and differentiation rates may change, being 14 out of 20 the populations that 

have at least one progeny in the ‘challenge’ dataset. Out of these 14 populations, any 

subgroup may change its parameters or not, for a total of 214 = 16384 models. These models 

were all fit to the transplantation data. In order to rank these models, we employed the 

Akaike information criterion, and retained only those models that simultaneously have the 

lowest possible number of populations whose parameters change in order to fit the data and 

whose corrected Akaike index is not greater than the best ranking Akaike index plus 10.

Continuous population model analysis—In order to compute pseudotime-dependent 

kinetic rates, we relied on the pseudodynamics framework30. Briefly, the compartment 

model explained in the previous section has a one to one correspondence to the continuous 
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model if the compartment index is treated as a continuous variable, namely the diffusion 

pseudotime coordinate s, the number of cells is replaced by the cell density over pseudotime 

and real time u(s, t), and the differentiation and net proliferation rates are replaced by 

the drift v(s) and the growth rate g(s), respectively. Given these substitutions, the ODE 

system becomes a PDE system. In addition, the Pseudodynamics framework also introduced 

an extra parameter D(s) that allows for diffusion of the cells on the pseudotime axis to 

account for stochasticity in the differentiation process. The 3 kinetics parameters, drift, 

growth rate and diffusion, are modelled as natural cubic splines with 9 nodes. The nodes 

boundaries were kept as in the original publication: between 0 and 1 per day for drift and 

diffusion, and between -5 and 6 per day for the growth rate. To simplify the computation, 

we estimated such rates independently for 4 different trajectories, which avoids introducing 

parameters that describe the branching process. The trajectories were chosen based on the 

affinity to each terminal state as estimated by CellRank (see section ‘Trajectory inference 

and selection’). For each trajectory, the PDE reads:

∂u(s, t)
∂t = ∂

∂s D(s)∂u(s, t)
∂s − ∂

∂s (v(s) u(s, t)) + g(s) u(s, t)

For the boundaries, we assumed no-flux Robin conditions, as in the original publication. To 

solve the PDE, we used the non-branching pseudodynamics model as compiled in MATLAB 

2017b, with only one difference: we did not enforce differentiation to be 0 at the end of the 

trajectory which, together with the growth rates taking also negative values, accounts for the 

fact that the populations in our landscape are all transient and that fully mature cells are not 

captured by our gating strategy. The model was calibrated to the time-dependent density and 

total number of labelled cells only. The error was computed as variance among replicates. 

For each trajectory, at least 240 simulations were launched, with regularization parameters 0, 

1, or 10 to penalize big differences in the splines’ nodes. The solution was chosen based on 

the highest log-likelihood, and the regularization parameter as the highest that visually fits 

the data well.

Differential expression analysis—For the DE analysis cells were selected to match 

the continuous model trajectories. The shapes of differentiation and net proliferation rates 

were inspected for potential regions of interests and respective ranges of pseudotime 

values were chosen. Prior to the analysis genes with low expression were filtered out, 

only genes detected in more than 2.5% cells and with overall mean expression above 

0.05 (data normalized with logNormCounts from the scuttle package) were included. 

To select genes with dynamic expression in the chosen intervals the fitGAM function 

followed by startVsEndTest from the TradeSeq package were used. Genes were considered 

significant if they showed at least FDR of 0.1 and a log2(Fold change) of at least 1. 

Predicted and smoothed gene expression was used using the predictSmooth function from 

the same package. In heatmaps genes were clustered with hierarchical clustering using the 

hclust R function with default settings. Transcription factors were selected based on the 

gene list established in70, TF groups were established by cutting the tree at the level of 

4. Gene enrichment was performed using GSEAPY interface to the enrichr tool71. The 

first derivative of the differentiation rate was calculated using interpolation at the same 
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pseudotime points that were used to predict gene expression using the TradeSeq model 

described above.

Transplantation data analysis—Dong et al. data44 was integrated into the HSPC 

landscape analogously to the7 data integration described in section ‘Embedding external 

datasets into the integrated HSPC landscape’. Cells in each HSPC cluster were counted 

and used as an input into the discrete model prediction. Day 3 data was used as the 

initial condition and cell abundances per cluster were predicted from day 3 to day 7. The 

bootstrap confidence bounds were recomputed upon substituting the initial conditions. Given 

that the experimental data in relevant clusters vastly exceed the model prediction bounds, 

we concluded that the dynamics of perturbed haematopoiesis are different from normal 

conditions and suggest increased differentiation.

Key Resource Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-Mouse CD45.1 (BV605 conjugated, clone A20) Biolegend Cat#110738;
RRID: AB_11204076

Anti-Mouse CD45.2 (PerCP conjugated, clone 104) Biolegend Cat#109826; RRID:
AB_893349

Anti-Mouse CD4 (Biotin conjugated, clone H129.19) BD Biosciences Cat#553649;
RRID: AB_394969

Anti-Mouse CD5 (Biotin conjugated, clone 53-7.3) BD Biosciences Cat#553019;
RRID: AB_394557

Anti-Mouse CD8a (Biotin conjugated, clone 53-6.7) BD Biosciences Cat#553029;
RRID: AB_394567

Anti-Mouse CD11b (Biotin conjugated, clone M1/70) BD Biosciences Cat#553309;
RRID: AB_394773

Anti-Mouse CD45R/B220 (Biotin conjugated, clone RA3-6B2) BD Biosciences Cat#553086;
RRID: AB_394616

Anti-Mouse Gr-1/Ly-6G/C (Biotin conjugated, clone RB6-8C5) BD Biosciences Cat#553125;
RRID: AB_394641

Anti-Mouse Ter119 (Biotin conjugated, clone TER-119) BD Biosciences Cat#553672;
RRID: AB_394985

Anti-Mouse c-Kit/CD117 (BV711 conjugated, clone 2B8) Biolegend Cat#105835;
RRID: AB_2565956

Anti-Mouse Sca-1 (APC-Cy7 conjugated, clone D7) Biolegend Cat#108126;
RRID: AB_10645327

Anti-Mouse CD48 (APC conjugated, clone HM48-1) Biolegend Cat#103411; RRID:
AB_571996

Anti-Mouse CD150 (PE-Cy7 conjugated, clone 12F12.2) Biolegend Cat#115914;
RRID: AB_439797

Anti-Mouse CD19 (Biotin conjugated, clone 1D3) Biolegend Cat#1; 553784;
RRID: AB_395048

Anti-Mouse Sca-1 (PB conjugated, clone D7) Biolegend Cat#108120; RRID:
AB_493273

Anti-Mouse CD16/32 (APC-CY7 conjugated, clone 93) Biolegend Cat#101328; RRID:
AB_2104158
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REAGENT or RESOURCE SOURCE IDENTIFIER

Anti-Mouse CD41 (BV605 conjugated, clone MWReg30) Biolegend Cat#133921; RRID:
AB_2563933

Anti-Mouse CD105 (APC conjugated, clone MJ7/18) Biolegend Cat#120413; RRID:
AB_2277915

Anti-Mouse Ter119 (FITC conjugated, clone TER-119) Biolegend Cat#116206;
RRID: AB_313707

Anti-Mouse CD45R/B220 (APC conjugated, clone RA3-6B2) Biolegend Cat#103212;
RRID: AB_312997

Anti-Mouse CD19 (APC-Cy7 conjugated, clone 6D5) Biolegend Cat#115529;
RRID: AB_830707

Anti-Mouse CD11b (PB conjugated, clone M1/70) Biolegend Cat#101224;
RRID: AB_755986

Anti-Mouse Gr-1/Ly-6G/C (PE-Cy7 conjugated, clone RB6-8C5) Biolegend Cat#108416;
RRID: AB_313381

Anti-Mouse Ter119 (PE-Cy5 conjugated, clone TER-119) Biolegend Cat#116210;
RRID: AB_313711

Anti-Mouse CD8a (APC conjugated, clone 53-6.7) Biolegend Cat#100712;
RRID: AB_312751

Anti-Mouse CD4 (APC conjugated, clone GK1.5) Biolegend Cat#100411;
RRID: AB_312696

Anti-Mouse CD8a (APC-CY7 conjugated, clone YTS156.7.7) Biolegend Cat#126620; RRID:
AB_2563951

Anti-Mouse CD25 (PB conjugated, clone PC61) Biolegend Cat#102022;
RRID:AB_493643

Anti-Mouse CD44 (PE-CY7 conjugated, clone IM7) Biolegend Cat#103030;
RRID: AB_830787

Fc Block (anti-mouse CD16/32, clone 93) Biolegend Cat#101320;
RRID: AB_1574975

Streptavidin (PerCP conjugated) Biolegend Cat#405213

Streptavidin (Pacific Blue conjugated) ThermoFisher 
Scientific

Cat# S11222

DAPI BD Biosciences Cat#564907;
RRID: AB_2869624

Mouse hematopoietic progenitor cell isolation cocktail Stem Cell 
Technologies

19856

CD48-APC ThermoFischer 17-0481-82,
RRID:AB_469408

c-Kit-APC/Cy7 Biolegend 105826,
RRID:AB_1626278

Sca1-BV421 Biolegend 108133,
RRID:AB_2650926

CD150-PE/Cy7 Biolegend 115914,
RRID:AB_439797

Streptavidin-BV510 Biolegend 405234

Chemicals, peptides, and recombinant proteins

Tamoxifen Sigma T5648; CAS: 10540-29-1

Corn Oil Sigma C8267; CAS: 8001-30-7

DAPI BD Pharmigen 564907

Ammonium Chloride Stem Cell 
Technologies

07800
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REAGENT or RESOURCE SOURCE IDENTIFIER

SUPERase-In RNase Inhibitor ThermoFisher AM2694

dNTP mix ThermoFisher 10319879

ERCC RNA Spike-In Mix ThermoFisher 4456740

Maxima H minus Reverse Transcriptase ThermoFisher EP0753

Terra PCR Direct Polymerase Mix Takara 639270

Agencourt AMPure XP beads Beckman Coulter A63881

Nextera XT DNA sample preparation kit 96 samples Illumina FC-131-1096

Triton X-100 solution Sigma 93443

PEG 8000 solution Sigma P1458

Phusion polymerase ThermoFischer F530L

Critical commercial assays

10x Genomics Single Cell 3’ v3 10X Genomics PN-1000268

Deposited data

Sequencing data This paper GEO: GSE207412

Pre-processed input data This paper https://doi.org/10.5281/
zenodo.10156542

Extended data figures This paper https://doi.org/10.5281/
zenodo.10156542

Extended data tables This paper https://doi.org/10.5281/
zenodo.10156542

Experimentalmodels:Organisms/strains

Mouse: Hoxb5mKO2 This paper N/A

Mouse: Hoxb5CreERT2 This paper N/A

Oligonucleotides

See Table S7 for list of oligonucleotides and ssDNA This paper N/A

TSO 5′-
AAGCAGTGGTATCAACGCAGAGTACATrGrG+G-3’

IDT NA

Oligo-dT30VN 5′–
AAGCAGTGGTATCAACGCAGAGTAC(T30)VN-3’

IDT NA

ISPCR oligo 5′-AAGCAGTGGTATCAACGCAGAGT-3’ IDT NA

Nextera XT 96-Index kit, 384 samples Illumina FC-131-1002

Recombinant DNA

Software and algorithms

FlowJo v10 FlowJo,Tree Star 
Inc.

N/A

GraphPad Prism 6 software GraphPad 
Software, Inc.

N/A

Analysis code This paper https://doi.org/10.5281/
zenodo.10156542 and
https://github.com/Iwo-K/
HSPCdynamics2022

Singularity container (containing all scRNA-Seq analysis software) This paper https://doi.org/10.5281/
zenodo.10156542

Cellproject https://github.com/
Iwo-K/cellproject

NA
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REAGENT or RESOURCE SOURCE IDENTIFIER

Cellranger v3.1.0 10X genomics NA

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data and code availability

• Extended data figures, referenced here as “E”, are available on Mendeley Data 

doi: 10.17632/vwg6xzmrf9.1 (extended_figures.pdf)

• Extended data tables, referenced here as “E” are available on Mendeley Data doi: 

10.17632/vwg6xzmrf9.1

• All sequencing data has been deposited on GEO under accession number: 

GSE207412

• Cellproject package is available through Github (https://github.com/Iwo-K/

cellproject)

• Pre-processed input data and software environment (Singularity container) are 

available on Mendeley Data doi: 10.17632/vwg6xzmrf9.1

• Analysis code is available on Github (https://github.com/Iwo-K/

HSPCdynamics2022) and Mendeley Data doi: 10.17632/vwg6xzmrf9.1

• Interactive visualization of the landscape is available on a dedicated website:

– https://gottgens-lab.stemcells.cam.ac.uk/bgweb2/HSPC_dyn2022/

External online data will be maintained long-term using: the GEO repository (sequencing 

data), Mendeley Data repository (code, pre-processed input data and software environment) 

and a dedicated server maintained by the University of Cambridge Stem Cell Institute 

(interactive visualization).
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Figure 1. Hoxb5-Tom persistent labelling system enables time-resolved tracking of stem cells and 
their progeny
(A) Diagram of the genetic construct used to introduce the inducible and persistent Hoxb5-

Tom label in the respective mouse line. (B) Schematic of the time-course experiment 

analyzing Hoxb5-Tom label frequency in the indicated populations of mouse bone marrow 

(BM) and peripheral blood (PB). Upon tamoxifen administration, Hoxb5-expressing cells 

are labelled with heritable Tom expression. (C) Fractions of Tom+ cells in the HSPC 

subpopulations within the BM at indicated time-points after label induction. Mice were 

analyzed at 0.5 (n=5), 1 (n=3), 2 (n=8), 3 (n=10), 5 (n=4) and 9 (n=7) months after label 
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induction. Dots represent individual mice and bars indicate mean ± SEM. (D, E) Fractions 

of Tom+ cells in peripheral blood of lymphoid/myeloid cells (D) and erythrocytes/platelets 

(E) analyzed at the indicated time-points after label induction. Shown as mean with error 

bars denoting SEM of 4-32 animals. (F) Diagram portraying the concept of inferring 

population dynamics from heritable label propagation. The rate of label accumulation 

in the downstream compartments is proportional to the differentiation rate between the 

compartments. (G) Diagrams providing analogy between the shape of the Waddington 

landscape and the key population parameters estimated in this work: differentiation rate is 

akin to the slope of the landscape; self-renewal (and related residence time or half-life) 

depend on the input, output and proliferation; flux the number of cells multiplied by 

the slope. (H) Comparison of Tie2-YFP and Hoxb5-Tom label progression displayed as 

relative labelling frequency between MPP or HPC-1 and HSC compartments. Red dots - 

Hoxb5-Tom data points (see Figure 2), grey line - rolling average for matching Tie2-YFP 

data, as published previously22. LSK – Lin-, Sca1+, cKit+; HSCs – LSK, CD150+, CD48-; 

MPP – LSK, CD150-, CD48-; HPC-1 – LSK, CD150-, CD48+; HPC-2 – LSK, CD150+, 

CD48+ cells.
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Figure 2. Time-resolved reference HSPC landscape at single-cell level
(A) Experimental design for HSPC dynamics analysis with flow cytometry and scRNA-

Seq. Table indicates specific time-point and the number of mice (replicates) used for 

Tom+ scRNA-Seq analysis, 2 mice in each time-point were used for the Tom- fraction 

estimation. (B) UMAP projection of the integrated HSPC scRNA-Seq landscape (all Tom+ 

and Tom- cells combined) with color-coded clusters. Outlier or aberrant clusters were 

removed for clarity (see Figure S2F,G). (C) Manual annotation of the landscape in B. Most 

differentiated clusters with clearly defined lineage markers are color-coded, intermediate 

undifferentiated states are shown in grey (Int prog), cluster containing HSCs is shown in 
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pink. (D,E) Projection from B in grey, with embedded and color-coded immunophenotypic 

sub-populations from Nestorowa et al. data.7 Up to randomly selected 60 cells in each 

category are plotted. All cells are plotted in Figure S3A. (F) Projection from B in grey, 

with embedded and color-coded cKit+ progenitors, based on their output in lineage tracing 

in vitro cultures. Color-coded points correspond to cells harvested at day 2 with sufficient 

clonal information available at day 4 and day 6 of culture. Data from Weinreb et al.11. (G) 

Projection from B in grey, with embedded and color-coded HSCs with no detected cellular 

output (inactive - childless) or contributing to haematopoiesis (active - parent) following 

5-FU challenge in mice (data from Bowling et al.18). (H) Projection from B in grey, with 

Hoxb5-Tom+ cells harvested at indicated time-points shown in blue. Nestorowa et al.7 

population definitions: LT-HSC – Lin-, cKit+, Sca1+, CD34-, Flt3-, MPP1 – Lin-, cKit+, 

Sca1+, Flt3-, CD34+, CD150+, CD48-, ST-HSC – Lin-, cKit+, Sca1+, Flt3-, CD34+, CD150-, 

CD48-, GMP Lin-, cKit+, Sca1+, CD16/32+, CD34+, LMPP – Lin-, cKit+, Sca1+, Flt3+, 

CD34+, MEP – Lin-, cKit+, Sca1+, CD16/32-, CD34-, MPP3 – Lin-, cKit+, Flt3-, CD34+, 

CD150-, CD48+, CMP – Lin-, cKit+, Sca1+, CD16/32-, CD34+.

Abbreviations: B prog - B cell progenitor, Bas - basophils, Bas/MC prog - Basophil and 

Mast Cell progenitors, DC prog - dendritic cell progenitors, Eos - eosinophils, Ery prog - 

erythroid progenitors, HSC - hematopoietic stem cells, Int prog - intermediate progenitors, 

Ly prog - lymphoid progenitors, Meg prog - megakaryocyte progenitors, Mono/DC prog 

- monocyte and dendritic cells progenitors, Neu prog - neutrophil progenitors, pDC - 

plasmacytoid dendritic cells
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Figure 3. Quantitative discrete model of the HSPCs highlights progenitor-specific self-renewal 
and differentiation properties
(A) Annotated UMAP projection overlaid with PAGA graph abstraction view of the HSPC 

landscape. The graph shows putative transitions between clusters (related to Figure 2B). (B) 

The absolute number of labelled cells observed in each cluster over time displayed as a 

graph view from A. 4 out of 9 time-points are shown for clarity. (C) Graph abstraction 

view of the discrete cellular flow model. Size of the nodes is proportional to square 

roots of relative cluster size, node color is proportional to the residence time (log-scale), 

arrows indicate differentiation directions, arrow stem thickness is proportional to cell flux. 
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Note: cluster 0a is fully self-renewing and thus exhibits infinite residence time. (D) Best 

discrete model fit (with 95% confidence intervals) for Tom+ cell number in chosen clusters 

relative to cluster 0. Error bars indicate pooled standard error of the mean. (E) Scatter plot 

showing relation of pseudotime distance to differentiation rates, each point corresponding to 

a transition between clusters. Only transitions among clusters 0-12 and differentiation rates 

greater than 10-12 are shown. Please note that in the case of the transitions between clusters 

4 and 8 two differentiation rates are plotted (each direction). Blue line indicates linear model 

fit with shaded 95% confidence interval. (F) UMAP projection of the HSPC landscape, with 

cells color-coded by simulated time required for 1 cell to accumulate in the corresponding 

cluster starting from cluster 0. Please mind that the color is logarithm-scaled. (G) Simulated 

relative cluster size of chosen clusters following complete ablation of cluster 0.
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Figure 4. Continuous models capture single cell growth and differentiation rates alongside their 
molecular state
(A) Diagrammatic representation of megakaryocyte trajectory analysis with 

pseudodynamics. Following the arrows: putative cell transitions (pseudotime kernel) were 

used to estimate megakaryocyte cell fate, from which megakaryocyte trajectory was 

isolated (dashed line). Along the pseudotime cell densities were computed for each time-

point (color-coded density profiles) and analyzed using the pseudodynamics framework 

providing differentiation and net proliferation rate estimates for each cell. (B) (left) UMAP 

projection of the HSPC landscape color-coded by cell fate probability of neutrophil lineage 
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(estimated with pseudotime kernel, see A). Panels on the right show UMAP projections of 

isolated neutrophil trajectory color-coded by indicated parameters or gene expression. (C) 

Pseudodynamics fitted net proliferation parameter (red) and differentiation rate parameters 

(blue) along pseudotime for megakaryocyte trajectory. Vertical lines indicate the region of 

interest with increasing proliferation. (D) Heatmap of genes differentially expressed around 

the region of interest shown in C. Left columns indicate genes belonging to enriched gene 

categories - E2F target (FDR <10-38), G2-M checkpoint (FDR <10-24) and cell cycle (FDR 

<10-38). (E) Pseudodynamics fitted net proliferation (red) and differentiation rate (blue) 

parameters along pseudotime for neutrophil trajectory. Vertical lines indicate the region of 

interest with increasing differentiation. (F) Fitted gene expression values along pseudotime 

for neutrophil markers and two TF groups shown in (full analysis in Figure E10). Grey, 

dashed line indicated differentiation rates shown in E. Gene expression was scaled around 

the mean.
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Figure 5. Growth and differentiation rates of HSPCs adapt to cellular stress conditions
(A) Diagram of the experiment performed by Dong et al.44, with HSC transplanted into an 

irradiated animal and followed over time with scRNA-Seq. (B-F) UMAP projections of the 

HSPC landscape (grey) with embedded cells from Dong et al.44 in blue. (G) Relative cluster 

size, points indicates observed data from Dong et al.44. Red line indicates our discrete model 

prediction (shaded area – with 95% confidence interval) starting from the day 3 time-point. 

Error bars indicate propagated standard error of the mean.
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Figure 6. The quantitative model of HSPC dynamics in the mouse bone marrow
Diagram highlighting the transferable information and the model utility.
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