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A B S T R A C T

Data driven, reduced order modelling has shown promise in tackling the challenges associated with com-
putational and experimental haemodynamic models. In this work, we focus on the use of Reduced Order
Models (ROMs) to reconstruct velocity fields in a patient-specific dissected aorta, with the objective being to
compare the ROMs obtained from Robust Proper Orthogonal Decomposition (RPOD) to those obtained from
the traditional Proper Orthogonal Decomposition (POD). POD and RPOD are applied to in vitro, haemodynamic
data acquired by Particle Image Velocimetry and compare the decomposed flows to those derived from
Computational Fluid Dynamics (CFD) data for the same geometry and flow conditions. In this work, PIV and
CFD results act as surrogates for clinical haemodynamic data e.g. MR, helping to demonstrate the potential use
of ROMS in real clinical scenarios. The flow is reconstructed using different numbers of POD modes and the
flow features obtained throughout the cardiac cycle are compared to the original Full Order Models (FOMs).

Robust Principal Component Analysis (RPCA), the first step of RPOD, has been found to enhance the
quality of PIV data, allowing POD to capture most of the kinetic energy of the flow in just two modes similar
to the numerical data that are free from measurement noise. The reconstruction errors differ along the cardiac
cycle with diastolic flows requiring more modes for accurate reconstruction. In general, modes 1–10 are found
sufficient to represent the flow field. The results demonstrate that the coherent structures that characterise this
aortic dissection flow are described by the first few POD modes suggesting that it is possible to represent the
macroscale behaviour of aortic flow in a low-dimensional space; thus significantly simplifying the problem,
and allowing for more computationally efficient flow simulations or machine learning based flow predictions
that can pave the way for translation of such models to the clinic.
1. Introduction

Restoring flow and functionality is the main objective of clini-
cians when performing vascular interventions. The ability to visualise
biomechanical flows, either by in vitro experiments or Computational
Fluid Dynamics (CFD), can provide invaluable information for clinical
support, disease progression predictions and surgical treatment plan-
ning (Bonfanti et al., 2020) by helping design tailored interventions,
personalise devices or explore clinical scenarios for future treatment,
for example. Application of such tools has been successfully demon-
strated in several pathologies, such as aortic dissection (Bonfanti et al.,
2020; Franzetti et al., 2022; Stokes et al., 2021, 2023), coronary artery
disease (Javadzadegan et al., 2018), valve prosthesis (Hellmeier et al.,
2018), aortic aneurysm (Febina et al., 2018) and congenital heart
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disease (Rigatelli et al., 2021). Both in vitro and in silico haemodynamic
approaches are subject to certain limitations. In CFD for example, a
compromise between model accuracy and complexity has often need to
be made (Bonfanti et al., 2018). Over-simplifications of the geometrical
domain and boundary conditions can lead to non-realistic results.
However, increasing the model complexity further complicates the
solution, increasing the computational time and often introducing or
increasing uncertainty. High computational cost represents a problem
for the clinical translation of these numerical models, especially when
considering the time-scales of acute pathological stages (i.e. days rather
than weeks or months) and the limited time available in clinics to make
full use of CFD as realistic tool for pre-interventional planning.
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To address this problem, Reduced Order Models (ROMs) have been
extensively studied to accelerate calculations of fluid dynamic prob-
lems (Quarteroni and Rozza, 2007). ROMs replace large-scale problems
with less complex ones that can be solved with significantly less time
and resources, while maintaining acceptable accuracy. If we were able
to extract ROMS from clinical measurement modalities (e.g MR) with a
view to use them as input to train fast haemodynamic tools this would
address the limitations of traditional CFD and completely transform the
use of simulation tools for haemodynamic computations in the clinic.
Many methods have been developed to extract ROMs from high-fidelity
data, such as Proper Orthogonal Decomposition (POD) (Liang et al.,
2002; Brunton and Kutz, 2019; Arzani and Dawson, 2021), Proper Gen-
eralised Decomposition (PGD) (Chinesta et al., 2011), Dynamic Mode
Decomposition (Arzani and Dawson, 2021; Schmid, 2021), Krylov sub-
space (Farahbakhsh, 2020), and the recently developed neural network
based method, Autoencoder (Wang et al., 2016; Murata et al., 2020;
Eivazi et al., 2022; Liang et al., 2020).

Among these methods, POD is arguably the most popular.1 POD
educes the dimensionality of a system by projecting it onto a set
f orthogonal Reduced Basis (POD modes). It identifies the domi-
ant modes in a flow, breaking it down into large and small-scale
tructures. With the goal of quantifying different flow regimes and
eveloping computationally-efficient ROMs, POD has been applied to
everal vascular flow studies, either using numerical CFD data or
xperimentally-derived velocity fields acquired via Particle Image Ve-
ocimetry (PIV). For instance, Kefayati and Poepping (2013) used a
ombination of PIV and POD to study transitional flows in stenosed
ilicon models; Byrne et al. (2014) introduced entropy to quantify the
low instability of intracranial aneurysm using POD; Ballarin et al.
2016) developed a framework for the study of haemodynamics in
hree-dimensional patient-specific configurations of coronary artery by-
ass grafts. More recently, Di Labbio and Kadem (2019) compared POD
nd DMD reconstructions of in vitro ventricular flow in a healthy left
entricle and multiple severities of aortic regurgitation, and Han et al.
2020) applied POD to estimate the flow-induced WSS in computational
odels of abdominal aortic aneurysm.

Robust Proper Orthogonal Decomposition (RPOD) or Robust Princi-
al Component Analysis (RPCA) is an extension of the Proper Orthog-
nal Decomposition (POD) method, designed to handle noisy or cor-
upted data commonly found in clinical and experimental
atasets (Arzani and Dawson, 2021; Scherl et al., 2020). However,
ts application in fluid flows, especially in the field of physiological
lows, is limited. Previous studies include Scherl et al. (2020), who
mplemented RPOD filtering in a turbulent channel flow simulation to
xtract coherent flow structures from the de-noised low-rank matrix,
nd Baghaie (2019), who applied RPOD to filter out background motion
rom raw PIV sequences.

In this work, and in the context of using ROMS for clinical ap-
lication, we will use PIV and CFD results as surrogates for clinical
aemodynamic data to demonstrate the potential of the RPOD algo-
ithm when compared to traditional POD for decomposing aortic flow
ata and constructing ROMs. The RPOD method was applied to the
atient-specific aortic, PIV-derived, flow field described in our previous
ork (Bonfanti et al., 2020; Franzetti et al., 2022). The eigenflows
enerated are compared to those derived by POD applied to the same
ata set as well as CFD-derived flow fields for the same geometry. ROMs
re then successfully used to reconstruct the original flow fields and
heir potential for personalised haemodynamic modelling is discussed.

. Materials and methods

A schematic of the approach followed in this work is shown in
ig. 1. We have previously characterised and fully validated the flow

1 POD is mathematically equivalent to Principal Component Analysis
PCA) (Liang et al., 2002).
2
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in a patient-specific dissected aorta both experimentally (using PIV)
and numerically (using CFD) (Franzetti et al., 2022; Bonfanti et al.,
2020) (black part of the figure). These datasets comprise the Full Order
Models. The RPCA algorithm was applied to the PIV velocity field to
create a de-noised dataset, which we call RPCA velocity field (blue part
of the figure).

The state reduction of the problem was then achieved by projecting
the CFD, PIV, and RPCA velocity fields onto their POD bases to reduce
the dimensionality of the problem (Galerkin projection). ROMs were
identified, ROM-derived flow fields were reconstructed (green part of
the figure) and compared to the FOMs. The errors introduced when
considering a lower dimensional model were assessed (Yellow part of
the figure).

2.1. Patient-specific model

The study is based on clinical data acquired from an adult male
with a Type B aortic dissection, a pathology that occurs when a
tear in the vessel wall allows blood to flow within the layers of the
aorta, leading to the formation of two separate flow-channels, the
true and the false lumen. The dataset was acquired as part of an
ethically-approved protocol at the Leeds General Infirmary (NHS Health
Research Authority, ref: 12/YH/0551; Leeds Teaching Hospitals NHS
Trust, ref: 788/RADRES/16), and appropriate concent was obtained
from the patient. The aortic model was created from the patient CT
scans using a semi-automated segmentation tool based on thresholding
operations, implemented in ScanIP (Synopsys, Mountain View, CA,
USA). It includes one inlet and four outlets: the brachiocephalic trunk
(BT), left common carotid (LCC), left subclavian artery (LSA), and
descending aorta (DA). A rigid, transparent phantom was manufactured
by 3D printing technology (Materialise, Belgium) to enable the flow
field measurements described below.

2.2. Experimental setup and PIV measurements

The phantom was connected to a custom-made pulsatile flow circuit
which comprised a computer controlled pulsatile pump and left ven-
tricle simulator, tunable 3-element Windkessel (3WKs) model at each
aortic outlet (Fig. 2) and an atrial reservoir (Franzetti et al., 2019).
The mock loop components were informed by clinical data to reproduce
personalised, accurate haemodynamics (Franzetti et al., 2022). A blood
mimicking fluid comprising a potassium thiocyanate (KSCN) water
solution (63% by weight) was used, matching the refractive index
of the phantom. Patient-specific flow and pressure waveforms were
introduced at the inlets and outlets of the aortic model as illustrated
in Bonfanti et al. (2020) and Franzetti et al. (2022). To perform the
PIV measurements, the flow was seeded with fluorescent microparticles
with a mean diameter of 10 μm, injected into the flow upstream
of the phantom and allowed to disperse uniformly within the aortic
model. The flow was illuminated by a pulsed Nd:YAG laser (Litron
Lasers, Bernoulli, UK) emitting 532 nm wavelength light. Particle image
pairs were acquired with a CCD camera (Imperx, USA) at a sampling
rate of 22 Hz (the pulsatile flow has a frequency of 1.2 Hz) with a
resolution of 4000 × 3000 pixels with a time interval of 1 ms. 10 cardiac
cycles were recorded.2 Velocity fields were generated using the Fast
Fourier transform based cross-correlation algorithm, implemented with
a three-pass technique starting with an interrogation area of 64 × 64
pixels and ending with an area of 32 × 32 pixels, overlapping by
50%. Lastly, post-processing was performed using custom developed
MATLAB (MathWorks Inc., USA) functions. The measurement error,
estimated from mass conservation, is 5.32% (Franzetti et al., 2022).

2 The flow converged with less than 1.6% cycle-to-cycle variation (Bonfanti
t al., 2020; Franzetti et al., 2022).
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Fig. 1. Schematic of the approach followed in this work, comprising four phases. First, the development of Full order models (FOMs), was described in previous works by the
authors (Bonfanti et al., 2020; Franzetti et al., 2022) and led to the experimental PIV model and a computational CFD one (black part of the figure). In the second phase, RPCA is
applied to the PIV velocity field to create a de-noised RPCA velocity field (blue part of the figure). The third phase involves the creation of ROMs based on the original velocity
fields through POD (green part of the figure). In the last phase, the reconstructed velocity fields were compared to their respective original FOMs, the errors involved were assessed
(yellow part of the figure). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Schematic of the experimental setup. The rig comprises a pulsatile pump system
to provide the patient-specific inlet flow rate into the aortic phantom; four 3-elements
Windkessel models (3WKs) – one for each of the outlets: brachiocephalic trunk (BT),
left common carotid (LCC), left subclavian artery (LSA), and descending aorta (DA) –
and an aortic reservoir. The 2D plane where the PIV acquisitions considered in this
work were performed is also represented. Superimposed arrows qualitatively indicate
the direction of the flow during systole.

Details about the components of the mock circulatory loop and the
experimental procedures can be found in our previous work (Franzetti
et al., 2019, 2022). Here, the PIV-derived velocities obtained on a cross-
sectional plane of the aortic arch (shown in Fig. 2), consisting of 10
cardiac cycles with 18 snapshots per cycle, i.e. 180 snapshots in total,
were used. This minimises the risk of bias introduced by using a single
cycle, and better represents flow behaviour.
3

2.3. PIV data enhancement by RPCA

Robust Principal Component Analysis (RPCA) or Robust Proper
Orthogonal Decomposition (RPOD) is an extension of PCA or POD that
separate an original data matrix (𝐔) into a sparse noise matrix (𝐒)
and a low-rank matrix containing coherent information (𝐋) using the
following equation:

𝐔 = 𝐋 + 𝐒. (1)

RPCA is known for its ability to handle noisy data (Scherl et al.,
2020; Arzani and Dawson, 2021; Candès et al., 2011; Brunton and Kutz,
2019) and is a good candidate to enhance the PIV data prior to further
analysis. The implementation of RPCA involves solving a constrained
minimisation equation:

min
𝐋,𝐒

( rank(𝐋) +‖𝐒‖0 ) subject to 𝐔 = 𝐋 + 𝐒 (2)

where ‖𝐒‖0 represents the zero norm of 𝐒, which is the summation of
non-zero elements in 𝐒. A convex relaxation (2) form of the problem is
used:

min
𝐋,𝐒

( ‖𝐋‖∗ + 𝜆0‖𝐒‖1 ) subject to 𝐔 = 𝐋 + 𝐒 (3)

where ‖𝐋‖∗ represents the nuclear norm of 𝐋, which is the summation
of all the singular values of 𝐋, and ‖𝐒‖1 denotes the first norm of 𝐒.
𝜆0 is a hyperparameter introduced as part of the relaxation given by
𝜆0 = 𝜆1∕

√

max(𝑚, 𝑛) where 𝑚 × 𝑛 is the dimension of 𝐔 and 𝜆1 = 1 in
the original paper (Candès et al., 2011). Scherl et al. (2020) suggested
that 𝜆1 can also be used as a tuning parameter: high 𝜆1 yields high
sparsity of 𝐒, and low 𝜆1 gives low rank of 𝐋. For simplicity, 𝜆1 is kept
at 1 in this study. Eq. (3) can be solved using the Augmented Lagrange
Multiplier (ALM) algorithm together with the Alternating Direction
Method (ADM) (Brunton and Kutz, 2019).

RPCA is used here as a de-noising tool to improve the PIV velocity
field and thus is not applied to the CFD data. It is important to note that,
because RPCA distinguishes outliers from coherent data, it may struggle
when data points are scarce, blurring the difference between outliers
and coherent information. Therefore, all acquired PIV snapshots (180)
were used.

The term ‘RPCA velocity field’ is used to denote the PIV velocity
field that has been de-noised by the RPCA process, whereas the term
‘RPOD’ refers to the implementation of POD after RPCA.

2.4. Numerical simulation

The CFD data is taken from a previous study by our group (Bonfanti
et al., 2020). A Reynolds-averaged Navier–Stokes (RANS) model was
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employed in this study to match the experimental inlet conditions since
it is very difficult to achieve truly laminar flow in experiments. While
RANS models are known to present certain limitations, such as not cap-
turing unsteady turbulence fluctuations and assuming fully turbulent
flow, they offer a good compromise between accuracy and computa-
tional efficiency in comparison to more resource-intensive methods like
Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS);
they were hence selected for this study and showed good agreement
with the experimental data (Bonfanti et al., 2020). ANSYS-CFX 19.0
(ANSYS, USA) was used to solve the 3D incompressible Navier–Stokes
and continuity equations, simulating the flow conditions of the PIV
experiment. The vessel geometry is the same as the one used to make
the phantom, with the walls assumed rigid. All boundary conditions are
set to match those from the experiments. The experimental inlet flow
rate waveform is imposed with a flat velocity profile. 3WKs models
are coupled at the outlets. The fluid is assumed to be Newtonian,
with the properties of the KSCN solution. The shear stress transport
(SST) turbulence model is chosen with the turbulence intensity of 1%
prescribed at the inlet.

The simulations run for 3 cardiac cycles and the first two cycles
were excluded from the analysis as they contain transient behaviour
influenced by the initial conditions and numerical setup. Unlike in the
flow field obtained from PIV experiments, in the case of CFD, once
the simulations have converged to the periodic steady state, every
cycle is identical. Therefore, a single cycle is used in our study as is
commonly done in most patient specific simulations (Bonfanti et al.,
2020; Stokes et al., 2023). The flow field on the 2D aortic arch plane
corresponding to the experimental one used here was exported to
MATLAB via CFD-Post (ANSYS).

2.5. Proper orthogonal decomposition

The POD method decomposes the flow into a set of modes arranged
epending on their energy content. The higher energy modes represent
he coherent structures in the flow; as a result POD has been applied
idely to turbulent flows to extract dominant structures. A detailed
escription of POD can be found in Berkooz et al. (1993) and in the
extbook by Brunton and Kutz (2019). Only a brief overview is provided
ere.

POD is implemented using the method of snapshots. Consider a 2D
velocity field of 𝑛 = 𝑁𝑥 × 𝑁𝑦 spatial velocity vectors (𝑢, 𝑣) on a
Cartesian grid 𝑥, 𝑦 and a total number of 𝑚 instantaneous velocity fields
r snapshots. POD decomposes the fluctuating part of the velocity field
′(𝑥, 𝑦, 𝑡) into a set of spatial functions Φ𝑖(𝑥, 𝑦), called the POD modes,
eighted by time-dependent coefficients 𝑎𝑖(𝑡) so that:

′(𝑥, 𝑦, 𝑡) =
𝑁
∑

𝑖=1
𝑎𝑖(𝑡)Φ𝑖(𝑥, 𝑦) (4)

here 𝑖 denotes the mode number, and 𝑁 denotes the total number of
odes.3

To perform the decomposition (Eq. (4)), the time-averaged velocity
𝐮(𝑥, 𝑦) is first subtracted from each instantaneous velocity field, obtain-
ng a set of 𝑚 fluctuating velocity fields 𝐮′(𝑥, 𝑦, 𝑡). The dataset is then

rearranged in a 2𝑛 × 𝑚 snapshot matrix 𝐔:

𝐔 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑢′1,1 𝑢′1,2 ⋯ 𝑢′1,𝑚
⋮ ⋮ ⋱ ⋮
𝑢′𝑛,1 𝑢′𝑛,2 ⋯ 𝑢′𝑛,𝑚
𝑣′1,1 𝑣′1,2 ⋯ 𝑣′1,𝑚
⋮ ⋮ ⋱ ⋮
𝑣′𝑛,1 𝑣′𝑛,2 ⋯ 𝑣′𝑛,𝑚

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(5)

3 Note that 𝐮′ in Eq. (4) includes both the periodic variation around the
ean and the turbulence fluctuation.
4

and Singular Value Decomposition (SVD) is applied:

𝐔 = ΦΣΨ∗ (6)

where Φ and Ψ are the left and right singular vectors of 𝐔, respectively
and Ψ∗ is the conjugate transpose of Ψ. The singular matrix (Σ)
contains the singular values (𝜎𝑖) of 𝐔 which rank in descending order,
and are directly linked to the portion of kinetic energy (𝜆𝑖) contained
in the POD modes (Φ𝑖), i.e. 𝜆𝑖 = 𝜎2𝑖 . Therefore, POD modes are ranked
according to their energy content, with the first mode having the
highest energy, and the last the lowest. The energy fraction of the 𝑖th
mode 𝐸𝑖, is defined as

𝐸𝑖 =
𝜆𝑖

∑𝑁
𝑖=1 𝜆𝑖

(7)

The temporal POD coefficients can be obtained by projecting 𝐔 onto
Φ𝑖:

𝑎𝑖(𝑡) = Φ∗
𝑖 𝐔 (8)

The total number of POD modes (𝑁) is the rank of 𝐔, which is
usually equal to the number of snapshots considered. The PIV data
contains 10 cardiac cycles with 18 instants per cycle, leading to 180
modes in total. For the CFD data, the flow field considered consists
of only one cardiac cycle with 165 snapshots, resulting in 165 modes
in total. The RPCA velocity field, on the other hand, consists of 180
snapshots since it was generated from PIV data, but consists of only 35
modes. This is because the RPCA process seeks to obtain a low-rank
representation of the original data.

2.6. Reduced order model

To generate a low dimensional representation of the aortic flow
under consideration, Eq. (9) can be applied to reconstruct the flow field
from the POD modes and the mean velocity 𝐮(𝑥, 𝑦) as:

𝐮(𝑥, 𝑦, 𝑡) = 𝐮(𝑥, 𝑦) +
𝑟
∑

𝑖=1
𝑎𝑖(𝑡)Φ𝑖(𝑥, 𝑦) (9)

where 𝑟 denotes the number of modes included in the ROM. When
setting 𝑟 = 𝑁 , where 𝑁 denotes the total number of POD modes, Eq. (9)
yields FOM. Equivalently, the reconstructed snapshot matrix 𝐔𝑟 can be
calculated from:

𝐔𝑟 = Φ𝑟Σ𝑟Ψ
∗
𝑟 (10)

with Φ𝑟, Σ𝑟, and Ψ𝑟 are the truncated versions of Φ, Σ, and Ψ,
respectively. The reconstruction error is defined as:

𝜀 =

∑𝑚
𝑗=1

∑2𝑛
𝑖=1

|

|

|

𝐔(𝑖, 𝑗) − 𝐔𝑟(𝑖, 𝑗)
|

|

|

∑𝑚
𝑗=1

∑2𝑛
𝑖=1

|

|

|

𝐔(𝑖, 𝑗) ||
|

× 100% (11)

The POD spatial structures and temporal coefficients were used
to characterise specific flow features — coherent structures — in the
pulsatile, aortic dissection flow, separating the periodic and random
fluctuating structures from the mean flow. The spatial structures Φ𝑖 for
the relevant modes were analysed by plotting the velocity fields. Then,
the temporal characteristics of the flow were investigated by analysing
the temporal coefficients of the most energetic POD modes in both the
time and frequency domains.

Lastly, flow field reconstructions from the ROMs were performed ac-
cording to Eq. (9). First 𝐮(𝑥, 𝑦, 𝑡) was reconstructed using all the modes
to verify the accuracy of the mathematical calculations. Then, they
were reconstructed using only a selected number of modes (i.e. Φ1–
2, Φ1–5, and Φ1–10) and the solution was compared to the original
velocity fields, at different instants of the cardiac cycle, to quantify the
differences.



Journal of Biomechanics 158 (2023) 111759C. Chatpattanasiri et al.
Fig. 3. The mean velocity field and the first three POD structures (Φ1–3) obtained from the PIV, RPCA, and CFD velocity fields, respectively. Super-imposed streamlines were
used for illustration purposes, they do not convey any information on temporal variations. Please note that the scales of the contours are different.
Table 1
Percentage of Kinetic energy captured and reconstruction error of different groups of
POD modes calculated from PIV velocity field, RPCA velocity field, and CFD velocity
field.

PIV POD PIV RPOD CFD POD

Modes Energy(%) Error(%) Energy(%) Error(%) Energy(%) Error(%)

1–2 86.33 34.18 98.15 13.10 95.52 19.54
1–5 89.57 30.16 99.37 7.85 98.77 10.18
1–10 91.72 27.06 99.78 4.60 99.72 4.81
all ∼100 ∼0 ∼100 ∼0 ∼100 ∼0

3. Results and discussion

3.1. Kinetic energy distribution

Table 1 lists the cumulative kinetic energy contents of the POD
and RPOD modes derived from the PIV data (PIV POD, PIV RPOD
respectively) compared to those derived from the CFD data (CFD POD).
The energy contained in the ROMs is expressed as a percentage of the
total kinetic energy in their respective FOMs, i.e. the total energy of the
original or filtered PIV and CFD velocity fields respectively. While more
than 90% of the kinetic energy is reached within the first 2 modes for
the PIV RPOD and CFD POD data, it takes 10 modes for the PIV POD to
capture that amount of energy. Similarly, Table 1 also shows that the
reconstruction errors from PIV RPOD and CFD POD converge to zero
faster than the ones from PIV POD.

This is not surprising as the PIV data are subject to measurement
noise. In contrast, the CFD velocity field was derived from numerical
computations, no measurement errors are involved. Additionally, the
use of a RANS model in CFD inherently ignores turbulent fluctuations,
resulting in much cleaner data compared to PIV.

The RPCA process denoises the PIV data resulting in higher cumu-
lative energy in the first two and ten modes compared to that from PIV
data alone. The energy content of each mode becomes closer to that
derived from the CFD data.

3.2. POD structures and temporal coefficients

Selected POD structures (Φ1–3) are shown in Fig. 3 compared with
the mean flow. All the first POD structures (Φ1) show organised motion
in the same direction as the mean flow which reflects the flow at the
peak systolic phase (Franzetti et al., 2022). The structures extracted
5

from PIV POD and PIV RPOD appear to be almost identical as they
represent the most energetic flow features; they slightly differ from
the CFD POD ones due to the differences between the measured and
computed velocity fields discussed in our previous work (Bonfanti et al.,
2020).

Modes 2 and 3 (Φ2–3) exhibit more complex flow patterns charac-
terised by re-circulation regions. As for Φ2, a high magnitude region
can be seen at the inner side of the arch which reflects the flow pattern
in diastole.

The temporal coefficients (𝑎𝑖) of the first three POD modes are
shown in Fig. 4 in the time (left column) and frequency domain (right
column), respectively. The coefficients exhibit periodic characteristics
in agreement with the literature (Kefayati and Poepping, 2013). The
first temporal coefficient essentially reflects the shape of the patient-
specific inlet flow waveform manifesting with a dominant peak in the
spectra at the frequency of the cardiac cycle (f = 73.2 bpm = 1.22 Hz).
As the number of modes increases, the temporal coefficients show more
complicated patterns characterised by higher frequency oscillations.
A second harmonic (2.44 Hz) is evident on the frequency spectra of
the experimentally derived modes. This behaviour may be related to
velocity fluctuations due to transitional flow. This behaviour is absent
from the numerical POD coefficients which consist of one single cardiac
cycle only, hence oscillating at the cardiac cycle frequency only.

3.3. Flow reconstructions

Figs. 5–7 show the comparison between the FOMs at three instants
of the cardiac cycle (peak systole, deceleration and diastole), and the
reconstructed velocity fields of ROMs using Φ1–2, Φ1–5 and Φ1–10.
The figure also shows contours of the differences in velocity magnitude
between the original and reconstructed flow fields. The reconstruction
errors are shown in Table 1. As expected, in all cases, the more
POD/RPOD modes are included in the reconstruction, the lower the
error.

The reconstructed flow fields from the PIV POD in Fig. 5 show
that good agreement can be achieved even using the first 2 POD
modes at peak systole and in the descending part of the flow curve,
where the flow follows relatively organised uni-directional patterns,
with some differences occurring in near-wall re-circulation regions.
However, more significant discrepancies are observed in diastole, both
in terms of velocity magnitude, distribution and the flow directions
indicated by the streamlines. Such differences are to be expected be-

cause, at diastole, the flow contains smaller vortical structures and a
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Fig. 4. The first three POD temporal coefficients (𝑎1, 𝑎2, and 𝑎3) from (a) PIV POD,
(b) PIV RPOD, and (c) CFD POD presented in (left) time domain and (right) frequency
domain.

more complex flow field. To fully reconstruct these structures, a higher
number of modes should be included. 10 modes appear to be sufficient
to reconstruct the flow at diastole accurately. When reconstructing the
flow with modes Φ1–10, the maximum absolute difference is about
0.09–0.10 m/s and occurs at systole.

Similar reconstructed velocity fields are generally obtained from the
PIV RPOD in Fig. 6. The only noticeable difference is at diastole, where
6

the RPCA velocity field exhibits lower velocity magnitudes compared
to the PIV-derived one, due to its filtering action. The RPCA velocity
magnitude ranges from 0 to 0.2237 m/s, while the original flow field
from 0 to 0.3276 m/s at diastole. When using the same number of
modes to reconstruct the flow field, PIV RPOD has a much lower
reconstruction error than PIV POD. The maximum absolute error when
using 10 modes for the flow reconstruction is only 0.007–0.008 m/s,
i.e. 10 times lower than that in PIV POD.

Finally, Fig. 7 shows that the flow reconstructions from the CFD
POD analysis share similar important qualities with the experimental
ones; namely that the first 2 modes are able to reconstruct the velocity
field accurately at peak systole and deceleration phase, with the errors
decreasing rapidly when more modes are included. The difference
contour plots show less scatter compared to the PIV derived ones due
to high spatial resolution of the numerical data. A maximum difference
of around 0.05–0.06 m/s is found when reconstructing the flow fields
using 10 modes; this is smaller than the errors in PIV POD but slightly
higher than the case of PIV RPOD.

It is important to highlight that all the errors reported above are
reconstruction errors. They are obtained by comparing the velocity
fields from ROMs to those of their respective FOMs. These errors are
not from comparisons among the PIV velocity fields, RPCA velocity
fields, and CFD velocity fields (see Appendix A). Thus, they cannot be
interpreted as such.

3.4. Towards personalised ROMs

The use of the RPCA algorithm in this study successfully filtered
out high-frequency noise in the PIV data (see Fig. 4), improving the
performance of ROMs extracted from the data. In the context of di-
mensionality reduction, the application of RPCA to PIV data leads to
representations in a lower-dimensional space compared to the original
PIV data. This feature of RPCA might be helpful when analysing the
images from MR data for example, which would help pave the way
towards the use of these numerical tools in a clinical setting.

However, RPOD may over-filter certain parts of the flow field as
can be seen during diastole (Figs. 5–7 bottom row). While the velocity
magnitude of the PIV and CFD derived fields are in the same range, it
is significantly lower (by about 30%) for the RPCA derived one. This
shows that the algorithm may filter out some important flow features
and if implemented in a real clinical pathway, might require careful
consideration. This over-filtering issue can be addressed by increasing
the value of the tuning parameter 𝜆1. However, too high a value of
𝜆1 can lead to the presence of noise in the filtered data. Therefore,
the main challenge involved in the application of RPCA is to find the
optimal value of 𝜆1 that appropriately filters out the unwanted motion
while preserving the relevant ones. Future work can focus on fine
tuning 𝜆1 for a given dataset or exploring the integration of a physics-
informed regularisation term into the RPCA framework to preserve the
velocity signal while still reducing noise.

Nevertheless, the enhancement of in vitro, experimental data using
RPCA demonstrated here, suggests that such methods could potentially
be applied to in vivo data, such as 4D flow MRI, to improve their
quality, making them more amenable to computational modelling and
flow reconstruction (Bakhshinejad et al., 2017; Fathi et al., 2018;
Töger et al., 2020) for patient-specific studies. In addition, the ability
of the RPCA algorithm to effectively clean data may also result in
ROMs constructed from RPOD having to include fewer modes, leading
to faster computations in their subsequent applications, which is an
important feature if these techniques were to be incorporated in real
clinical pathways.

This work also demonstrates that it is possible to represent the
behaviour of complex, pathological aortic flows using ROMs consisting
of only the first few POD/RPOD modes, which shows promise in the de-
velopment of more computationally efficient models to support clinical
decision-making. Examples include the works of Chang et al. (2017)
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Fig. 5. PIV POD, a POD reconstruction of PIV velocity field using Φ1–2, Φ1–5, and Φ1–10. The FOM and reconstructed flow fields are visualised at three instances of the cardiac:
peak systole, deceleration, and diastole. Contours showing the difference in velocity magnitude between the FOM and reconstructed flow fields are shown side by side with the
reconstructed velocity field.

Fig. 6. PIV RPOD, a POD reconstruction of RPCA velocity field using Φ1–2, Φ1–5, and Φ1–10. The FOM and reconstructed flow fields are visualised at three instances of the
cardiac: peak systole, deceleration, and diastole. Contours showing the difference in velocity magnitude between the FOM and reconstructed flow fields are shown side by side
with the reconstructed velocity field.
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Fig. 7. CFD POD, a POD reconstruction of CFD velocity field using Φ1–2, Φ1–5, and Φ1–10. The FOM and reconstructed flow fields are visualised at three instances of the
cardiac: peak systole, deceleration, and diastole. Contours showing the difference in velocity magnitude between the FOM and reconstructed flow fields are shown side by side
with the reconstructed velocity field.
who developed a computationally efficient ROM to study the flow
patterns and the WSS distribution in simplified models of an abdominal
aortic aneurysm, and Buoso et al. (2019), who developed ROMs of
blood flow for non-invasive functional evaluation of the pressure drop
in coronary artery disease using parameterised POD. ROMs may also
possess properties that can serve as supplementary haemodynamic
indices. For example, by monitoring the temporal evolution of energy
distribution, it may be possible to track the progression of some cardio-
vascular diseases or even vascular remodelling. Moreover, the energy
fraction associated with higher-order POD/RPOD modes may contain
information that can be used to fine-tune turbulence parameters when
modelling vascular flows.

Finally, ROMs can also be combined with rapidly evolving machine
learning tools to allow for optimisation and design in fluid mechanics,
moving towards real-time modelling. This would allow, for instance,
the study of a wide range of parameters for a given vascular pathology
(e.g. increasing or decreasing the level of stenosis on coronary disease
or coarctations) and to analyse the consequences on the flow and
pressure fields, which could serve as an initial step to investigate
patient-specific pre-interventional options (Siena et al., 2023; Pajaziti
et al., 2023; Liang et al., 2020).

4. Conclusions

The time-dependent flow in an aortic model, measured by PIV, was
enhanced by RPCA and decomposed by means of POD to create ROMs.
The decomposed flows were compared against those from numerical
data obtained for the same patient-specific conditions. The first two
modes derived from RPOD capture more than 90% of the kinetic
energy, in agreement with the corresponding CFD derived ROMs.

The large and small-scale structures within the flow, correspond-
ing to more or less energetic modes, were evaluated and described
by means of POD/RPOD spatial structures and POD/RPOD temporal
coefficients. By combining only the most energetic modes to represent
the flow, it was shown that complex, time-dependent haemodynamic
data can be represented with simpler low-dimensional models based
on a small number of spatial modes. This combined with the strong
reconstruction performance of RPOD, illustrates the potential of the
8

approach to enhance the quality of measurements and to develop more
computationally efficient models for clinical application.
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Appendix A. Comparison of velocity fields between CFD and PIV
before and after RPCA

The comparisons of PIV, RPCA, and CFD velocity fields is shown in
Fig. A.1. Fig. A.1a shows the velocity magnitude of the mean flow in
the three velocity fields with four straight lines. A closer comparison
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Fig. A.1. (a) Comparison of axial velocity profiles obtained from experimental PIV data before RPCA, after RPCA, and CFD data. (b) Four lines across the aortic arch where the
velocity profiles were measured.
𝑎
between the three velocity fields is provided in Fig. A.1b by plotting
the axial velocity profiles (⟨𝐮𝑛⟩) over those four selected lines.

The percentage difference is calculated in the same way as in Bon-
fanti et al. (2020):

𝛥 = 1
𝑁

𝑁
∑

𝑖=1

|

|

|

𝑢𝑒𝑛,𝑗 − 𝑢𝑐𝑛,𝑗
|

|

|

max𝑗
|

|

|

𝑢𝑐𝑛,𝑗
|

|

|

(12)

where 𝑢𝑐𝑛,𝑖 is the CFD velocity profile. When calculating 𝛥PIV, 𝑢𝑒𝑛,𝑖 is
the PIV velocity profile, and when calculating 𝛥RPCA, 𝑢𝑒𝑛,𝑖 is the RPCA
velocity profile. It should be noted that the percentage differences are
not exactly the same as those reported in Bonfanti et al. (2020) because
there might be discrepancies in the locations of the four lines.

As shown from the above (Fig. A.1b), RPCA may not always bring
the PIV and CFD closer together in terms of the actual velocity values
due to the over-filtering behaviour discussed in Section 3.4. However,
RPCA leads to PIV derived ROMs that capture the same percentage
of energy as CFD ones when reconstructing with the same number of
modes (Table 1). To help visualise the effect of RPCA on PIV data,
comparison can be found in the video file attached (or here).

Appendix B. Normalised POD/RPOD coefficients

The relation between the first coefficients 𝑎𝑖 was investigated by
plotting the space (𝑎∗1, 𝑎

∗
2), calculated as:4

4 This approach has been used in different studies, for example see Imomoh
et al. (2010) and Ducci et al. (2008).
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̃𝑖 =
𝑎𝑖

√

2𝜆𝑖
(13)

and normalise as

𝑎∗𝑖 =
2(𝑎̃𝑖 − min(𝑎̃𝑖))

(max(𝑎̃𝑖) − min(𝑎̃𝑖))
− 1 (14)

The normalised temporal coefficients 𝑎∗1, 𝑎∗2 and 𝑎∗3, are plotted
against each other in Fig. B.1. The phase-averaged coefficients for the
experimental data are also indicated in blue. They exhibit organised,
closed-loop structures, indicating periodicity similar to the CFD data.

The 2D plots of 𝑎∗1 and 𝑎∗2 in Fig. B.1 do not show a clear circular
or elliptic pattern, implying that the first two POD modes do not form
a pair. The plots also indicate the same behaviour for the first two PIV
POD and PIV RPOD coefficients which slightly differs from the CFD
POD ones.

An interesting observation arises when investigating the relation
amongst the first three coefficients (𝑎∗1, 𝑎∗2 and 𝑎∗3). The plots on the
right side of Fig. B.1a–c show a more complex organisation amongst
these modes. This behaviour highlights the interdependent relation-
ships and energy transfer between the first three modes and may
correspond to energy transfer amongst different periodic structures
(with different energy contents and frequency profiles) within the flow
field. A similar ‘triadic interaction’ has been reported by Gabelle et al.
(2017) in a stirred tank flow (who attributed the behaviour to non-
linear interactions between the modes), and by Lacassagne et al. (2021)
in an oscillating grid flow.

https://youtu.be/2pqsJfXMZjY
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Fig. B.1. Scatter plots of normalised POD coefficients (left) 𝑎∗1 and 𝑎∗2 and (right) 𝑎∗1 , 𝑎∗2 and 𝑎∗3 computed from (a) PIV POD, (b) PIV RPOD, and (c) CFD POD. The black points
represent the coefficients for all the modes, whilst the blue ones represent the phase-averaged POD modes. The blue lines connect the phase-averaged coefficients for better
visualisation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.jbiomech.2023.111759.
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