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Abstract
Most cells store metabolic energy in lipid droplets (LDs). LDs
are composed of a hydrophobic core, covered by a phospholipid
monolayer, and functionalized by a specific set of proteins.
Formation of LDs takes place in the endoplasmic reticulum
(ER), where neutral lipid biosynthetic enzymes are located.
Recent evidence indicate that this process is confined to spe-
cific ER subdomains, where proteins meet to initiate LD as-
sembly. The lipodystrophy protein Seipin, is emerging as a
major coordinator of LD biogenesis. Seipin forms a large olig-
omeric toroidal structure, which traps neutral lipids to promote
LD nucleation. Here, we discuss the role of LD biogenesis
factors that associate with Seipin to assemble functional LDs.
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Introduction
Lipid droplets (LDs) constitute an intracellular
compartment dedicated for storing metabolic energy in
the form of neutral lipids (NLs). The anhydrous core of
these droplets is composed of the two most abundant
NLs, triacylglycerol (TAG) and steryl esters. This oily
drop is shielded from the aqueous environment by a
monolayer of phospholipids, which harbors a set of LD-
specific proteins, including lipases, acyltransferases and
scaffolding proteins [1].

LDs emerge from the ER membrane, in which the
enzymes that drive the synthesis of NLs reside [2].
However, LDs do not appear to be formed at random
locations throughout the ER. Studies in both yeast and
animal cells suggest that the establishment of ER sites
from where LDs are being formed requires a delicate
interplay between locally enriched LD biogenesis fac-
tors, lipid biosynthetic enzymes and their regulators,
specific lipids, as well as certain biophysical properties
of the membrane to initiate efficient LD forma-
tion [3,4].

Over the past years, proteins that play important func-
tions in the earliest steps of LD formation have been
identified and their structural and functional charac-
terization is now starting to provide a first glimpse into
their mode of action. These include Seipin and its
associated protein LDAF1/Promethin, the ER tubulat-
ing protein Pex30, the Lipin complex, which regulates
production of diacylglycerol (DAG), and NL biosyn-
thetic enzymes, including the diacylglycerol acyl-
transferases, which promote LD expansion at the ER-
LD interface. Droplets emerging from the ER are then
stabilized by members of the perilipin (PLIN) family of
LD scaffolding proteins (see Table 1 for a description of
the respective yeast and mammalian proteins).

The recruitment of these LD biogenesis factors occurs
in an ordered manner, thus defining early steps in LD
formation. Establishment of these ER sites requires the
colocalization of Seipin with the Lipin complex to
locally produce DAG. Recruitment of the TAG biosyn-
thetic enzymes then promotes localized synthesis of
TAG. LD biogenesis factors interact with DAG and TAG
to enhance the local concentration of NLs, and their
nucleation into nascent LDs. Thus, the colocalization of
Seipin with the Lipin complex is key to activate discrete
sites for LD formation [5].

In this review, we discuss recent insights into how the
ordered assembly of LDs is restricted to few ER
subdomains, effectively preventing the detrimental
synthesis and accumulation of TAG throughout the ER
membrane [6,7], with an emphasis on the recently
described structure and function of Seipin.
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The lipin complex controls the branch point
between membrane expansion and LD
formation
The establishment of subdomains within the ER
membrane from where droplets are assembled not only
depends on a defined set of proteins, but also the
presence of specific lipids, whose biochemical and bio-
physical properties promote the assembly of LD
biogenesis factors [8,9]. In particular, DAG has emerged
as a key lipid intermediate that plays a critical function
at LD biogenesis sites. DAG serves as an immediate
precursor to TAG formation catalyzed by ER residential
acyltransferases, which are themselves recruited at
active LD biogenesis sites [5,10e12].

DAG is produced by the dephosphorylation of phos-
phatidic acid (PA), a reaction that is catalyzed by the
Lipin class of lipid phosphatases (Pah1 in yeast) [13,14].
Thereby, Lipin/Pah1 activity controls the crucial bifur-
cation point between phospholipid synthesis and
membrane expansion, on the one hand, and synthesis of
the storage lipid TAG, on the other (Fig. 1). Lipin ac-
tivity is tightly regulated by phosphorylation. The
enzyme is activated by a membrane embedded hetero-
meric phosphatase complex composed of the catalytic
subunit Nem1/CTDNEP1, and the regulatory subunit
Spo7/NEP1-R1 (Yeast/Mammalian; see Table 1)
[13,14]. In addition, this phosphatase complex is
directly inhibited by interaction with Ice2, a polytopic
ER membrane protein required for the inheritance of
the cortical ER [15]. By inhibiting Pah1 activity, Ice2

promotes TAG consumption and thus regulates the
switch from neutral lipid storage to consumption [16].
Interestingly, Ice2 belongs to the Serinc (serine incor-
porator) family of proteins, which contain a lipid-binding
groove and restrict HIV infectivity [17,18]. Importantly,
lack of Pah1 function causes ER expansion and the
accumulation of neutral lipids, particularly steryl esters,
throughout the ER membrane [7]. This suggests that
DAG has a function in LD formation that is distinct
from its role as a direct precursor to TAG forma-
tion [7,8,19].

The biophysical properties of the ER
membrane affect LD formation
Multiple lines of evidence indicate that the biophys-
ical properties of the ER membrane, including its lipid
composition, membrane curvature, and surface tension
affect the formation of LDs and/or their emergence
towards the cytoplasm. This is illustrated by the
recent emergence of Pex30 as an important factor in
LD formation.

The Pex30 family was originally identified as proteins that
affect thenumber and size of peroxisomes andPex30 itself
regulates the formation of pre-peroxisomal vesicles from
the ER in yeast [20]. Pex30 localizes to ER subdomains,
where both the biogenesis of peroxisomes and that of LDs
occurs [21]. Pex30 and its human homolog, multiple C2
domain containing transmembrane protein (MCTP2),
harbor a reticulon homology domain (RHD), and purified
Pex30 induces membrane tubulation in vitro indicating

Table 1

Overview of key factors of lipid droplet biogenesis.

Yeast Mammals Protein Function Key Reference

A. Key LD biogenesis proteins from yeast and mammals
Sei1 Seipin Defines sites of LD biogenesis in the ER by sequestering DAG/TAG in its

toroidal rings, facilitates flow of TAG between LDs
[33,37–39,42,43]

Ldb16 – Yeast-specific subunit of Seipin [36,41]
Ldo16/Ldo45 LDAF1/Promethin Seipin partner protein, their association with Seipin is promoted by TAG [44–47]
Pex30 MCTP2 Membrane curvature inducing reticulon homology domain containing ER

protein, cooperates with Seipin in LD formation
[6,20,21,24]

Pet10 Perilipins LD scaffolding proteins that regulate lipase activity [52]
[53]

B. Regulators and enzymes of lipid synthesis
Pah1 Lipin Converts PA to DAG and gets recruited to Seipin-marked ER sites to

regulate LD biogenesis
[5,7,13,14,50,51]

Nem1/Spo7 CTDNEP-1/NEP1-R1 Heteromeric phosphatase complex that regulates activity of Pah1/Lipin,
gets recruited to Seipin sites upon LD induction

[5,13,14]

Ice2 Serinc family members Promotes ER membrane biogenesis by inhibiting Nem1/Spo7
phosphatase activity

[15–17]

Sct1, Gpt2 GPAT Catalyzes acylation of glycerol-3-phosphate to lyso-PA, negatively
regulated by Seipin

[10,12,48,49]

Slc1, Ale1 AGPAT Catalyzes acylation of lyso-PA to form PA, interacts with Seipin [10,49,50]
Dga1 DGAT Diacylglycerol acyltransferase, catalyzes formation of TAG, colocalizes

with sites of LD biogenesis
[5,10,11]

Faa1 ACSL3, FATP1 Acyl-CoA synthetases, localize to sites of LD formation [11,54,55]

2 Membrane Trafficking 2022

Current Opinion in Cell Biology 2022, 75:102070 www.sciencedirect.com

www.sciencedirect.com/science/journal/09550674


that it promotes positive membrane curvature [20]. In
addition to theRHDdomain, Pex30 contains aC-terminal
Dysferlin (DysF) domain [20]. Originally identified in a
C. elegans gene required for the maturation of spermatids
(FER-1), and then found to be present in human ferlins,
including dysferlin and myoferlin, DysF domain contain-
ing proteins havebeen implicated inmembrane repair and
lipid remodelling [22,23]. The DysF domain of Pex30 is
essential for the function of Pex30 in LD formation,
suggesting that it controls local membrane properties
[24]. Pex30 colocalizes in theERwith Seipin and a double
mutant lacking both proteins exhibit a synthetic growth
defect, fails to generate properLDs and accumulatesTAG
in the ER, indicating that Seipin cooperates with Pex30 in
LD biogenesis [6,21]. Consistent with such a collabora-
tion, Pex30 is mislocalized to a single punctum in cells
lacking Seipin [6,21]. In cells missing Pex30, on the other
hand, Seipin still localizes to discrete ER sites, however,
these sites fail to recruit TAG producing enzymes [5].
This suggests that Pex30 plays a crucial role in organizing

ER subdomains that are permissive for TAG synthesis and
droplet assembly.

Local changes in membrane geometry and/or lipid
composition promoted by Pex30 at sites of LD forma-
tion might be important to accommodate DAG and/or to
facilitate nucleation of TAG within the ER bilayer
[6,21,24]. Consistent with this hypothesis, LD forma-
tion shows preference towards tubular ER membrane
over ER sheets and both Seipin and DAG preferentially
enrich at ER tubules to promote droplet nucleation
[25]. Moreover, TAG accumulation in ER sheets is
energetically favorable compared to ER tubules, thus
either promoting outflow of TAG from tubules or their
condensation into LDs [25,26]. In agreement with this
notion, in vitro LD nucleation can occur by enhancing
membrane curvature [25].

In addition to membrane curvature, the structure of
lipids and their asymmetric distribution at LD

Figure 1

Lipin activity controls membrane expansion and storage lipid synthesis. The activity of the phosphatidate phosphatase, Lipin (Pah1), which pro-
motes hydrolysis of phosphatidic acid (PA) to diacylglycerol (DAG), is controlled by the ER localized phosphatase complex Nem1/Spo7. While PA acts as
precursor for the synthesis of abundant phospholipids and hence for membrane expansion, DAG acts as substrate for production of the storage lipid TAG
by acyltransferases, such as DGAT/Dga1, and thus induces LD biogenesis.
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Figure 2

The ordered formation of LDs at discrete sites in the ER membrane. a) LD biogenesis occurs at discrete ER domains. Fluorescence microscopy
image of a yeast strain expressing mCherry-tagged Seipin, induced to form TAG, which drives de novo formation of LDs. Scale bar, 5 mm. b, c) Schematic
view of interactions between components needed for LD formation. Seipin is required at the center to promote NL nucleation within the ER membrane.
Seipin is assisted by LD factors such as Pex30, and LDAF1/Promethin (see Table 1), and controls the production of PA. The Nem1/Spo7 complex
activates Lipin to promote DAG formation, which then serves as substrate for TAG synthesis by DGATenzymes. Nem1/Spo7 activity is inhibited by Ice2.
Upon LD growth and maturation, LD proteins including perilipins (PLIN) localize onto the limiting monolayer. DAG in the ER membrane is depicted by red
circles and TAG by the yellow sphere. d) Model of the oligomeric structure of human Seipin. NL nucleation is promoted by the membrane apposed
hydrophobic helix (red) within the luminal domain of the Seipin inner ring. The two transmembrane domains of Seipin are not shown.
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biogenesis sites can alter local surface tension and affect
LD emergence [9,27,28]. Negative curvature inducing
lipid, such as DAG, will stabilize the embedded state of
LDs in the ER membrane, whereas lipids that induce
positive curvature, such as lysophospholipids, reduce
surface tension and promote emergence of small LDs
both in vitro and in vivo [8,9,29]. Recent results indicate
that even the acyl chain composition of ER phospho-
lipids affects LD nucleation. Elevated levels of satu-
rated or short chain fatty acids promote accumulation of
neutral lipids within the ER membrane and impair NL
nucleation, by affecting phase separation of NLs in the
membrane [19]. In vitro experiments with giant unila-
mellar vesicles indicate that LDs bud towards the side
of the membrane that has a higher coverage with
phospholipids and proteins, resulting in LDs with lower
surface tension [28]. Consistent with this, for an LD to
emerge towards the cytoplasm, the cytoplasmic leaflet
of the ER membrane needs to be replenished with
phospholipids, particularly phosphatidylcholine [28]. In
the absence of this membrane remodeling, LDs remain
exposed to the ER lumen, as observed upon rapid oleate
induced expansion of LDs in yeast [28].

Seipin oligomers form a membrane
embedded toroidal structure that traps
neutral lipids
Seipin is the most extensively studied LD biogenesis
protein. It was identified as an ER protein that localizes
at the interface between the ER membrane and LDs to
control the number, size, andmorphology of LDs [30,31].
In the absence of Seipin, LDs are formed stochastically,
resulting in many tiny or few supersized LDs, at ectopic
sites in the ER. These LDs have an aberrant lipid and
protein composition, and are not fully functional
[5,32e36]. Expression of the human Seipin BSCL2
(Berardinelli-Seip congenital lipodystrophy type 2)
complements a yeast null mutant phenotype indicating
that the mode of action of Seipin is conserved [30,31].

Seipin contains short N- and C-terminal domains ori-
ented towards the cytoplasm, two transmembrane do-
mains (TMDs), and a highly conserved large ER luminal
domain [30,31]. The two TMDs together with the
luminal domain are critical for Seipin function, as these
domains are sufficient to rescue the lack of Seipin
function [35]. Recent structural characterization of
human, fly, and yeast Seipin by cryo-electron microscopy
revealed that it forms a large membrane-embedded ring-
shaped oligomeric structure composed of 11, 12, and 10
subunits, respectively [37e39] (Fig. 2). Despite the
differences in subunit number, Seipin monomers form a
toroidal structure of w15 nm in diameter [37e39].
These structures have provided insights into the mode
of action of Seipin. Seipin oligomerization is critical for
its function as a point mutant version of Seipin (A212P)
associated with lipodystrophy, forms smaller oligomers

and fails to rescue Seipin associated LD biogenesis de-
fects [34].

The Seipin structure revealed two notable features.
First, a large ER luminal domain that adopts an eight-
stranded beta-sandwich fold, characteristic of lipid-
binding proteins such as the sterol-binding Niemann
Pick C2 protein (NPC2) [38,39]. This suggests that
Seipin may bind lipids in the luminal leaflet of the ER
membrane. In agreement with this, in vitro studies with
full length and a truncated version of Seipin harboring
only the lipid binding domain revealed binding of the
anionic phospholipid PA [38]. This lipid-binding
domain of Seipin is important for LD formation as mu-
tations in this domain give rise to lipodystrophy [40].

The second interesting feature is the presence of a
hydrophobic helix (HH) in the mammalian, and insect
Seipin. This HH is apposed to the luminal leaflet of the
ER membrane and is sufficient to bind LDs [39]. The
yeast protein lacks this membrane apposing hydropho-
bic helix, but its function is provided by Ldb16, a yeast-
specific subunit of the Seipin complex [37]. Ldb16 is an
ERmembrane protein, with no known human homologs.
Lack of either Seipin or Ldb16 results in a similar LD
biogenesis defect, that can be rescued by expression of
human Seipin [36,41].

Molecular dynamics simulations (MDS) identified key
serine residues within the HH of Seipin that directly
interact with the carbonyl groups of DAG and TAG
within the ER membrane [42,43]. These interactions
result in effective nanoscale sequestration of NLs at the
inner opening of the Seipin ring, thereby promoting
nucleation of NLs, their growth into nascent LDs and
possibly even LD emergence [42,43]. Unlike the human
and fly Seipin structures, that of yeast Seipin includes
regions of the TMDs and MDS indicate that these
TMDs contribute to TAG accumulation in the Seipin/
Ldb16 complex [37]. Thus, Seipin facilitates clustering
of DAG and/or TAG at LD biogenesis sites and its
TMDs can contribute to a local membrane-environment
that is conductive for proper LD formation, for example,
by preventing diffusion of TAG into the bulk of the ER,
which may explain why LDs preferentially form at
Seipin-defined sites [33,37,42e44]. Consistent with a
propensity of Seipin to concentrate DAG, ER subdo-
mains containing Seipin and Nem1 are enriched in DAG
as indicated by their colocalization with an ER-DAG
sensor [5].

Seipin cooperates with LDAF1/Promethin in
nucleation of TAG
Seipin has recently been shown to form a large
w600 kDa hetero-oligomeric complex with Lipid
Droplet Assembly Factor 1 (LDAF1) also known as
Promethin [44,45]. LDAF1 is upregulated during
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adipogenesis, localizes to LDs, and copurifies with
Seipin [44,45]. LDAF1 is widely conserved across spe-
cies and shows remote homology to the yeast LD Or-
ganization protein Ldo45 and its splice variant Ldo16
[46,47]. Interestingly, LDAF1 interacts with the HH of
human Seipin and this association is promoted by TAG
[42,44]. This interaction might be promoted by local
membrane alterations induced by TAG clustering within
the Seipin oligomer, providing a favorable environment
for LDAF1 association [42]. Consistent with this prop-
osition, the LDAF1-Seipin complex copurifies with
TAG, whereas Seipin alone does not, suggesting that the
complex has a higher propensity to trap TAG than
Seipin alone [44]. Oligomers of LDAF1 and Seipin form
a membrane-embedded complex with as many as 66
transmembrane domains. Such an assembly of hydro-
phobic helices may serve to promote TAG nucleation.
Consistent with this, LD formation is delayed and not as
efficient in the absence of LDAF1, with fewer LDs
formed for a given amount of TAG. Thus, LDAF1 ap-
pears to lower the energy barrier for LD formation,
allowing it to occur at lower TAG concentration [42,44].
Upon LD growth and expansion, LDAF1 dissociates
from Seipin to move over the LD periphery [44].
LDAF1 has been proposed to adopt a hairpin topology,
promoting positive membrane curvature and allowing it
to associate with both the ER bilayer and the LD surface
monolayer [44].

Does Seipin coordinate lipid synthesis?
Growing evidence suggest that Seipin does not only
interact with LD biogenesis factors to control the
nucleation of TAG in the ER membrane, but it also
regulates lipid synthesis. Lack of Seipin function results
in elevated levels of PA and this might inhibit the
peroxisome proliferator-activated receptor gamma
(PPARg)-dependent transcriptional cascade needed for
adipogenesis [30]. Seipin physically interacts with the
glycerol-3-phosphate acyltransferase (GPAT) and in-
hibits its activity to reduce PA synthesis and thereby
controls LD expansion [10,48] (Fig. 2). In agreement
with this, impaired LD biogenesis in Seipin mutants is
partially rescued by inhibiting GPAT activity, whereas
overexpression of GPAT blocks adipogenesis and in-
duces supersized LDs [48]. Moreover, Seipin also in-
teracts with the second acyltransferase enzyme needed
for PA synthesis, the acylglycerolphosphate acyl-
transferase (AGPAT), and with Lipin [10,49e51].
Thereby, Seipin might not only control the local pro-
duction of DAG, but the entire supply chain needed to
provide TAG, as well as LD nucleation.

Future directions
Recent advances in defining factors that affect the
nucleation, growth and emergence of LDs at specific ER

subdomains have provided insights into the mechanisms
underlying LD biogenesis. By employing a combination
of in vivo, in vitro, and in silico approaches, a broader un-
derstanding of this complex process has started to
emerge. Impaired assembly of droplets due to lack of
key LD biogenesis factors or altered biophysical prop-
erties of the ER membrane results in lipid storage dis-
orders. Future work will likely reveal how ER sites
specialized for LD formation are selected and how the
process is regulated. Elucidation of the function of
Seipin partner proteins, such as LDAF1/Promethin in
mammals and Ldo16/45 in yeast, and their role in LD
assembly is also anticipated. In addition, addressing the
function of the ER luminal lipid binding domain of
Seipin and how Seipin affects the exchange of proteins
and lipids between the ER and LDs will likely improve
our understanding of this key protein sitting at the ER-
LD junction. What is the role of the Pex30 ER shaping
protein in regulating lipid and protein composition at
LD biogenesis sites? How does lack of Seipin inhibit
adipogenesis and manifests in lipodystrophy? How does
Seipin coordinate lipid synthesis? Addressing these
outstanding questions is likely to bring novel insights
into the mode of action of major players in LD assembly
and thereby advance our understanding of lipid stor-
age pathologies.
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