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Abstract

3D motion estimation from cine cardiac magnetic resonance (CMR) images is important for the 

assessment of cardiac function and the diagnosis of cardiovascular diseases. Current state-of-the 

art methods focus on estimating dense pixel-/voxel-wise motion fields in image space, which 

ignores the fact that motion estimation is only relevant and useful within the anatomical objects 

of interest, e.g., the heart. In this work, we model the heart as a 3D mesh consisting of epi- 

and endocardial surfaces. We propose a novel learning framework, DeepMesh, which propagates 

a template heart mesh to a subject space and estimates the 3D motion of the heart mesh from 

CMR images for individual subjects. In DeepMesh, the heart mesh of the end-diastolic frame of 

an individual subject is first reconstructed from the template mesh. Mesh-based 3D motion fields 

with respect to the end-diastolic frame are then estimated from 2D short- and long-axis CMR 

images. By developing a differentiable mesh-to-image rasterizer, DeepMesh is able to leverage 

2D shape information from multiple anatomical views for 3D mesh reconstruction and mesh 

motion estimation. The proposed method estimates vertex-wise displacement and thus maintains 

vertex correspondences between time frames, which is important for the quantitative assessment 

of cardiac function across different subjects and populations. We evaluate DeepMesh on CMR 

images acquired from the UK Biobank. We focus on 3D motion estimation of the left ventricle 

in this work. Experimental results show that the proposed method quantitatively and qualitatively 

outperforms other image-based and mesh-based cardiac motion tracking methods.

This work is licensed under a BY 4.0 International license.

Correspondence to: Qingjie Meng.

Corresponding author: Qingjie Meng (q.meng16|w.bai|drueckert@imperial.ac.uk). 

Europe PMC Funders Group
Author Manuscript
IEEE Trans Med Imaging. Author manuscript; available in PMC 2024 April 03.

Published in final edited form as:
IEEE Trans Med Imaging. 2023 December 08; 43(4): 1489–1500. doi:10.1109/TMI.2023.3340118.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://creativecommons.org/licenses/by/4.0/


Index Terms

3D motion tracking; 3D mesh reconstruction; cine CMR; deep learning

I Introduction

ESTIMATING left ventricular (LV) myocardial motion is important for the detection of 

LV dysfunction and the diagnosis of myocardial diseases [1], [2]. Recent works utilize 3D 

surface meshes to represent the anatomy and assess the ventricular structure and function 

from meshes, e.g., quantifying pathological cardiac remodeling [3] or characterizing LV 

motion phenotypes [4]. However, it remains a challenging problem to estimate cardiac 

motion on meshes directly from images, in particular, to keep the same mesh structure and 

vertex correspondence. Most recent cardiac motion tracking approaches utilize cine CMR 

images to estimate a dense motion field which represents pixel-/voxel-wise deformation 

in the image space, e.g., [2], [5]–[12]. Mapping the deformation from a pixel-/voxel-wise 

representation to a vertex-wise representation on a cardiac mesh is typically inefficient and 

can reduce the accuracy of motion estimation. Specifically, a 2D pixel-wise motion field 

only considers the motion of the heart within a single view plane and does not provide 

complete 3D motion information. Using post-processing steps to convert 3D voxel-wise 

motion fields to 3D vertex-wise displacements may impair motion estimation accuracy due 

to interpolation.

In this work, we propose a novel learning-based method DeepMesh for estimating 3D 

cardiac motion on the heart mesh from 2D cine CMR images. The proposed method 

propagates a single template mesh to individual subjects and estimates both in-plane and 

through-plane motion on meshes by integrating information from short-axis (SAX) and 

long-axis (LAX) view images. Specifically, DeepMesh first utilizes a template heart mesh 

containing the epi- and endocardial surfaces to reconstruct the mesh at the end-diastolic 

(ED) frame for an individual heart from the input ED frame multiview images. By 

deforming this template mesh, the proposed approach maintains the same mesh structure 

at the ED frame for all subjects. Subsequently, the multi-view images at the ED and 

t-th frames are utilized to directly estimate the 3D motion on the mesh. The estimated 

mesh motion explicitly shows the 3D displacement of each vertex from the ED frame to 

the t-th frame, and thus is able to maintain mesh structure and vertex correspondences 

between time frames. A differentiable mesh-to-image rasterizer is introduced during training 

to generate 2D soft segmentations from the 3D mesh. By comparing predicted 2D soft 

segmentations with ground truth 2D segmentations, the differentiable rasterizer allows 

leveraging of 2D multi-view anatomical shape information for both 3D mesh reconstruction 

and motion estimation. During inference, our model generates a sequence of meshes, which 

characterises the heart motion across the cardiac cycle. Here, in this work, we model the 

left ventricle as a 3D mesh consisting of epi- and endocardial surfaces and estimate the LV 

myocardial motion.
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Contributions

This paper extends a preliminary version of the work presented at the MICCAI 2022 

conference [13]. In addition to the work in [13], the main contributions in terms of 

methodology and evaluation are summarized as follows:

• We additionally introduce a template-based mesh reconstruction module. This 

module reconstructs the ED frame mesh of individual subjects from a cardiac 

template and therefore, enables subsequent mesh-based motion tracking. With 

the mesh derived from the template, the proposed method is able to maintain the 

number of vertices and faces in the cohort.

• We add a new regularization term to the motion estimation module in [13] and 

demonstrate that this leads to an improved performance in motion tracking.

• We conduct a more thorough experimental analysis of the proposed method. We 

quantitatively and qualitatively evaluate the performance of mesh reconstruction 

and mesh-based motion tracking. We additionally compare the proposed method 

with two state-of-the-art motion tracking methods which use multi-view images 

[12], [13]. Moreover, we perform an extensive ablation study with respect to 

anatomical views, loss combinations and hyper-parameter selections.

II Related work

A Image-based motion estimation

Many cardiac motion estimation methods, including conventional methods and deep 

learning-based methods, consider motion tracking within image space. They typically use 

image registration algorithms to estimate 2D pixel-wise or 3D voxel-wise motion fields.

1 Conventional methods—Image registration has been applied to cardiac motion 

estimation in previous works. For example, the free form deformation (FFD) method for 

non-rigid image registration [14] has been widely used for cardiac motion estimation in 

many recent works, e.g., [2], [6], [8], [15]–[19]. De Craene et al. [20] introduced continuous 

spatiotemporal B-spline kernels for computing a 4D velocity field, which enforced temporal 

consistency in motion recovery. Thirion [21] developed the demons algorithm which utilizes 

diffusing models for image matching and further used it for cardiac motion tracking. Based 

on this work, Vercauteren et al. [22] introduced a non-parametric diffeomorphic image 

registration method which has been used for cardiac motion tracking [7].

2 Deep learning-based methods—In recent years, deep convolutional neural 

networks (CNNs) have inspired the exploration of deep learning-based cardiac motion 

estimation approaches [23]. Qin et al. [5] proposed a joint deep learning network for 

simultaneous cardiac segmentation and motion estimation. Their method contains a shared 

feature encoder which enables a weakly-supervised segmentation. The U-Net architecture 

[24] has been widely used for learning-based image registration [25], [26] and further for 

cardiac motion estimation. For example, Zheng et al. [27] proposed a method for cardiac 

pathology classification based on cardiac motion. This method utilizes a modified U-Net to 

generate flow maps between the ED frame and any other frame. Balakrishnan et al. [25] 

Meng et al. Page 3

IEEE Trans Med Imaging. Author manuscript; available in PMC 2024 April 03.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



used 3D U-Net to build VoxelMorph for learning-based deformable image registration. Their 

registration method has been utilized in other cardiac motion tracking works, e.g., [28]. 

Different from most of these previous deep learning-based methods that aim at 2D motion 

tracking by only using SAX stacks, Meng et al. [12] focused on 3D motion tracking by 

fully combining multiple anatomical views. Here, a deep learning model is proposed that 

learns 3D motion fields from a set of 2D SAX and LAX cine CMR images, which is able 

to estimate both in-plane and through-plane myocardial motion. Regarding cardiac motion 

tracking in multiple datasets, Yu et al. [9] considered the distribution mismatch problem and 

proposed a meta-learning-based online model adaption framework. Towards motion tracking 

in tagged MRI image, Ye et al. [10] proposed a deep learning model where the motion fields 

between any two consecutive frames are first computed, and then combined to estimate the 

Lagrangian motion field between the ED frame and any other frame. Our method aims at 3D 

cardiac motion tracking from 2D images of multiple anatomical views. In contrast to [12] 

which estimates 3D motion in image space, our method focuses on estimating 3D motion in 

mesh space.

B Mesh-based motion estimation

In contrast to dense motion estimation in image space, several other methods focus on 

anatomical motion estimation in mesh space [29]. These approaches explore mesh matching 

or mesh registration to estimate the motion field of the mesh. For example, Papademetris et 

al. [30] proposed a method that uses a biomechanical modeling and shape-tracking approach 

to estimate the motion of the myocardial mesh. Pan et al. [31] built a 3D mesh to represent 

material points inside the left ventricle wall and extended 2D Harmonic phase (HARP) 

technique [32] to 3D for motion tracking of the mesh through a cardiac cycle. Abdelkhalek 

et al. [33] built a framework to compute mesh displacements via point clouds alignment. 

These mesh motion estimation approaches compute mesh motion fields only from dynamic 

shape information, without considering intensity information from images. In contrast, our 

method combines image information with the myocardial mesh which contains the epi- and 

endocardial surfaces of the heart. We estimate 3D motion fields on meshes by using the 

intensity information of 2D images from multiple anatomical views.

C Mesh reconstruction

In practice, the 3D mesh of the heart is not always available. Reconstructing a 3D mesh from 

images has been well investigated in the literature of general computer vision. Conventional 

approaches are based on multi-view geometry [34]. Although they can obtain high-quality 

reconstruction, these approaches are limited by the coverage provided by the multiple views. 

More recently, deep learning-based approaches are the major trend of 3D shape generation 

and they can reconstruct 3D meshes from only single or few images. Because of the 

difficulty of directly generating a feasible mesh structure, most learning-based methods learn 

shape priors from data and deform a sphere mesh to the target surface, e.g., [35]–[41].

In medical imaging, 3D shape reconstruction of the heart has been studied in the literature. 

For example, Villard et al. [42] proposed a data fitting method for cardiac surface 

reconstruction from 2D cardiac contours. This method iteratively optimizes the surface 

smoothness term and the contour matching term to obtain the 3D mesh of the heart. 
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However, this method obtains meshes without maintaining vertex correspondences across 

the cohort. Bello et al. [6] extracted heart surface meshes from image segmentations using 

the marching cube algorithm. This method also does not maintain vertex correspondences. 

Romaszko et al. [43] proposed a deep neural network to predict point clouds of heart from 

images. Following their work, Joyce et al. [44] proposed a mesh fitting method which 

iteratively optimizes shape parameters (e.g., scalars, orientations) in order to match a mesh 

to the input 2D segmentations. Xia et al. [45] proposed a method that uses CNNs for 

statistical shape modeling, in particular, adding phenotypic and demographic information 

for shape reconstruction. Their method estimates shape parameters and transformation 

parameters to deform the mean shape of the population for each subject. However, 

their method needs conventional registration algorithms to generate reference 3D shape 

information for model training, i.e., reference shape parameters and reference transformation 

parameters. Different from these previous works, we build a deep neural network that 

directly predicts the 3D surface mesh of the heart at the ED frame by deforming a cardiac 

template according to the input 2D multi-view cine CMR images. Our method is able 

to reconstruct corresponding heart meshes across different subjects, i.e. with a consistent 

number of vertices and faces.

III Method

Give a set of CMR images, our goal is to propagate a single template mesh to all subjects 

and for individual subjects to estimate the heart motion on meshes across the cardiac cycle. 

Our task is formulated as follows: Let {Vtpl, F} denote the template mesh, I0
sa, I0

2cℎ, I0
4cℎ

denote the 2D SAX, LAX 2-chamber (2CH) and LAX 4-chamber (4CH) view images of the 

heart at the ED frame and It
sa, It

2cℎ, It
4cℎ  denote the multi-view images at the t-th frame. Vtpl 

and F refer to the vertices and faces of the template mesh. T is the number of frames in the 

cardiac cycle and 0 ⩽ t ⩽ T − 1. We want to reconstruct the 3D heart mesh of individual 

subjects at the ED frame ( V 0, F ) from the template, and then, for individual subjects, 

to estimate a 3D mesh motion field ΔV0→t between the ED and t-th frame by using the 

corresponding multi-view images. Here, ΔV0→t represents the motion of each vertex from 

the ED frame to the t-th frame, V tpl, V 0, ΔV 0 t ∈ ℝN × 3 and N is the number of vertices.

The schematic architecture of the proposed method is shown in Fig. 1. The proposed 

method can be separated into two main components: First, a mesh reconstruction module 

reconstructs the 3D mesh of the heart at the ED frame for individual subjects by deforming 

the template mesh (shown as the red box in Fig. 1). Second, a mesh motion estimation 

module learns the motion of a myocardial mesh from multiview intensity images and 

deforms the ED frame mesh to the t-th frame based on the learned 3D mesh motion field 

(shown as the blue box in Fig. 1). During model training, a differentiable mesh-to-image 

rasterizer is introduced to yield 2D segmentations of the myocardium in the corresponding 

2D planes (in the SAX and LAX orientations) by rasterizing the estimated 3D myocardial 

mesh. This enables using 2D segmentation information to supervise the mesh reconstruction 

and motion estimation modules.
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A Mesh reconstruction

This module aims to reconstruct the myocardial mesh for individual subjects at the ED 

frame. In particular, we leverage multi-view input images to learn a displacement ΔVtpl→0 

that deforms the template mesh to the ED frame mesh of individual subjects vertex-by-

vertex. Framework shown in Fig. 2.

1 Deformation estimation—We estimate ΔVtpl→0 from the input multi-view images 

of the ED frame. Specifically, a deformation network composed of 2D CNN and 3D CNN 

is introduced to learn an intermediate 3D voxel-wise displacement Φtpl→0 from the 2D 

input SAX and LAX view images. The diagram of the deformation network architecture is 

shown in Fig. 3 (a), where 2D convolutional layers learn 2D features from input images, 

followed by 3D convolutional layers that further learn 3D representations and predict 

Φtpl→0. Subsequently, a grid sampler is utilized to generate ΔVtpl→0 from the obtained 

Φtpl→0. In detail, for each vertex of the input template, its displacement is sampled from 

Φtpl→0 by using bi-linear interpolation at the coordinates of this vertex. Therefore, ΔVtpl→0 

contains the displacement of each vertex from the template mesh to the ED frame mesh.

We formulate the deformation estimation as follows,

ΔV tpl 0 = S(HD(I0
sa, I0

2cℎ, I0
4cℎ), V tpl) .

(1)

Here, HD(·) is the deformation network, S(·, ·) is the grid sampler and 

Φtpl 0 = HD(I0
sa, I0

2cℎ, I0
4cℎ) .

2 Reconstructing the ED frame mesh—With the estimated ΔVtpl→0, the ED frame 

mesh ( V 0, F ) of individual subject can be reconstructed by deforming the input template 

({Vtpl, F}),

V 0 = V tpl + ΔV tpl 0 .

(2)

A Laplacian smoothing loss1 ℒsmootℎ
tpl 0 is used to evaluate the smoothness of the reconstructed 

ED frame mesh. The Laplacian of a vertex v0
i  is defined by L(v0

i ),

L(v0
i ) = 1

Ni
∑

j ∈ Ni
(v0

i − v0
j) .

(3)

Here, v0
i , v0

j  are vertices on V 0 and Ni is the set of adjacent vertices to v0
i .

1Implemented by pytorch3d.loss.mesh_laplacian_smoothing()
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A surface loss ℒsurf penalizes the similarity between the reconstructed mesh ( V 0, F ) and 

the ground truth mesh ({V0, F}) of the ED frame. We use the Chamfer distance2 as the 

implementation,

ℒsurf = 1
V 0

∑
v0

i ∈ V 0

min
v0

j ∈ V 0

v0
i − v0

j
2
2 + 1

V 0
∑

v0
j ∈ V 0

min
v0

i ∈ V 0

v0
i − v0

j
2
2 .

(4)

In addition, we utilize the Huber loss used in [5], [12] as a regularization term to encourage 

a smooth intermediate Φtpl,

ℒreg
tpl 0 = ϵ + ∑

i = 1

Q
∇Φtpl(qi) 2 .

(5)

Same to [5], [12], ϵ is set to 0.01. qi is the i-th voxel and Q denotes the number of voxels.

As we aim to learn 3D dense deformation from 2D sparse images for mesh reconstruction, 

the current losses have difficulty to guarantee accurate performance. To address this 

problem, we introduce shape constraint from 2D segmentations as an additional 

regularization. This regularization term ℒsℎape
tpl 0 is described in detail in Sec. III-C.

B Mesh motion estimation

In this module, we take multi-view images of the ED frame and the t-th frame as input to 

estimate a vertex-wise 3D mesh motion field ΔV0→t. Then, we predict the mesh at the t-th 

frame by deforming the ED frame mesh reconstructed in the previous module using the 3D 

motion field ΔV0→t. Fig. 4 shows the overview of this module.

1 Motion estimation—We estimate ΔV0→t from the input images via predicting an 

intermediate voxel-wise 3D motion field Φ0→t. In detail, we build a motion network which 

consists of 2D CNN and 3D CNN to first learn Φ0→t. This motion network combines 2D 

multi-view images at both the ED frame and the t-th frame to estimate the intermediate 

3D voxel-wise motion field Φ0→t. The diagram of the motion network architecture is in 

Fig. 3 (b), where 2D convolutional layers learn 2D features from two time frames and 

3D convolutional layers predict Φ0→t. The obtained Φ0→t represents the motion of image 

voxels from the ED frame to the t-th frame. Then, a grid sampler is utilized to generate 

ΔV0→t from the obtained Φ0→t based on the vertices on the reconstructed ED frame mesh 

(V 0) and bi-linear interpolation. ΔV0→t represents the motion field of each vertex from the 

ED frame to the t-th frame. Overall, ΔV0→t is estimated from the input multi-view images 

by

ΔV 0 t = S(HM(I0
sa, I0

2cℎ, I0
4cℎ, It

sa, It
2cℎ, It

4cℎ), V 0) .

2Implemented by pytorch3d.loss.chamfer_distance()
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(6)

Here, HM(·, ·) is the motion network and Φ0→t = HM(·).

2 Mesh prediction—With the estimated ΔV0→t, the reconstructed ED frame mesh 

( V 0, F ) can be deformed to the t-th frame ( V t, F ) by

V t = V 0 + ΔV 0 t .

(7)

As ground truth mesh displacement is usually unavailable, ΔV0→t can not be directly 

evaluated. Instead, we evaluate Φ0→t in a self-supervised manner. We transform the SAX 

stack of the t-th frame (It
sa) to the ED frame using Φ0→t via a spatial transformer network 

[46]. By minimizing the image similarity loss in Eq. 8, Φ0→t is encouraged to reflect the 

motion of the myocardium.

ℒsim = I0
sa − It

sa ∘ Φ0 t
2

(8)

Similar to Eq. 3, the smoothness of the predicted t-th frame mesh is evaluated by a Laplacian 

smoothing loss1 ℒsmootℎ
0 t .

The gradients of the intermediate Φ0→t is penalized by the Huber loss similar to Eq. 5, 

ℒreg
0 t = ϵ + ∑i = 1

Q ∇Φ0 t(qi) 2 .

For mesh motion estimation, we also introduce shape constraint to better learn 3D dense 

deformation from 2D sparse images. This regularization term (ℒsℎape
0 t ) is described in detail in 

Sec. III-C.

C Differentiable mesh-to-image rasterizer

As ground truth 3D deformation is usually unavailable, we want to use 2D anatomical 

shape information to further supervise both 3D mesh reconstruction and motion estimation. 

To achieve this, we propose a differentiable mesh-to-image rasterizer to extract 2D soft 

contours of the myocardium from the predicted 3D heart mesh at the ED frame and the 

t-th frame. By comparing with the ground truth 2D myocardial contours, the differentiable 

rasterizer enables using sparse 2D shape information from multiple views to supervise 3D 

mesh reconstruction and motion estimation.

The input of the differentiable rasterizer is the predicted 3D mesh of the myocardium 

V s, F . The outputs are 2D contours of the myocardium intersecting on SAX, 2CH and 

4CH view planes ( Ps
sa, Ps

2cℎ, Ps
4cℎ ) . Here s = {0, t} refers to the ED frame and the t-th frame, 

respectively. When extracting a 2D plane from 3D mesh, the vertices on the 3D mesh may 

not perfectly lie in the 2D plane. Therefore, we compute the probability of vertices lying 

on the plane, which is important for maintaining the differentiability. Specifically, we use 
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probability maps to represent the 2D soft contours of the myocardium. Each pixel on the 

probability map represents the probability of a vertex from the 3D myocaridal mesh lying on 

a specific 2D plane. The closer a vertex to a plane, the higher probability the vertex lies on 

the plane. Fig.5 illustrates the rasterizer.

In detail, the coordinates of a vertex vs
i(vs

i ∈ V s, i = [0, 1, …, N]) are first transformed to the 

image space of different anatomical planes using the information about the relative position 

in the DICOM header of 2D images, e.g., (xs
ik, ys

ik, zs
ik) is the transformed coordinates of vs

i and 

k is the target 2D plane. Then, the probability of each vertex being on plane k is estimated 

according to their distance:

ps
ik = e−τ(ds

ik)2, ds
ik = zs

ik − zk , k = sa, 2cℎ, 4cℎ

(9)

Here ps
ik refers to the probability of vs

i belonging to the plane k and τ is the hyper-parameter 

which controls the sharpness the exponential function. ds
ik is the distance between vs

i and the 

plane k, and zk is the slice corresponding to the plane k. The vertices satisfying ds
ik < 1 are 

selected as the intersection of 3D mesh V s, F  and 2D plane k. The probability values of 

these vertices form the probability map Ps
k .

The obtained 2D probability maps are compared to 2D ground truth binary segmentations 

Bs
sa, Bs

2cℎ, Bs
4cℎ . Here, only ground truth contours of the myocardium are used and we 

compare between contours. We utilize a weighted Hausdorff distance3(WHD(·, ·)) [47] to 

measure the similarity between these contours. ℒsℎape
tpl 0 is the shape regularization term for the 

mesh reconstruction module,

ℒsℎape
tpl 0 = ∑k = sa, 2cℎ, 4cℎ WHD(P0

k, B0
k) .

(10)

ℒsℎape
0 t  is the shape regularization term for the mesh motion tracking module. It is the same 

format to Eq. 10 but the input are P t
k, Bt

k .

As we use an exponential function (Eq. 9) for the rasterization, when minimizing loss 

function (e.g., Eq. 10), the gradient can be back-propagated to train the networks. Therefore, 

the exponential function enables the differentiability of the rasterization, and thus enables 

end-to-end model training.

D Optimization

Our model is trained by two stages. The first stage is to train the mesh reconstruction 

module (i.e., Deformation Network HD(·)) by minimizing ℒrecon (Eq. 11). The inputs are 

3Implemented by https://github.com/javiribera/locating-objects-without-bboxes
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the template mesh and the multi-view images at the ED frame. The output is vertex-wise 

displacement which deforms the template mesh to individual subject.

ℒrecon = ℒsℎape
tpl 0 + λ1ℒsmootℎ

tpl 0 + β1ℒsurf + γ1ℒreg
tpl 0 .

(11)

The second stage is to train the mesh motion estimation module (i.e., Motion Network 

HM(·)) by minimizing ℒmotion (Eq. 12). The inputs are the multi-view images of the ED frame 

and frame t. The output is mesh motion field. For each training iteration, frame t is randomly 

selected from the cardiac cycle.

ℒmotion = ℒsℎape
0 t + λ2ℒsmootℎ

0 t + β2ℒsim + γ2ℒreg
0 t .

(12)

Here, {λi, βi, γi}i={1,2} are hyper-parameters chosen experimentally depending on the 

dataset. We use the Adam optimizer (learning rate = 10−4) to update the network parameters. 

Our model is implemented by Pytorch and is trained on a NVIDIA RTX A5000 GPU with 

24GB of memory.

IV Experiments

We evaluate the performance of 3D mesh reconstruction and mesh motion tracking on 

LV myocardium. We compare the proposed method, named as DeepMesh, with other image-

based and mesh-based cardiac motion tracking methods. We explore the effectiveness of 

different loss components and the influence of the hyper-parameters. We show the key 

results in the main paper4. The dynamic motion tracking videos can be found in https://

github.com/ImperialCollegeLondon/DeepMesh.

A Experiment setups

1 Data—Experiments were performed on randomly selected 530 subjects from the UK 

Biobank study [48]. Each subject contains SAX, 2CH and 4CH view cine CMR sequences 

and each sequence contains 50 frames. SAX view images were resampled by linear 

interpolation from a spacing of ~ 1.8 × 1.8 × 10mm to a spacing of 1.25 × 1.25 × 2mm 
while 2CH and 4CH view images were resampled from ~ 1.8 × 1.8mm to 1.25 × 1.25mm. 

Based on the center of the intersecting line between the middle slice of the SAX stack and 

the LAX view images, the SAX, 2CH and 4CH view images are cropped to cover the whole 

LV in the center. The input LV template mesh is provided by [49]. This template contains 22, 

043 vertices and 43, 840 faces. For model training, 2D segmentations are used to supervise 

mesh reconstruction and motion tracking. The 2D binary segmentations used in Eq. 10 were 

extracted from a 3D high resolution segmentation. This 3D high resolution segmentation is 

generated via an automated tool provided in [50], followed by manual quality control. We 

use 3D myocardial meshes of the ED frame and the end-systolic (ES) frame for evaluation. 

4Code is at DOI: 10.5281/zenodo.8200635
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These ground truth 3D meshes are reconstructed from the 3D high resolution segmentations 

using the marching cube algorithm. We split the dataset into 400/50/80 for train/validation/

test and train the proposed model for 300 epochs. We choose the hyper-parameters using 

grid search and select the hyper-parameters with the best performance on the validation data. 

Specifically, the hyper-parameters in Eq. 11 are chosen from λ1 = [10, 20, 30, 40, 50], β1 

= [0.1, 0.3, 0.5, 0.7, 0.9] and γ1 = [0.1, 0.3, 0.5, 0.7, 0.9], and are selected as λ1 = 20, β1 

= 0.5, γ1 = 0.5. In Eq. 12, the hyper-parameters are chosen from λ2 = [100, 130, 150, 170, 

190], β2 = [10, 20, 30, 40, 50] and γ2 = [0.1, 0.3, 0.5, 0.7, 0.9] and are selected as λ2 = 150, 

β2 = 20, γ2 = 0.5. In Eq. 9, we select τ = 3 from τ = [2, 3].

2 Evaluation metrics—For evaluating the performance of 3D motion tracking on 

meshes, we compared the predicted 3D mesh and the ground truth 3D mesh at the ES 

frame. In addition, we extract 2D contours of the myocardium at SAX and LAX view 

planes from the predicted 3D meshes, and then compare the extracted 2D contours with the 

ground truth 2D contours (extracted from ground truth 3D meshes). The following metrics 

are used for evaluation: Surface distance, Hausdorff distance (HD) and Boundary F-score 

(BoundF). The surface distance evaluates the distance between the predicted and the ground 

truth meshes. The Hausdorff distance and Boundary F-score compare the predicted and the 

ground truth 2D myocardium contours on SAX, 2CH and 4CH view planes. The Hausdorff 

distance quantifies the contour distance while Boundary F-score evaluates contour alignment 

accuracy as described in [51]–[53]. Here, to compute the Hausdorff distance at the SAX 

view, we average the Hausdorff distance of the second slice (slice 1), the middle slice (slice 

4) and the second last slice (slice 7).

3 Baseline methods—We compared the proposed method with five state-of-the-art 

cardiac motion tracking approaches, including two conventional methods and three learning-

based methods. The two conventional methods are a B-spline free form deformation (FFD) 

algorithm5 [14] and a diffeomorphic Demons (dDemons) algorithm6 [22] which have 

been used in many recent cardiac motion tracking works [2], [6]–[8], [18], [19]. For the 

learning-based method, the UNet architecture has been used in many recent works for image 

registration [25], [26], [28], and thus our third baseline is a deep learning method with 

3D-UNet7 [54]. In addition, we compared the proposed method with MulViMotion8 [12] 

and MeshMotion [13] which are two deep learning-based methods that utilize multi-view 

cardiac CMR images for 3D motion tracking. For fair comparison, we evaluated several sets 

of hyper-parameter values for all methods and selected hyper-parameters that achieve the 

best Hausdorff distance on the validation set.

B Mesh-based motion tracking

1 Mesh reconstruction performance—The proposed method first reconstructs the 

mesh of the ED frame for each test subject. Fig. 6 (a) shows that the reconstructed mesh 

fits the ground truth mesh for a sample case. We extracted SAX, 2CH and 4CH view planes 

5Implemented by using the MIRTK toolkit: http://mirtk.github.io/
6 https://github.com/InsightSoftwareConsortium/SimpleITK-Notebooks/Python/66_Registration_Demons.ipynb 
7 https://github.com/wolny/pytorch-3dunet 
8 https://github.com/qmeng99/Multiview-Motion-Estimation-for-3D-cardiac-motion-tracking 
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from the reconstructed ED frame mesh and generated 2D segmentations on different view 

planes. Fig. 6 (b) and Table I qualitatively and quantitatively show the effectiveness of 

the mesh reconstruction by comparing the generated and the ground truth 2D myocardial 

contours.

2 Mesh motion estimation performance—Following mesh reconstruction, the 

proposed method estimates mesh motion fields in the full cardiac cycle. For each test 

subject, with the obtained vertex-wise motion fields {ΔVt|t = [0, 49]}, the reconstructed 

ED frame mesh is deformed to the t-th frame. Red meshes in Fig. 7 shows that the 

estimated mesh motion field ΔV0→t enables 3D myocardial motion tracking on meshes. 

In addition, we extracted SAX/2CH/4CH view planes from the predicted t-th frame mesh 

and generated the predicted 2D myocardium contours on different view planes. Fig. 7 shows 

the effectiveness of ΔV0→t by comparing the predicted and the ground truth 2D myocardium 

contours.

3 Comparison study—We compare the proposed method with baseline methods for 

the performance of motion estimation across the cardiac cycle. Fig. 8 demonstrates that 

MulViMotion [12], MeshMotion [13] and the proposed method are able to estimate both 

in-plane and through-plane motion while other methods only show motion within SAX 

plane. This is because [12], [13] and our method take full advantage of both SAX and LAX 

view images. Different from MulViMotion [12] which estimates a voxel-wise motion field 

and generates 3D meshes from segmentations, the proposed method directly estimates the 

motion of each vertex on the heart mesh, and thus is able to keep the number of vertex and 

the vertex correspondences across the cardiac cycle. In contrast to MeshMotion [13] where 

the ED frame mesh of an individual heart is needed before motion tracking, the proposed 

method directly reconstructs the ED frame mesh by propagating from a template mesh. It 

integrates mesh reconstruction and mesh tracking into a single framework and also ensures 

the consistency of the meshes across different subjects. In addition, compared to [13], we 

add a regularization loss ℒreg
0 t in this work to penalize the smoothness of the intermediate 

dense motion field (Φ0→t). The results show that the proposed method achieves smoother 

LV basal part than [13], e.g., in t = 20 and t = 40 frame in Fig. 8.

We further compare different methods by estimating the 3D motion field from ED frame to 

ES frame, which shows the largest deformation. Table II shows the quantitative comparison 

results and Fig. 9 shows the qualitative results. From Table II, we observe that the proposed 

method outperforms all baseline methods and achieves the best performance regarding SAX, 

2CH and 4CH view segmentations. In addition, the proposed method obtains the ES frame 

mesh which is most similar to the ground truth ES frame mesh in Fig. 9. These results 

demonstrate the effectiveness of the proposed method for estimating 3D mesh motion fields.

4 Ablation study—For the proposed method, we explore the effects of using different 

anatomical views and loss combinations in the mesh reconstruction and the mesh motion 

estimation. We utilize Hausdorff Distance (HD) for the evaluation. Table III and Table 

IV show that adding the LAX view images improves the performance. This might be 

because LAX views can introduce high-resolution through-plane information for 3D motion 

estimation. These tables also show that proposed method with all the losses performs best in 
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both mesh reconstruction and motion tracking, which illustrates the importance of each loss 

component.

5 The influence of hyper-parameters—We evaluate the performance of mesh 

reconstruction and mesh motion estimation under various values of the hyper-parameters. 

Specifically, we compute Hausdorff distance (HD) based on the predicted and ground truth 

2D myocardium contours on SAX, 2CH and 4CH view planes. We compare the contours 

of the ED frame for the mesh reconstruction and compare the contours of the ES frame for 

the mesh motion estimation. Fig. 10 shows that in contrast to LAX views, the performance 

on the SAX view are not sensitive to hyper-parameters. This might because the SAX stacks 

contain multiple slices while the 2CH and 4CH view only have a single slice for evaluation. 

From the last row in Fig. 10 (a), we observe that a weak or a strong regularization on 

voxel-wise displacement may reduce the accuracy of mesh reconstruction.

V Discussion

In the mesh motion estimation framework presented in this work, we predict the motion 

field of the heart mesh by sampling from an intermediate voxel-wise 3D motion field. An 

alternative to our method would be to estimate mesh motion field directly from input images 

via fully connected layers without intermediate voxel-wise 3D motion estimation. However, 

using fully connected layers to estimate the displacement of ~ 20K vertices needs large GPU 

memory, which may not always be available.

We use the weighted Hausdorff Distance to compare the extracted 2D contours and the 

ground truth 2D contours of myocardium in ℒsℎape
tpl 0 and ℒsℎape

0 t . Other boundary similarity 

measurements that can evaluate the distance between soft-labeled and hard-labeled point sets 

may also be applied to this loss component in our task.

When evaluating motion estimation, we quantitatively evaluated the performance on the ES 

frame. This is because 3D ground truth meshes are only available at the ED and ES frames 

in our current dataset. More importantly, ES frame has the largest deformation from the ED 

frame, which is the most challenging case in motion estimation. Besides, using the ES frame 

for quantitative evaluation is same to other previous works, such as [5], [7], [55].

We separately train the mesh reconstruction module and the mesh motion estimation 

module during training but the proposed method is end-to-end trainable. The probability 

map (2D soft contours) obtained from differentiable mesh-to-image rasterizer enables the 

differentiability of the rasterization. However, simultaneously training mesh reconstruction 

and mesh motion estimation may increase the complexity of hyper-parameter tuning.

The proposed deep neural network in the mesh reconstruction module focuses on deforming 

the template mesh to the ED frame mesh of individual subjects. To move the template mesh 

to individual subject space before mesh reconstruction, we utilize the information about the 

relative position in the DICOM header of 2D images. Fig. 11 shows an example of moving 

the template mesh to a subject space during data pre-processing.
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Our evaluation has been conducted on LV myocardial motion tracking because it is 

important for clinical assessment of cardiac function. However, the proposed method is 

not limited to LV myocardium. Our model can be easily adapted to 3D right ventricular 

myocardial motion tracking by using the corresponding template mesh and the ground truth 

2D contours during training.

Table III and Table IV show that only using shape regularization (ℒsℎape
tpl 0 and ℒsℎape

0 t ) achieves 

second best quantitative results. However, Fig. 12 demonstrates that shape regularization 

alone is insufficient for good qualitative results while other regularization terms make 

contributions as well, to surface smoothness, accurate deformation and deformation 

smoothness, accordingly.

The proposed method is trained and evaluated on healthy subjects, where we aim to 

demonstrate the effectiveness of the methodology. We acknowledge that the current trained 

model may not achieve best performance on pathological data, especially heart with specific 

diseases. To address this limitation, one possible solution is to include more pathological 

cases to the training set and re-train the model. In addition, there can be large deformation 

between the template mesh and pathological heart, for which we may need to add extra 

regularization terms to the template-based mesh reconstruction module.

We believe that our mesh-based motion tracking method can benefit a variety of clinical 

applications. The proposed model can provide an accurate and holistic estimation of 3D 

geometry and motion, which can be used for clinical association studies. For example, 

we can model the associations between cardiac motion (either globally, or vertex-wise) 

with demographics (e.g., age, gender), genetics, diseases, and etc. In particular, as our 

method maintains the anatomical correspondence of the cardiac meshes (i.e., the number 

of vertices and faces) in the cohort, it can facilitate learning complex motion features for 

specific tasks from a population. This can potentially lead to motion-related traits for early 

diagnosis of diseases or for monitoring disease progression. In addition, our method can 

support biophysical modeling by using meshes as input for mechanical simulations. This can 

potentially improve our understanding of cardiac physiology. Also, the predicted sequence 

of meshes can be used for computing conventional volumetric and functional biomarkers 

(e.g., ED volume, ejection fraction). The challenge might be to design new computational 

methods on meshes instead of on segmentations that used in many existing clinical studies.

VI Conclusion

In this paper, we propose a novel deep learning method for template-guided mesh-based 

cardiac motion tracking. The proposed method reconstructs the 3D heart mesh of the 

reference frame and estimate per-vertex motion field from 2D SAX and LAX view CMR 

images. The proposed method enables both mesh reconstruction and mesh motion tracking. 

It is also capable of maintaining the number of vertices and vertex correspondences across 

the cardiac cycle. Experimental results demonstrate the effectiveness of the proposed method 

compared with other competing methods.
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Fig. 1. An overview of the proposed method.
Panel (a) describes the mesh reconstruction module which reconstructs the ED frame 

mesh from a template mesh and the ED frame multi-view images. Panel (b) is the mesh 

motion estimation module, which takes multi-view images as input and learns 3D mesh 

motion field ΔV0→t. By updating the reconstructed ED frame mesh with ΔV0→t, the mesh 

of the t-th frame is predicted. During training, a differential mesh-to-image rasterizer is 

introduced to extract different 2D anatomical view planes from the predicted 3D meshes, 

which generates 2D soft segmentations. By comparing the predicted soft segmentations with 

ground truth segmentations, the rasterizer enables leveraging 2D shape information for 3D 

mesh reconstruction and motion estimation. Losses of each module are shown in Fig. 2 and 

Fig. 4, accordingly.
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Fig. 2. 
An overview of the mesh reconstruction module. This module reconstructs the ED frame 

mesh of individual subjects from a template mesh and multi-view images. In this module, 

the deformation network (HD(·)) predicts an intermediate voxel-wise displacement Φtpl→0, 

and then ΔVtpl→0 containing the per-vertex displacement is generated by sampling from 

Φtpl→0.
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Fig. 3. 
A diagram of the network architecture of (a) the deformation network HM(·) and (b) 

the motion network HM(·). Here, Conv represents convolutional layer with Relu and 

batch normalization while deConv represents transposed convolutional layer with Relu and 

batch normalization. The detailed network architecture and code can be found in https://

github.com/ImperialCollegeLondon/DeepMesh.
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Fig. 4. 
An overview of the mesh motion estimation module. This module estimates the motion of 

heart mesh from the ED frame to the t-th frame. It takes multi-view images of the ED 

frame and the t-th frame as input and learns vertex-wise 3D mesh motion field ΔV0→t via 

predicting an intermediate voxel-wise motion field Φ0→t. By updating the myocardial mesh 

of the ED frame with ΔV0→t, the mesh of the t-th frame is predicted.
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Fig. 5. 
Illustration of the differentiable mesh-to-image rasterizer. This rasterizer extracts an 

anatomical view plane from a 3D mesh, and thus generate a 2D soft segmentation. In the 

left panel, dj and dk show the distance between a vertex of the heart surface and the target 

anatomical view plane. pj and pk refer to the probability of the vertex on the plane. The 

higher the distance, the lower the possibility the vertex on the plane. The right panel show 

examples of the obtained probability maps (2D soft contours).
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Fig. 6. An example of ED frame mesh reconstruction.
(a) Left: ground truth mesh (Green) of a subject heart vs. the template (Blue); right: ground 

truth mesh (Green) vs. the reconstructed mesh (Red). (b) 2D contours on SAX, 2CH and 

4CH view planes generated by rasterizing the reconstructed mesh on corresponding view 

planes. Red contours denote predicted results, while green contours denote ground truth.
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Fig. 7. 
Examples of motion tracking results. The reconstructed ED frame mesh is deformed to the 

t-th frame using the estimated 3D mesh motion fields. 2D myocardium contours on SAX, 

2CH and 4CH view planes (Row 2-4) are generated by extracting the corresponding planes 

from the predicted t-th frame mesh. Red contours are predicted results while green contours 

are ground truth.
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Fig. 8. Motion tracking results across the cardiac cycle using the baseline methods and the 
proposed method.
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Fig. 9. Motion estimation using baseline methods and the proposed method. Green mesh is 
ground truth (GT) mesh of the ES frames. Red meshes are the predicted ES frame meshes based 
on different methods.
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Fig. 10. Effects of varying hyper-parameters on Hausdorff distance.
(a) shows the results of using various λ1, β1, γ1 for the mesh reconstruction. The final 

selection is λ1 = 20, β1 = 0.5, γ1 = 0.5. (b) shows the results of using various λ2, β2, γ2 for 

the mesh motion tracking. The final selection is λ2 = 150, β2 = 20, γ2 = 0.5. Note that when 

one hyper-parameter changes, other hyper-parameters are fixed to the final selection value.
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Fig. 11. Comparison of the template and a subject ED frame mesh.
(a) shows that the template is not in the same space as the subject mesh. (b) demonstrates 

that we can move the template to the subject space after data pre-processing. Green meshes 

are the ground truth subject mesh. Blue meshes are the template before and after data 

pre-processing.
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Fig. 12. Qualitative results of mesh reconstruction and mesh motion estimation with different 
combinations of losses. The top row shows the reconstructed ED frame mesh. The bottom row 
shows the estimated ES frame mesh.
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Table I
Mesh reconstruction performance by comparing the predicted and ground truth 2D 
myocardium contours on different view planes. The results are reported as “mean 
(standard deviation)”.

SAX 2CH 4CH

HD (mm) 5.96 (2.14) 5.97 (1.83) 6.06 (1.94)

BoundF (%) 84.61 (5.97) 90.32 (4.94) 90.11 (3.97)
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Table II
Comparison of other cardiac motion tracking methods. The results are reported as “mean 
(standard deviation)”. ↑ indicates the higher value the better while ↓ indicates the lower 
value the better. Best results in bold.

Methods Anatomical 
views

Mean 
Surface 

distance ↓

HD (mm) ↓ BoundF (%) ↑

SAX 2CH 4CH SAX 2CH 4CH

FFD [14] SAX 3.02(0.86) 10.31 (3.55) 15.17(4.52) 15.95(4.84) 62.15(7.48) 77.60(6.97) 77.79(7.13)

dDemons [22] SAX 3.20(0.90) 9.71 (4.07) 15.01(3.48) 15.72(3.41) 63.67(6.92) 77.38(5.99) 80.29(5.83)

3D-UNet [54] SAX 3.35(0.88) 8.88(3.88) 14.44(2.99) 14.83(3.57) 60.64(7.74) 74.63(6.01) 76.06(6.08)

MulViMotion 
[12]

SAX, 2CH, 
4CH 2.39(0.79) 9.86(3.21) 9.66(3.09) 10.18(3.58) 63.65(8.42) 77.59(5.17) 76.86(6.15)

MeshMotion 
[13]

SAX, 2CH, 
4CH 1.98(0.44) 9.73 (3.96) 7.44(4.04) 8.62(4.49) 71.49(8.82) 87.21(6.97) 84.24(6.84)

DeepMesh SAX, 2CH, 
4CH 1.66(0.51) 9.08(3.86) 5.75(1.81) 6.21(2.56) 74.95(8.25) 89.26(6.97) 88.69(6.23)
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Table III
Mesh reconstruction with different anatomical views and different loss combinations.

Anatomical views HD (mm) ↓

SAX 2CH 4CH SAX 2CH 4CH

✓ 7.13 (2.25) 14.17(3.67) 14.36(3.54)

✓ ✓ 6.11 (2.02) 7.06(2.61) 7.41(2.75)

✓ ✓ 5.50 (2.29) 6.10(2.26) 6.14(2.32)

✓ ✓ ✓ 5.96 (2.14) 5.97(1.83) 6.06(1.94)

Loss combinations HD (mm) ↓

ℒsℎape
tpl 0 ℒsmootℎ

tpl 0 ℒsurf ℒreg
tpl 0 SAX 2CH 4CH

✓ 7.22 (2.15) 9.63(3.38) 9.52(3.02)

✓ ✓ 10.95 (2.78) 14.26(3.34) 14.19(3.41)

✓ ✓ ✓ 6.58 (2.22) 10.62(5.18) 12.66(5.79)

✓ ✓ ✓ ✓ 5.96 (2.14) 5.97(1.83) 6.06(1.94)
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Table IV
Mesh motion estimation with different anatomical views and different loss combinations.

Anatomical views HD (mm) ↓

SAX 2CH 4CH SAX 2CH 4CH

✓ 8.49 (3.67) 6.11(2.09) 7.31(2.39)

✓ ✓ 8.50 (3.54) 5.88(2.41) 6.79(3.22)

✓ ✓ 9.38 (4.17) 6.37(1.78) 6.27(2.29)

✓ ✓ ✓ 9.08(3.86) 5.75(1.81) 6.21(2.56)

Loss combinations HD (mm) ↓

ℒsℎape
0 t ℒsmootℎ

0 t ℒsim ℒreg
0 t SAX 2CH 4CH

✓ 8.97 (3.35) 7.20(2.00) 7.34(2.13)

✓ ✓ 11.08 (4.07) 10.56(2.23) 10.43(2.26)

✓ ✓ ✓ 9.92 (3.44) 8.19(2.52) 8.67(3.21)

✓ ✓ ✓ ✓ 9.08(3.86) 5.75(1.81) 6.21(2.56)
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