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Abstract

RHO GTPases have been traditionally associated with protumorigenic functions. While this 

paradigm is still valid in many cases, recent data have unexpectedly revealed that RHO proteins 

can also play tumor suppressor roles. RHO signaling elements can also promote both pro- and 

antitumorigenic effects using GTPase-independent mechanisms, thus giving an extra layer of 

complexity to the role of these proteins in cancer. Consistent with these variegated roles, both 

gain- and loss-of-function mutations in RHO pathway genes have been found in cancer patients. 

Collectively, these observations challenge long-held functional archetypes for RHO proteins in 

both normal and cancer cells. In this review, I will summarize these data and discuss new 

questions arising from them such as the functional and clinical relevance of the mutations found in 

patients, the mechanistic orchestration of those antagonistic functions in tumors, and the pros and 

cons that these results represent for the development of RHO-based anticancer drugs.

Introduction

The 18 RHO GTPases present in humans can be classified according to both structural 

and homology criteria in the CDC42 (CDC42, RHOQ, and RHOJ), RAC (RAC1, RAC2, 

RAC3, and RHOG), RHOA (RHOA, RHOB, and RHOC), RHOD (RHOD and RHOF), 

RHOH, RHOU (RHOU and RHOV), and RND (RND1, RND2, and RND3) subfamilies 

[1]. Some studies also include among those proteins the members of the RhoBTB and 

Miro families, although these ‘atypical’ GTPases are highly divergent from the rest of Rho 

proteins in terms of structure, overall amino acid homology, subcellular localization, and 

biological functions [1]. Rho proteins were initially linked to the regulation of cytoskeletal 

structures, cell shape, cell migration, and cell polarity [2]. Later on, they were associated 

with the regulation of cell cycle progression, cell survival, and cell type-specific responses 

such as immune responses, angiogenesis, vascular reactivity, and neurogenesis [1,3–7]. 

Given this central role in cell signaling, the deregulation of these pathways is also linked 

to the development of a large variety of diseases [2,4,8,9]. In particular, the action of 
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RHO GTPases has been historically associated with the acquisition of malignant features 

by cancer cells [10–13]. While this association was initially established using cancer 

cell models in plastico, more recent information obtained from both mouse models and 

high-throughput genomics techniques has given further impetus to this idea. However, 

these new data have also unveiled the paradoxical association of some of these proteins 

with tumor suppression mechanisms. Adding further complexity to the variegated role 

of these proteins in cancer, it is now known that many RHO signaling elements can 

contribute to tumorigenesis using noncanonical, GTPase-independent mechanisms. These 

observations highlight the key role of RHO proteins in cancer but, at the same time, 

challenge widely established functional archetypes in the field and the therapeutic feasibility 

of these pathways. In this review, I will present recent advances in the understanding of 

RHO-regulated pathways in cancer, highlight some of the shadows existing in the field, 

and the challenges we still face to develop new RHO-based therapies. Given the scant 

information available for the less conventional RHO family members, I will focus my 

attention on the classical CDC42, RAC, and RHOA subfamilies.

The RHO GTPase cycle

RHO GTPases are subjected to multiple regulatory layers affecting their subcellular 

localization, intracellular dynamics, signaling state, and final downstream signaling output 

[1,14] (Figure 1). As most RAS superfamily proteins, the maturation of the freshly 

translated RHO GTPases entails a stepwise mechanism that includes the incorporation 

in the cytosol of a geranylgeranyl group onto the cysteine residue located on the so-

called C-terminal CAAX box, the translocation of the GTPases from the cytosol to the 

endoplasmic reticulum, the subsequent cleavage of the C-terminal AAX tripeptide of the 

GTPases, and the ensuing methylation of the α-carboxyl group of the newly exposed 

C-terminal isoprenylcysteine residue (Figure 1, point a). There are variations in this 

maturation process in some cases, such as the incorporation of a farnesyl rather than a 

geranylgeranyl group (e.g. RHOB) or the addition of palmitate groups onto cysteine residues 

located outside the GTPase CAAX box (e.g. RAC1 and RHOB) [1,14]. Some of these 

modifications are not trivial from a functional point of view. For example, the farnesylated 

and geranylgeranylated states are associated with the tumor promotion and suppression 

functions of RHOB, respectively [15]. The alternative prenylation involves the participation 

of additional regulatory molecules, as is the case of different isoforms of the Rap1 GDP 

dissociation stimulator (RAP1GDS, also known as small GTPase GDS) [1,14,16].

The fully processed GTPases are maintained locked in an inactive GDP-bound state through 

the formation of stoichiometric complexes with RHO GDP dissociation inhibitors (GDIs) 

in the cytosol (Figure 1, point b). These proteins contribute to that process by blocking 

the spontaneous release of GDP from the GTPases and, in addition, by sequestering the 

prenyl group of the GTPases inside a hydrophobic cavity present in the GDI 3D structure. 

They also play positive roles in the activation of RHO proteins, since they can protect 

them from proteolytic degradation and, upon cell stimulation, dock the GTPases in specific 

membrane subregions [1,14]. Most RHO proteins have to undergo the exchange of GDP 

by GTP molecules during signal transduction to acquire an active state compatible with 

downstream effector binding. This process requires two intertwined steps. The first one 
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involves the release of the GTPases from the RHO GDI complexes (Figure 1, point 

c), a process mediated by the phosphorylation of RHO GDIs by SRC, protein kinase 

C, and members of the p21-activated kinase (PAK) family [1,14]. The participation of 

membrane lipids, RHO GDI-releasing factors, and RHO translocators has been also reported 

in specific signaling contexts [1,17–19]. The released GTPases then undergo rapid exchange 

of guanosine nucleotides, a process catalyzed by the enzymes known as RHO GDP/GTP 

exchange factors (GEFs) (Figure 1, point d). The human genome encodes close to 80 GEFs 

that are highly variable in terms of catalytic specificity and domain structure. RHO GEFs 

can be subclassified according to the catalytic domain present in them in the diffuse B-cell 

lymphoma (Dbl) and dedicator of cytokinesis (Dock) subfamilies. Experimental evidence 

indicates that this complexity ensures enough flexibility to fine-tune the spatio-temporal 

activation and signaling output of RHO proteins [1,20]. The exchange of nucleotides 

promotes a conformational change in the RHO switch I and switch II effector regions that, 

in turn, makes it possible the interaction of the GTP-bound GTPases with the proximal 

downstream effectors. To date, ~60 RHO proximal effectors have been identified. Although 

highly heterogeneous from a structural and functional point of view, most of them can 

be ascribed to a limited number of functional classes: (a) direct regulators of the F-actin 

cytoskeleton and cell polarity. (b) A grab bag of proteins that include, for example, 

regulators of multiprotein enzyme complexes (e.g. NADPH oxidase) and transcriptional 

factors (STAT3). (c) Serine/threonine kinases belonging to PAK, RHO-associated coiled-

coil containing protein kinase (ROCK), and protein kinase N (PKN1) families (Figure 1, 

point e). (d) Protein tyrosine kinases (TNK2, also known as ACK1) (Figure 1, point e). 

(e) Phospholipid kinases such as phosphatidylinositol 3-phosphate kinase (PI3K) β and 

phosphatidylinositol-4-phosphate 5-kinase (Figure 1, point e) [1,21]. The recognition of the 

downstream effectors depends on structural cues present on the two RHO switch regions 

and, in some cases, other GTPase moieties. These cues constraint the type of effectors 

recognized by each RHO subfamily and, in many cases, specific members of the same RHO 

subfamily. For example, PAKs can bind to RAC1 and CDC42 but not to RAC2, RHOG, or 

any of the RHOA subfamily members. Likewise, ROCK proteins physically interact with 

active RHOA subfamily members but not with those belonging to the RAC and CDC42 

subgroups (Figure 1, point e) [1]. At the end of the stimulation cycle, RHO GTPases 

undergo the hydrolysis of the bound GTP molecules to go back to the inactive, GDP-bound 

state. This step is catalyzed by GTPase-activating proteins (GAPs) (Figure 1, point f). As in 

the case of RHO GEFs, the GAP family is composed of a large variety of members that are 

quite different in terms of catalytic, structural, regulatory, and effector properties [1,20].

RHO GTPases can be further regulated by mechanisms outside this basic regulatory cycle, 

including transcriptional regulation, differential splicing, microRNA-mediated transcript 

stability, protein steady-state levels, posttranslational modifications, sequestration in 

endosomes, time of residence in membranes, and F-actin-dependent cytoskeletal events that 

favor more stable cycles of activation during cell stimulation. Some of these layers are also 

used to modulate the function of RHO GTPase regulators and effectors, thus ensuring a 

perfect control of the signaling output from these pathways [1,12,14,18,22].
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Protumorigenic functions of RHO GTPase-regulated pathways

According to the canonical view of RHO GTPase pathways in cancer, it has been 

historically assumed that the RHO GEFs, the GTPases themselves, and many of the 

downstream effectors play positive roles in tumorigenesis. Conversely, this functional 

archetype postulates that RHO GAPs must antagonize the foregoing process. Consistent 

with this view, extensive work using gain-of-function strategies demonstrated that mutant 

versions of RHO GEFs and, to a lesser extent, RHO proteins were oncogenic using 

focus formation assays. Conversely, the use of loss-of-function studies showed that many 

RHO signaling elements were required for either the overall fitness or specific malignant 

properties of cancer cells. In contrast with these in plastico data, one of the most puzzling 

observations in the field until this decade was the lack of detection of mutations in genes 

encoding RHO signaling elements in human tumors. It was reasoned at that time that this 

was probably due to the fact that RHO pathways required the preservation of normal cycles 

of activation/deactivation to promote tumorigenesis. However, the extensive sequencing 

of tumor genomes carried out during this last decade has unveiled the presence of gain-

of-function mutations in genes encoding RAC1 [23–38], RAC GEFs (P-REX2 and VAV 

family) [27,39–46], and RAC downstream elements (PAK1, PAK4, and PAK5) [26,47] in 

patients (Figures 1 and 2A–C). Gain-of-function mutations in RHOA and ROCK1 have 

also been found at lower frequencies in some human tumors [28,29,43,48–54] (Figures 

1 and 2A–C). Although dispensable for leukemogenesis, the RHOA GEF domain of the 

BCR protein present in the chimeric p210BCR-ABL oncoprotein seems to play roles in 

the determination of the leukemia subtype that eventually develops in patients [55]. The 

mutational and epigenetic silencing of DLC1, a gene encoding a RHOA GAP, is also a 

frequent event in human tumors [52,56] (Figure 1). Further analyses of cancer genomes 

have revealed the presence of additional hotspot mutations in other genes encoding RHO 

signaling elements, although most of them remain to be investigated at the functional level 

[34,35,57,58] (Figure 1; further data can be analyzed at the inTOgene database using the 

link: https://www.intogen.org/search). To date, very few cases of gain-of-function mutations 

have been found in the CDC42 gene [31] (Figures 1 and 2A).

The most frequent gain-of-function mutations found in RHO family genes alter codons 

that lead to the generation of proteins with high rates of intrinsic GDP/GTP exchange 

[23,24,43,53,59]. In the case of RAC1, the main targeted residues include Pro29 and, to 

a lesser extent, the Cys18, Pro34, Ala159, and Ala178 residues (Figure 2B,C). In the case 

of RHOA, these gain-of-function mutations target the positions Cys16 and Ala161 (Figure 

2B,C; note that the amino acid positions in RHOA are shifted +2 positions relative to those 

found in most RHO and RAS GTPases). However, mutations that disrupt GTP hydrolysis 

are found enriched in specific tumor subtypes. These mutations mostly target codons similar 

to those found in classical RAS proteins [60] such as Gly12, Gln61 (both in RAC1), and 

Gln63 (in the case of RHOA) (Figure 2B,C). This odd mutational spectrum, combined with 

the relatively low frequency of all these genetic alterations in patients, probably explains the 

lack of detection of mutations in these genes during the pregenomics period.

Several mechanistic and functional questions arise from the foregoing data. One of them 

is the reason for the characteristic type of oncogenic mutations found in the RAC1 and 
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RHOA. A possible answer to this issue is that those mutations are selected because 

they confer a specific advantage to cells when compared with the potentially stronger, 

GTP hydrolysis-deficient counterparts. Evidence for this type of differential signaling is, 

in fact, available in the literature [61,62]. If this were the case, the advantage of these 

weak signaling mutants should be tumor-specific given that the RAC1 Gly12 and Gln61 

are the most frequently targeted residues in other tumors types such as seminomas and 

germ cell tumors (Figure 2C). However, the segregation of subsets of RAC1 mutations 

in different tumor types suggests that the spectrum of those mutations can be merely 

reflect the type of carcinogen to which the cells that originated the tumors were originally 

exposed to. This idea is consistent with the observation that the codon encoding Pro29, the 

most frequently targeted RAC1 residue in cutaneous melanoma [23,25,26,31] (Figure 2C), 

exhibits the typical mutational signature associated with UV light exposure [23]. In line 

with this, the frequency of this mutation directly correlates with the sun exposure habits 

of the melanoma patient cohorts analyzed [23]. More work should be done in any case to 

further clarify this issue. A more important question is the role played by these mutations 

in tumor development. Although answering this question requires further experimentation, 

current evidence from either mouse or Zebra fish models suggests that the gain-of-function 

mutations in RAC1, RHOA, RHO GEF-encoding genes (PREX2 and VAV2), PAK1, and 

ROCK are not fully autonomous to drive the transformation of primary cells, although in 

some cases hyperplasic, preneoplasic-like phenotypes are observed. However, most of those 

models do show higher tumor formation rates when combined with other protumorigenic 

genetic alterations (Figure 3) [1,7,63–66] (in the case of Vav2, unpublished observations 

from our laboratory). Given the disparity of mutations found in tumors, we cannot rule out 

the possibility at this moment that some of them could act as oncogenic drivers per se. 

Addressing this issue will require further studies using ad hoc-designed animal models.

Regardless of the above data, the analysis of cancer genomes indicates that mutations 

affecting RHO signaling pathways are found at low frequency in a very limited spectrum 

of tumor types (Figure 2A). It is unavoidable therefore to address again the question made 

before the cancer genome sequencing era: why cancer cells do not consistently develop 

mutations in RHO pathways at high frequencies? The most obvious answer to this question, 

which most of us will probably dislike, is that the RHO pathways are totally irrelevant 

for the fitness of most cancer types. Another possibility is that the RHO pathways can be 

spuriously activated in cancer cells by alternative mechanisms. A strong emphasis has been 

made, for example, in the frequent detection of cancer-associated gene copy alterations and 

protein abundance changes in RHO signaling elements as a source of such deregulation 

[12]. Some of these changes are indeed recurrently found in tumors (Figure 2A) and, 

in the case of RHO downstream elements such as PAK1, PAK4, ROCK2, and TNK2, 

have being formally demonstrated that they indeed contribute to the fitness of cancer 

cells [47,52,54,67]. However, other data related to this type of deregulation should be 

taken with caution for manifold reasons. Firstly, the changes in the number of copies of a 

given gene can be merely a passenger event due to the presence of a nearby driver gene. 

Secondly, the changes in the abundance of a given signaling element might actually elicit 

functional consequences opposite to the expected ones. For example, the low expression 

of RHO GDIs can lead to enhanced degradation of RHO proteins rather than to increased 

Bustelo Page 5

Biochem Soc Trans. Author manuscript; available in PMC 2024 March 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



availability of free RHO GTPases for signaling as originally surmised. The same applies to 

the overexpression of RHO GTPases, an event that can be easily buffered in cells through 

the usual stoichiometric association of GTPases with RHO GDIs. Finally, the increased 

abundance of a given protein can be a consequence rather than the cause of the malignant 

feature of cancer cells. This is probably the case, for example, of RHO signaling elements 

associated with the regulation of cytokinesis (i.e. ECT2 and RACGAP1). Our experience 

with VAV and RHO proteins also suggests that many immunohistological analyses used 

to demonstrate protein overexpression on tumor sections are based on the use of poorly 

validated antibodies both in terms of isoform specificity and, even, on the nature of the 

epitope that is actually detected on the tissue sections. Other mechanisms that could lead to 

the spurious activation of RHO pathways include alterations in the multiple regulatory layers 

that control the steady-state levels and activation dynamics of RHO signaling elements in 

cancer cells (see above). Many of these alterations have been observed in cancer cells in 

culture [1,12,14,18,22], although until now there is no experimental evidence indicating that 

such alterations do have a major effect in either human tumors or animal models. The only 

exception is perhaps the frequent alteration observed in the splicing of the RAC1 hnRNA 

in many tumors (Figure 1). This change leads to the expression of a fast cycling isoform 

of wild-type RAC1 that, according to cell and mouse model data (Figure 3), is clearly 

associated with the induction of protumorigenic effects in cells [68–73]. Differential spliced 

forms for CDC42, RHOA, and GEFs (TRIO and VAV3) have also been observed in cancer 

cells [68,74–78] (Figure 1), suggesting that this type of deregulation might represent a 

common event favoring the engagement of these pathways in many tumor types. Finally, it is 

possible that the hyperactivation of the endogenous wild-type RHO pathways via autocrine 

loops, upstream oncogenes, and signaling cross-talk could be sufficient to provide a selective 

advantage to cancer cells [12]. Along those lines, the use of knockout and transgenic 

mice has demonstrated that many endogenous RHO GTPases, regulators, and effectors are 

indeed required for the primary tumorigenesis and/or metastatic properties of many tumor 

types [64–66,72,79–107] (Figure 3). Recent genome-wide shRNA- and CRISPR/Cas9-based 

loss-of-function studies have also made it possible, for the first time, to visualize in a high-

throughput basis the implication of all known RHO signaling elements in the viability of a 

large number of cancer cell lines [108–110]. The readers can access these data in publicly 

available data portals derived from the Achilles (https://portals.broadinstitute.org/achilles), 

Drive (https://oncologynibr.shinyapps.io/ drive/), and DepMap (https://depmap.org/rnai/) 

projects.

Given that most work on RHO GTPases has been narrowly focused on cytoskeletal-related 

biological processes and canonical pathways using cells in plastico, we still have a 

very limited information about the pathobiological changes induced by them in tumors. 

Recent observations suggest that these proteins play more variegated roles than previously 

anticipated. Those include the regulation of autocrine and paracrine loops important for 

tumor growth and the remodeling of the tumor microenvironment [100], nucleolar functions 

linked to either efficient ribogenesis or the elimination of nucleolar stress in cancer cells 

[102,111], the regulation of both centrosome and chromosome stability [112–114], the 

regulation of the YAP/TAZ pathway [115], and the engagement of pathways that evade 

the antitumoral immune responses [116]. Other interesting protumorigenic actions include 
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the PAK-mediated enhancement of the signaling output from the RAS–ERK and RAS–

PI3K pathways [47,117,118]. The activity of RAC-dependent pathways is particularly 

relevant from a clinical point of view since they favor the proliferation of cancer cells, 

the maintenance of tumor initiating cells, and the development of drug resistance [118–

131]. The contribution of RHOA subfamily and ROCK-dependent pathways to cancer 

cell stemness and drug resistance has been also reported [52,54,120,127,132–134]. Further 

studies on the biological outputs of these proteins using both animal models and more close-

to-the-clinic experimental scenarios will probably expand the panoply of RHO-regulated 

functions in cancer cells in the coming years.

Tumor suppressor activities of RHO-dependent pathways

The puzzling discovery of both dominant negative and loss-of-function RHOA gene 

mutations in human tumors underscores the limited understanding that still exists 

on these pathways [29,30,32,34,38,41,43,45,48,49,53,57,135–146] (unpublished data can 

be checked at the cBioPortal database: http://www.cbioportal.org/index.do?session_id= 

5a98e6f6498eb8b3d5650200) (Figure 2). They also highlight the limitations of using cancer 

cells in 2D cultures to approach the functions of these proteins, since the large majority of 

these studies have not unveiled these new roles for the RHOA pathway. These mutations 

can be classified in three main subclasses (Figure 2B): (a) mutations that generate inactive 

proteins that cannot bind guanosine nucleotides. These mutant proteins must also trap the 

upstream GEFs in nonproductive complexes, leading to the inhibition of the stimulation of 

wild-type RHOA (when the RHOA mutation is in heterozygosis) and the rest of GTPase 

substrates of those GEFs [147]. These mutations target the RHOA Gly17 residue and, to a 

lesser extent, other positions of the GTPase (Arg5, Gly14, Thr19, and Leu57). (b) Mutations 

targeting residues on the RHOA switch I region that are critical for the association with 

the downstream elements such as PKN (Tyr37 and Tyr42) and ROCK (Tyr40, depending 

on the type of mutation generated) family members. The Tyr40 residue is also involved in 

the engagement of the cytoskeletal regulated serum response factor, stress fiber induction, 

and focus formation in immortalized fibroblasts [148]. These mutants can be referred to 

as ‘signaling branch deficient’, since they still conserve the ability to interact with other 

downstream elements [148]. (c) Gene alterations that lead to the elimination of RHOA 

expression. All these mutations are usually found in heterozygosis in patients, although the 

concurrent loss of the wild-type allele is also frequently observed in the case of diffuse-type 

gastric cancer [30]. Other tumor-associated mutations found in genes encoding RHOA 

signaling elements that are paradoxical according to the accepted functional archetype 

for these GTPases can be also probably explained according to this new putative RHOA 

tumor suppression roles. Those include the recurrent loss of genes encoding RHOA GEFs 

(ARHGEF10 and ARHGEF10L) [149], the gain-of-function mutations found in RHOA 

GAP-encoding genes (e.g. ARHGAP6, ARHGAP26 and ARHGAP35) [41,144,150], and 

the loss-of-function mutations detected in genes encoding myosin heavy chains (e.g. MYH9, 
MYH10 and MYH14) [151,152] (further information can be searched at the inTOgen 

database using the link: https://www.intogen.org/search) (Figure 1).

Evidence supporting these new antitumorigenic roles has been obtained using several animal 

models. Thus, the analysis of CRISPR/Cas9-genome edited mice expressing RhoAG17V 
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from the endogenous RhoA locus has clearly established the role of this dominant negative 

mutant in T-cell lymphomagenesis [153] (Figure 3). The same results were obtained 

in leukemogenic experiments using mice reconstituted with RhoAG17V-expressing bone 

marrow precursors [154]. In both cases, however, this function could be only triggered 

upon the concurrent genetic elimination of Tet2, a transcriptional repressor that is usually 

mutated at the same time that RHOA in T-cell lymphomas [153,154]. Although the signaling 

involved is still unknown, available data suggest that RhoAG17V favors this tumorigenic 

process by activating the PI3K–AKT–mTOR axis in an ICOS receptor-dependent manner 

[153,154]. This, in turn, favors the differentiation and proliferation of the preneoplasic 

cells towards the follicular helper T cell lineage [153]. Interestingly, this is the T-cell 

lineage whose alteration leads to the formation of this type of leukemia in patients [153]. 

The expression of another dominant negative version, RhoAT19N, has been also shown to 

favor both Apc+/− (adenomatous polyposis coli)-driven colorectal cancer and metastasis. 

This protumorigenic effect is mediated in this case by the elevation of the signaling 

output from the WNT–β-catenin pathway [94] (Figure 3), suggesting that the effects of 

the RHOA dominant negative mutants are tumor type-specific. Other animal models have 

also demonstrated the implication of RHO signaling elements in cell transformation. Hence, 

the use of a Zebrafish model has demonstrated that the expression of the dominant negative 

(RHOAT19N) and constitutively active (RHOAQ63L) versions of RHOA promotes and abates 

KRAS oncogene-driven liver tumorigenesis, respectively [155]. As in the case of leukemia, 

the signaling pathways involved in these biological programs remain to be elucidated. 

Genetic analysis using genetically modified mice also indicates that the elimination of either 

RhoA or Myh9 favors tumorigenesis in many tissues [97,152,156–158] (Figures 1 and 3). 

Conversely, the regulatory subunits of the phosphatases that inactivate the myosin light 

chain behave as oncogenic drivers when tested in breast cancer models [152] (Figure 1). 

In the case of skin, it has been proposed that the effect of the loss of RhoA is linked to 

increased proliferation of keratinocytes due to elevated abundance of the RhoB GTPase 

[156], although this seems prima facie at odds with the tumor suppressor functions described 

for RhoB in the same tumorigenic protocols [159]. In the case of the loss of myosin 

heavy chain IIA (encoded by the Myh9 gene), there are conflicting reports on the possible 

mechanism involved as defects associated with the loss of p53 and the induction of genomic 

instability due to frequent alterations in cytokinesis have been postulated [157,158].

It is as yet unclear whether all these loss-of-function mutations in the RHOA pathway 

elicit the same pathobiological and clinical effects (Figure 4A). Given that it should be 

much easier to generate any random mutation that leads to the elimination of the protein, 

the detection of very specific RHOA point mutations in tumors suggests that they must 

confer some unknown Darwinian selective advantage that cannot be provided by the null 

mutations. Consistent with this idea, it has been shown that the signaling and pathogenic 

effects elicited by RhoAG17V in mouse lymphocytes cannot be recapitulated by the genetic 

deletion of the wild-type Rhoa locus [153]. We can also surmise that the dominant negative 

RHOA mutants will elicit wider signaling effects in cells than the signaling branch-deficient 

counterparts due to the ability to block upstream RHO GEFs (Figure 4A, compare model 

a with c), although this idea has not been experimentally validated as yet in primary tumor 

cells. Another lingering question in this area is the downstream pathways involved in the 
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engagement of these tumor suppression effects (Figure 4A). Members of the PKN family are 

obvious candidates, since the activation of these serine/threonine kinases will be abolished 

in the three classes of RHOA mutations described above in most cases [148] (Figure 4A, 

model c). Another possibility that does not exclude the previous one is that this biological 

response is mediated by the activation of actomyosin-dependent pathways (Figure 1), an 

idea supported by the tumor suppressor roles recently assigned to many myosin heavy 

chains [152,157,158]. This possibility seems at odds with the known proliferative effects 

induced by constitutively versions of ROCK2 in transgenic mice [65,66] (Figure 3), but 

is consistent with observations demonstrating that the addition of Y-27632, a drug that 

blocks ROCK, PKN and related AGC kinases, mimics the effect of ectopically expressed 

dominant negative versions of RHOA when added to intestinal organoids [30]. We can also 

speculate that the effects of these RHOA mutants could be just the consequence of the 

loss of normal biological processes not directly linked to tumor suppression. For example, 

the transformation associated with the loss of the mouse Myh9 gene has been recently 

attributed to cytokinesis defects that lead to increased genomic instability in mice [157]. A 

recent report suggests a more counterintuitive possibility, at least in the case of the dominant 

negative RHOA mutations found in lymphomas: a neomorphic, gain-of-function effect that 

can promote the activation of protumorigenic pathways (Figure 4A, point e). This idea 

derives from the observation that ectopically expressed RHOAG17V can tightly bind to the 

VAV1 GEF, a property that favors the RHOAG17V-mediated tethering of this GEF to the 

plasma membrane, its phosphorylation-mediated activation, and the subsequent engagement 

of VAV1-dependent signaling pathways [160]. Although the physiological significance of 

this mechanism remains to be corroborated in patient-derived tumor cells, the foregoing 

results remind us that we must approach the function of these unexpected RHOA pathway 

mutants with totally open minds. As in the case of the gain-of-function mutations, current 

data from genetically manipulated mice indicate that both the dominant negative and 

null RHOA gene mutations can only drive primary tumorigenesis when combined with 

additional genetic lesions [94,97,153,154,156]. This is consistent with the development of 

RHOA mutations in late stages of human tumors [137].

Before the identification of these RHOA mutations, the geranylgeranylated version of 

RHOB was the only classical RHO family member known to be associated with tumor 

suppressor activities [15]. However, recent data suggest that such activities can be also 

expanded to other RHO subgroups. Thus, PREX2 and PAK3 have been found recurrently 

deleted in pancreatic cancer and desmoplastic melanoma, respectively [25,161] (Figure 1). 

Signaling studies also suggest that TIAM1 might participate in the suppression of colorectal 

cancer by inhibiting the protumorigenic YAP/TAZ pathway [115]. At this moment, however, 

the relevance of these pathways in vivo remains to be validated using animal models. 

Finally, a study has reported that CDC42 protects against the spontaneous development 

of hepatocellular carcinoma in mice [162], an observation that further suggests a potential 

tumor suppressor function for this GTPase as well. However, mutations in this gene are 

very rare in the tumors that have been sequenced so far (Figure 2A). Taking together, these 

observations suggest that we are only seeing the tip of the iceberg regarding the implication 

of RHO-dependent pathways in tumor suppression.
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GTPase-independent functions of RHO signaling elements in 

tumorigenesis

Adding further complexity to the contribution of RHO proteins to the biology of cancer 

cells, recent observations indicate that RHO signaling elements can also trigger GTPase-

independent pro- and antitumorigenic functions. Examples of the former ones include the 

catalysis-independent stimulation of: (a) the K-RAS–RAF–ERK pathway by ARHGEF2 

(also known as GEF-H1) [163]. (b) The K-RAS–PI3K–AKT axis by P-REX2 [164]. (c) 

The YAP/TAZ complex by ARHGEF7 (also referred to as β-PIX) [165]. (d) The nuclear 

factor of activated T cells by VAV1 [166]. (e) The estrogen receptor by VAV3 [167]. This 

pathway is even less canonical than the others included in this list for it requires the 

nuclear localization of this GEF [168]. RAC1 itself can be also included here as it can 

stimulate mTOR signaling using a protein–protein interaction-based mechanism that takes 

place independently of the switch regions and the type of guanosine nucleotide state of the 

GTPase [169]. Examples for potential catalysis-independent tumor suppression functions 

include the ARHGEF3 (also known as XPLN and RHO GEF3)- and the VAV1-mediated 

inhibition of mTORC2 and the active cytosolic fragment of the NOTCH1 oncoprotein, 

respectively [170,171]. The tumor suppression roles in the latter pathway in T-cell acute 

lymphoblastic leukemia (T-ALL) have been recently demonstrated using both mouse models 

and patient-derived T-ALL cells [171]. They also probably operate in other tumors, as 

inferred by the presence of VAV1 mutations that generate proteins that cannot promote 

the degradation of NOTCH1 [172]. This probably explains the detection of both gain- 

and loss-of-function mutations in this gene in a variety of tumors [172] (Figure 1). 

Additional noncatalytic, adaptor-like functions have been described for RHOA GAPs (DLC 

family members, ARHGAP36) [56,173] and downstream effectors (PAK1) [174,175]. These 

noncanonical functions are probably more widespread, given that the catalytic domains 

of some RHO GEFs (e.g. ARHGEF7) and GAPs (e.g. ARHGAP36, SRGAP3) show no 

detectable enzyme activity. Some of these signaling elements also have isoforms generated 

by differential splicing that lack the catalytic domains (e.g. the short isoform of the GEF 

VAV3).

Organization of tumor promoting and suppressing functions

The roles of RHO signaling elements in tumor promotion and suppression raise the issue 

of how these antagonistic functions are segregated in tumors. In addition to its obvious 

academic interest, the elucidation of this issue is critical to establish the therapeutic 

viability of RHO pathways. Although little information exists as yet, we can infer some 

organizational possibilities from current experimental evidence. These two functions seem 

to be separated in some cases in different subtypes of the same tumor (Figure 4B, 

model on the left). For example, the loss- and gain-of-function RHOA mutations are 

preferentially found in lymphoma patients belonging to the memory and regulatory T-cell 

subtypes, respectively [53]. Similarly, the antitumorigenic and tumorigenic roles of VAV1 

in T-cell tumors are segregated between immature and mature T cells, respectively [171] 

(unpublished observations from our laboratory). On the other hand, data from carcinogen-

induced tumorigenesis experiments using Tiam1−/− and Rhob−/− knockout mice suggest 
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that the pro- and antitumorigenic roles of these proteins could be segregated in early and 

late phases of skin tumors, respectively (Figure 4B, model on the right). Accordingly, 

these two mouse strains display lower disease burden due to defects in tumor initiation 

but, on the other hand, the few tumors that eventually develop show more aggressive 

features than those from wild-type counterparts [99]. Bivalent functions of the RAC GAP 

β2-chimerin have also been recently described along the progression of breast tumors [82]. 

Tiam1 exhibits functions that could explain this late-phase tumorigenic effects, including 

those related to chromosomal stability and epithelial integrity [112,113,176,177]. It is worth 

noting, however, that these data can be alternatively explained by Darwinian selection events 

that could favor the emergence of alternative pathways to compensate for the absence of 

Tiam1 and RhoB during the tumor initiation phase. It will be interesting to generate in the 

near-future inducible knock-in mice to better dissect the orchestration of these disparate 

functions of RHO pathways in tumorigenic processes.

RHO pathway-based therapeutics

Given their roles in tumorigenesis, there has been a historical interest in the development 

of drug inhibitors for RHO signaling elements. Drug screenings carried out during the last 

decade have led, in fact, to a large menagerie of chemical probes that target the maturation 

of RHO GTPases, the interaction of RHO GTPases with upstream RHO GEFs, the catalytic 

activity of RHO GEFs, and the enzyme activity of downstream signaling elements [178] 

(Figure 5). Although these data look promising, we should be aware that they are associated 

with many drawbacks. One of them is that many of those inhibitors have been developed 

without taken into consideration the actual viability of them outside academic settings. Thus, 

inhibitors for geranylgeranyl transferases have been extensively pursued despite the known 

fact that these enzymes contribute to the posttranslational modification of a large plethora 

of intracellular substrates. Likewise, inhibitory compounds for RHO GTPases have been 

isolated despite available data from knockout mice, indicating that such inhibition would 

be probably linked to unavoidable toxic effects [1]. Intense efforts have also been focused 

on RHO GEF inhibitors despite the widely accepted poor druggability of their catalytic 

domains [11]. Very limited efforts have been also devoted to determining the toxicity and 

target specificity of most of those compounds in vivo. Another draw-back is the chronic 

lack of adequate mouse models in this field that could allow us to establish the usefulness 

and collateral side effects of the systemic inhibition of the selected drug targets in fully 

formed tumors. Last but not least, the recently described tumor suppression activities of 

RHO signaling elements raise concerns regarding the general application of RHO pathway 

inhibitors without the proper identification of the specific roles they play in each tumor type.

Notwithstanding these Damocles’ swords, it is obvious that the targeting of RHO pathways 

is still a potentially interesting therapeutic strategy for cancer and other epidemiologically 

relevant diseases. In my view, the most feasible drug targets are the RHO signaling elements 

that show intrinsic catalytic activity. In this category, an obvious option is still the upstream 

RHO GEFs (Figure 5). The catalytic domain of these enzymes is not easily druggable as 

discussed above. However, some GEFs display both multidomain catalytic cassettes and 

allosteric mechanisms of activation (e.g. VAV family proteins and ARHGEF12) that can be 

used for the development of high-affinity and specific inhibitors targeting pockets outside 
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the GEF–GTPase-binding interface. The recent isolation of inhibitors (Y16 and derivatives) 

that dock onto a groove present between the catalytic and adjacent pleckstrin homology 

domain of ARHGEF12 demonstrates that this type of avenues is possible for some GEFs 

[179] (Figure 5). Tool kits to inhibit these enzymes can be wider than chemical drugs in the 

near future, as evidenced by the recent development of both peptide (TRIPE32G) and RNA 

(K11, K91) aptamers that can inhibit TRIO and TIAM1, respectively [180,181] (Figure 5). 

Effective efforts in any of those directions, however, will need a better understanding of the 

3D structure of those GEFs. These therapies are potentially interesting given that, unlike 

the case of RHO GTPases, the systemic inhibition of most RHO GEFs does not usually 

lead to dire toxic effects. However, in view of recent data, we must clarify in advance the 

implication of each of the potential target GEFs in the regulation of catalysis-dependent 

tumor suppression mechanisms. Other obvious options are RHO downstream kinases such 

as PAK and ROCK family proteins (Figure 5), although the analyses of mouse models 

suggest that some of them might be associated with unavoidable toxicity [47]. An extensive 

collection of ATP competitive and noncompetitive inhibitors for PAK family members has 

been already developed although, so far, none of them have reached the clinic due to 

chemical instability, poor biocompatibility or high toxicity [47,178] (Figure 5). A large 

number of ATP competitive inhibitors for ROCK family members have also been developed 

(Figure 5). These inhibitors do not seem to be toxic, although they are, in general, highly 

unspecific as they can target many other related kinases. Some of these inhibitors have 

moved into the clinic to treat cerebral vasospasms, pulmonary hypertension and glaucoma, 

although none of them have been approved as cancer therapies [54,178]. Further efforts 

in this area will probably result in more specific and biocompatible drugs for these and 

other RHO downstream effectors in the near future. However, as in the case of the GEFs, 

we must clarify before whether these inhibitors could lead to the unwanted inactivation 

of tumor suppression mechanism as inferred from the results with the Y-27632 inhibitor 

in some organoid models [30]. Another complementary, long-term avenue is to dig deeper 

into the most distal downstream elements of the RHO-dependent pathways to identify new 

druggable targets. For example, the analysis of the VAV family-dependent transcriptome 

has led to the identification of druggable downstream targets whose inactivation prompted 

defects in the fitness of breast cancer cells similar to those found upon the depletion of 

VAV family proteins [81]. Additional targets could be discovered when the still limited 

understanding of the contribution of RHO pathways to the transcriptome of cancer cells is 

expanded in the near future. Considering the recently discovered variegated roles of RHO 

pathways in cancer, the implementation of any those potential therapies will necessarily 

involve a prior stratification of patients to limit their application to those where the RHO 

pathways play pro-rather than antitumorigenic roles. It is also likely that those drugs will 

have to be used in combinatorial therapies, given the intrinsic mutational complexity of most 

tumors. Evidence for the synergistic effects of the concurrent inhibition of RHO pathway 

with K-RAS signaling elements, cell cycle regulators, and standard chemotherapy agents is 

already available in preclinical models [118,120,129,131,132,182].
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Concluding remarks

Significant advances have been made during these last years in the understanding of the 

modus operandi of RHO GTPases in cancer. Despite this, we still have a long way to go 

to clarify many pending questions such as the functional and clinical significance of many 

of the mutations found in tumors, the pathways that contribute to cancer development, the 

organization of the RHO tumor promoter and suppression functions in different cancers, 

and the identification of the best Achilles’ heels to target pharmacologically within those 

pathways. To this end, we will need to implement better animal models and more close-to-

the-clinic experimental tools such as patient-derived xenografts, organoids, and primary 

cancer cells. Finally, the development of better pharma-comimetic mouse models, the 

selection of wider ranges of druggable targets, a better understanding of the 3D structures 

of the selected targets, the development of alternative pharmacological tool kits, and further 

screening methods should also allow us to reach the holy grail of the development of 

effective therapies in the near future.
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Abbreviations

APC adenomatous polyposis coli

Dock dedicator of cytokinesis

GAPs GTPase-activating proteins

GDIs GDP dissociation inhibitors

GDS GDP dissociation stimulator

GEFs GDP/GTP exchange factors

PAK p21-activated kinase

PI3K phosphatidylinositol 3-phosphate kinase

PKN protein kinase N

ROCK RHO-associated coiled-coil containing protein kinase

T-ALL T-cell acute lymphoblastic leukemia.
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Figure 1. Main regulatory cycle of RHO proteins.
GTPases, regulators, and effectors are shown in brown, green, and blue boxes, respectively. 

Genetic alterations found in some of these signaling elements in tumors are shown 

(inset). Inactivation steps are shown with blunted lanes. The indicated mutations have 

been collected from information present in the cBioPortal (http://www.cbioportal.org), St. 

Jude Cloud PeCan (https://pecan.stjude.cloud/home), and recent publications on this topic. 

iRHO, immature RHO; RHOGDP, GDP-bound RHO; RHOGTP, GTP-bound RHO; CIT, 

citron kinase; PI45K, phosphatidylinositol-4-phosphate 5-kinase; MLC, myosin light chain; 
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MLCK, myosin light chain kinase; MLCP, myosin light chain phosphatase; MYH, myosin 

heavy chain; PIP2, phosphatidylinositol (4,5) biphosphate; PIP3, phosphatidylinositol (3,4,5) 

triphosphate.
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Figure 2. Mutational pattern of RAC1, RHOA, and CDC42 genes in human tumors.
(A) cBioPortal-generated data depicting the genetic alterations found both in human tumors 

and cancer cell lines for the indicated RHO family genes (left). The type of mutation is 

indicated at the bottom. The frequency of genetic alterations found for each gene in the 

total number of samples that have been sequenced is indicated on the left. (B) Depiction of 

the main mutations found in RAC1 (top) and RHOA (bottom) genes. The most frequently 

mutated amino acid positions are shown in larger font. See inset for further information. (C) 
Examples of main mutations found in RAC1 (left) and RHOA (right) genes in the indicated 
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tumors. The most frequent mutations are shown in larger fonts. These data were collected 

as in Figure 1. AITL, angioimmunoblastic T-cell lymphoma; PTCL-NOS, peripheral T-cell 

lymphoma-not otherwise specified.
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Figure 3. Effects of indicated alterations in RHO signaling elements in tumorigenic processes in 
mouse models.
Protumorigenic (top-pointing red arrows), antitumorigenic (bottom-pointing blue arrows), 

and no significant effects (green equal sign) are indicated. ArhGEF4 and Spata13 are also 

known as Asef1 and Asef2 GEFs, respectively. DMBA, 7,12-dimethylbenz(a) anthracene; 

TPA, 12-O-tetradecanoylphorbol-13-acetate; APC, adenomatous polyposis coli; MLL-AF9, 

mixed lineage leukemia-MLLT3 (AF9) fusion oncoprotein; TCR–, T-cell receptor negative.
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Figure 4. Type of putative alterations in loss- and gain-of-function mutations in RHO signaling 
elements.
(A) Potential signaling effects induced by wild-type (a), nucleotide-free mutant (b and d), 

and signaling branch defective mutant (c) versions of RHOA in cells. In model b, the 

expression of the dominant negative RHOA mutant leads to the disruption of downstream 

signaling that can favor tumorigenesis by either the elimination of tumor suppressor 

functions or the dysfunction of normal biological processes. In addition, the binding of 

this mutant to upstream RHO GEFs can disrupt the signaling of the protein product of the 
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wild-type RHOA allele present in cancer cells and of additional GTPase substrates of those 

RHOA GEFs. This latter defect should not occur in the case of signaling branch-deficient 

RHOA mutants (model c). These latter mutants should also have a minor impact on the 

overall downstream signaling of the normal protein (model c). In model d, the expression 

of the nucleotide-free RHOA mutant protein elicits a neomorphic, gain-of-function effect 

on upstream RHO GEFs. This model does not exclude the cooperativity between these 

pathways and the defective RHOA signaling proposed in the other models. This possibility 

was not included for the sake of simplicity. (B) Depiction of the possible segregation of the 

tumor promoter and suppression functions of RHO pathways in either clinically different 

subtypes of the same tumor (left) or in different progression stages of the same tumor type 

(right) according to current experimental evidence. See further details in the main text. In 

A and B, loss- and gain-of-function mutations are depicted as blue and red 10 point stars, 

respectively.
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Figure 5. Pharmacological inhibition of RHO-regulated pathways.
Inhibitors targeting the indicated regulatory and effector steps are shown in light red 

speech bubbles. Secramine only works on CDC42, favoring its interaction with RHO 

GDIs. EHT1864 traps RHO proteins in the GDP-bound form. The rest of compounds 

are inhibitory. The list of PI3Kβ drugs includes both isoform-specific and pan-specific 

compounds.
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