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Abstract

Two key questions in cardiac image analysis are to assess the anatomy and motion of the heart 

from images; and to understand how they are associated with non-imaging clinical factors such as 

gender, age and diseases. While the first question can often be addressed by image segmentation 

and motion tracking algorithms, our capability to model and answer the second question is 

still limited. In this work, we propose a novel conditional generative model to describe the 4D 

spatio-temporal anatomy of the heart and its interaction with non-imaging clinical factors. The 

clinical factors are integrated as the conditions of the generative modelling, which allows us to 

investigate how these factors influence the cardiac anatomy. We evaluate the model performance in 

mainly two tasks, anatomical sequence completion and sequence generation. The model achieves 

high performance in anatomical sequence completion, comparable to or outperforming other 
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state-of-the-art generative models. In terms of sequence generation, given clinical conditions, the 

model can generate realistic synthetic 4D sequential anatomies that share similar distributions 

with the real data. The code and the trained generative model are available at https://github.com/

MengyunQ/CHeart.

Index Terms

Conditional generative model; synthetic data generation; cardiac image analysis; cardiac anatomy 
and motion

I Introduction

CARDIAC imaging plays an essential role in cardiovascular image diagnosis and 

management [10]. Imaging modalities such as cine cardiac magnetic resonance (CMR) 

or ultrasound scans reveals the anatomical structure of the heart as well as its contracting 

and relaxing patterns [26]. A classical but long-standing research problem is to explore the 

associations between the three-dimensional (3D) cardiac anatomy and other non-imaging 

clinical factors, such as age, gender, diseases [5]. Besides 3D anatomical information, the 

temporal dynamic motion of the heart also contains information that is useful for clinical 

diagnosis and therapy selection [20], [32], [47]. It is of particular interest to develop 

computational tools that can bridge between spatial-temporal imaging features and non-

imaging clinical factors. In this work, we aim to improve our understanding of the spatial-

temporal cardiac anatomy and clinical factors from a generative modelling perspective. We 

propose a conditional generative model to model the interaction between imaging features 

and clinical factors. Given clinical factors as conditions, the proposed model can generate 

corresponding 4D spatial-temporal cardiac anatomies. We demonstrate that the generated 4D 

anatomies are realistic and consistent with real data distribution.

Lately, the field of conditional generative modelling has made tremendous progress, greatly 

driven by deep learning methods such as conditional generative adversarial networks 

(GAN) [34], conditional variational autoencoders (VAEs) [29], [48], flow-based models 

[41] and diffusion models [36]. These approaches enable efficient approximation of the 

underlying conditional distributions and generation of high-quality samples. Improvements 

in conditional generative models have been characterised by numerous developments in 

different generation tasks: image-to-image translation [13], [24], [27], style and lyrics-to-

music generation [16] and text-to-image synthesis [12].

Apart from generating static images [36], generative models have also been applied to 

sequential data, such as videos [46], [53] and music [16]. In these applications, it is 

important to learn a model that is able to capture the inner connection of temporal 

sequences. To this end, long short-term memory (LSTM) [28], [52] and transformers [56] 

have been explored to learn the sequential progression of the latent representations of the 

samples. Some work also introduces spatiotemporal convolution and attention layers to 

learn temporal world dynamics from a collection of videos [46]. Sequential data contain 

both structural variations and motion information. Disentangled representation learning 
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approaches such as DiSCVAE [59] have been proposed to separate representations of the 

motion features from the structural features.

In the field of medical imaging, several papers have explored incorporating non-imaging 

clinical factors into the image generation process. Dalca et al. [15] proposed a learning 

framework for building deformable brain image templates conditioned on age. Xia et al. 

[54] developed a model to generate synthetic brain images conditioned on age and the 

status of Alzheimer’s disease. For cardiac images, Biffi et al. [7] presented LVAE for 

interpretable classification of anatomical shapes into different clinical conditions. Krebs 

et al. [30] proposed to learn a probabilistic motion model for spatio-temporal cardiac 

image registration. Reynaud et al. [40] proposed a causal generative model to generate 

synthetic 3D ultrasound videos conditioned on a given input image and an expected ejection 

fraction. Campello et al. [9] proposed a conditional generative model in cardiac imaging 

to extract longitudinal patterns related to aging. Duchateau et al. [17] built a scheme for 

synthesizing pathological cardiac sequences from real healthy sequences. Amirrajab et 

al. [1] developed a framework for simulating cardiac MRI with variable anatomical and 

imaging characteristics. For cardiac temporal modeling scheme, some work [57], [60], [61] 

showed dynamic cardiac data could be described by low-dimensional latent representations, 

i.e. a conditional autoencoder to capture latent representations of data [61] or temporal 

smoothness applied as a regularisation term in the reconstruction loss function [60], [61]. 

These works provide useful insights for conditional medical image generation. However, the 

generation of a sequence of spatial-temporal cardiac anatomies from multiple clinical factors 

has been less explored.

In this work, we propose a conditional generative model that can generate realistic cardiac 

anatomical sequences conditioned on non-imaging factors including age, gender, weight, 

height and blood pressure. We name the Conditional Heart generation model as CHeart. 

The model employs a variational autoencoder to learn the latent representations for cardiac 

anatomies and a condition encoder to embed the clinical conditions into a condition latent 

vector. Then, a Temporal Module is designed to generate the condition-related sequential 

latent space based on the anatomy latent representations and the condition latent vector. The 

proposed model demonstrates a high diversity and fidelity in the generation, evaluated using 

structural overlaps and surface distance metrics, as well as clinical measure (ventricular 

volume and mass) distributions. The main contributions in this work are summarised as 

follows:

• We propose a spatial-temporal generative model for 3D cardiac anatomy that 

accounts for both the spatial variations and the temporal variations i.e. motion 

during the cardiac cycle.

• We leverage both imaging data and non-imaging clinical data to train the model, 

which allows the model to generate cardiac anatomical sequences conditioned on 

multiple clinical factors.

• We introduce a temporal module into the latent space of cardiac anatomy and 

conditions to model the complex sequential patterns of a beating heart.

Qiao et al. Page 3

IEEE Trans Med Imaging. Author manuscript; available in PMC 2024 April 29.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



• We demonstrate that the model can generate highly realistic and diverse cardiac 

anatomical sequences that follow the real data distributions.

II Methods

The proposed generative model takes non-imaging clinical factors as input and generates a 

cardiac anatomical sequence. Fig. 1 illustrates the overall framework. The following sections 

provide more technical details. First, we introduce the conditional generative model. Then, 

we describe the temporal module for learning the sequential latent representations due to 

cardiac motion. Lastly, we demonstrate two applications of the generative model at the 

inference stage: anatomical sequence completion and anatomical sequence generation.

A Conditional generative model

Assume that we observe a dynamic sequence of anatomies of a subject, xt(t = 0, 1, …, T – 

1), where xt denotes the anatomical segmentation at the t-th frame and T denotes the total 

number of time frames in a sequence. We also observe some clinical conditions c for this 

subject, where c could include factors such as age, gender, weight, height, blood pressure 

etc. Our aim is to learn the probability distribution of the anatomy x conditioned on c with 

a chosen model, pθ(x|c), where θ denotes the model parameters. We seek a model pθ(x|c) 

which is sufficiently flexible to be able to describe the data x. Deep neural networks have 

often been used for this modelling due to its complex modelling capacity [21], [29], [48]. 

Without losing generality, we first attempt to learn the distribution of anatomy at the first 

time frame, pθ(x0|c), which is often the end-diastolic (ED) frame in cardiac imaging.

We adopt the conditional β-VAE model [21], [29], [48] to learn the data distribution. The 

condition c is embedded as a condition latent vector zc by the MLP, which integrates 

multiple clinical factors and enables exploration across the conditional latent space. The 

model consists of a decoder pθ(x0|z0, zc) and an encoder qϕ(z0|x0, zc). The decoder pθ(x0|z0, 

zc) with parameters θ maps the latent variables z0, zc to the anatomy x0. We assume a prior 

distribution p(z0) over the latent variable z0. The prior and the decoder together define a joint 

distribution, denoted as pθ(x0, z0|zc), which is parameterized by θ.

To turn the intractable posterior inference and learning problem into a tractable problem, we 

introduce a parametric encoder model qϕ(z0|x0, zc) with ϕ as the variational parameters, 

which approximates the true but intractable posterior distribution pθ(z0|x0, zc) of the 

generative model, given an input x0 and condition space zc:

qϕ z0 ∣ x0, zc ≈ pθ z0 ∣ x0, zc

(1)

where qϕ(z0|x0, zc) often adopts a simpler form, e.g. the Gaussian distribution. By 

introducing the approximate posterior qϕ(z0|x0, zc), the log-likelihood of pθ(x0|zc) can be 

formulated as:

Qiao et al. Page 4

IEEE Trans Med Imaging. Author manuscript; available in PMC 2024 April 29.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



logpθ x0 ∣ zc = Ez0 ∼ qϕ z0 ∣ x0, zc log pθ x0 ∣ zc

= Ez0 ∼ qϕ z0 ∣ x0, zc log pθ x0, z0 ∣ zc
qϕ z0 ∣ x0, zc

+Ez0 ∼ qϕ z0 ∣ x0, zc log qϕ z0 ∣ x0, zc
pθ x0 ∣ z0, zc

(2)

where the second term denotes the Kullback-Leibler (KL) divergence DKL(qϕ || pθ), between 

qϕ(z0|x0, zc) and pθ(z0|x0, zc). It is non-negative and zero only if the approximate posterior 

qϕ(z0|x0, zc) equals the true posterior distribution pθ(z0|x0, zc). Due to the non-negativity of 

the KL divergence, the first term in Eq. 2 is the lower bound of the evidence log[pθ(x0|zc)], 

known as the evidence lower bound (ELBO). Instead of optimising the evidence log[pθ(x0|

zc)] which is often intractable, we optimise the ELBO:

max
θ, ϕ

ELBO = log pθ x0 ∣ zc − DKL

(3)

To better control the encoding representation capacity and encourage more efficient latent 

encoding, we adopt β-VAE by modifying VAE with an adjustable hyperparameter β [21]. As 

a result, the loss function of the generative model is formulated as:

ℒθ, ϕ = − Ez0 ∼ qϕ z0 ∣ x0 log pθ x0 ∣ z0, c
+β ⋅ DKL qϕ z0 ∣ x0, c ∥ pθ z0

(4)

where the sign is negated so as we can minimise the loss function.

In practice, we use the reconstruction loss for the first term., i.e. how accurate the generative 

model pθ(x0) can be for reconstructing the anatomy x0 from the latent vector z0 using the 

decoder. The reparameterization trick is applied to replace the subscript of the expectation 

and express the random variable z0 ~ qϕ(z0|x0, zc) as some differentiable and invertible 

transformation of another random variable ϵ, so the expectation does not rely on q itself.

B Motion modelling in the latent space

In the previous section, we modelled qϕ(z0|x0, zc) and pθ(x0|z0, zc) for the first frame 

x0 in a sequence. Here, to model the whole anatomical sequence x0, x1, …, xT–1 on the 

clinical conditions c, we design a Temporal Module constructed using a one-to-many LSTM 

structure [49] with parameters ω, which generates the condition-related sequential latent 

codes based on z0 and zc. The detailed structure of the temporal module is illustrated in Fig. 

2.

LSTM [22] is a variant of recurrent neural networks that consists of gating mechanisms 

and cell memory blocks. The first LSTM cell of the module takes the concatenation of the 

anatomy latent representation z0 and the condition latent representation zc as input, which 
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is denoted as z0
c. With the hidden state h0 and cell state cell0 being initialised to zero, it 

infers the latent z1
c at the next time frame. Each following LSTM cell, with shared weights, 

takes zt − 1
c  as input, updates the hidden state ht and cell state cellt, and infers the latent zt

c. All 

the LSTM cells have shared weights. Each latent code zt
c contains information of both the 

anatomy at time t and the clinical conditions c. The cardiac anatomy of a dynamic sequence 

forms a temporal sequence zt
c in the latent space, where t = 0, 1, …, T. After the temporal 

module computes the latent codes z0:T − 1
c  across all the time frames, the decoder generates the 

anatomical sequence xt
′ from zt

c, illustrated in Fig. 1.

The overall loss function for modelling the anatomical sequence generation is formulated 

based on Eq.4:

ℒθ, ϕ, ω = − ∑
t = 0

T − 1
Ez0 ∼ qϕ z0 ∣ x0 log pθ xt ∣ zt, zc

+βDKL qϕ z0 ∣ x0, zc ∥ pθ z0

(5)

The training loss function is composed of two parts: 1) the reconstruction accuracy at all 

time frames, where we use cross-entropy for evaluating the performance in reconstructing 

the segmentation maps; 2) the KL divergence term, penalising the discrepancy between 

the learned prior and posterior distributions. The whole training process is performed end-

to-end, with the encoder, temporal module and decoder being trained together. The VAE 

enables the model to learn a low-dimensional latent space that captures the underlying 

anatomical variations. By incorporating the temporal module, the model can effectively 

model the temporal dynamics in the cardiac images, enabling the generation of anatomically 

consistent and coherent sequences over time.

C Inference

To demonstrate the performance of the proposed generative model at the inference stage, 

we carry out two benchmark tasks, namely anatomical sequence completion and anatomical 

sequence generation, as shown in the right panel of Fig. 1.

In anatomical sequence completion, the model is given the anatomy at the first time frame x0 

and clinical conditions c. It is asked to generate the remaining sequence of anatomies across 

the cardiac cycle. The model maps x0 and c to their latent representations z0 and zc, predicts 

the sequential latent codes z0:T − 1
c  through the temporal module and finally reconstructs the 

full sequence of cardiac anatomy x0:T − 1
′  using the shared-weight decoders.

In anatomical sequence generation, the model is only conditioned on the clinical factors c 
and it does not require any anatomy as input. Since the model has learnt the distribution of 

anatomical latent variable pz0, we can draw samples z0 in the latent space from a Gaussian 

distribution (0, 1) and concatenate it with the clinical latent code zc. We then provide the 

concatenated latent code z0
c to the temporal module to predict z0:T − 1

c  and generate the full 

anatomical sequence x0:T − 1
′  using the decoder.
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D Evaluation

To evaluate the conditional generative model, we use quantitative measures to assess the 

generated anatomy, as well as use clinical measures to assess the distribution similarity.

First, we employ the Dice coefficient, the Hausdorff distance (HD) and the average 

symmetric surface distance (ASSD) which compare the similarity of the generated cardiac 

anatomy to the ground truth anatomy associated with the same clinical conditions.

Second, we derive five imaging phenotypes including the left ventricular myocardial 

mass (LVM), LV end-diastolic volume (LVEDV), LV end-systolic volume (LVESV), 

right ventricular end-diastolic volume (RVEDV) and RV end-systolic volume (RVESV). 

We evaluate differences between generated data and real data with the same clinical 

conditions, denoted as dphenotype. Furthermore, these phenotypes are closely associated 

with age and gender [5]. We calculate the distributions of the imaging phenotypes against 

age and gender, and compare the generated data to the real data. The comparison is 

illustrated qualitatively using density plots and quantitatively using the Kullback–Leibler 

(KL) divergence and Wasserstein distance (WD). The KL divergence [14] is an information-

theoretic measurement of the similarity between two probability mass functions. Similarly, 

WD [2] measures the distance between two probability distributions and can be computed 

as:

WD = inf
γ ∼ ∏(P, Q)

E(u, v) ∼ γ[ ∥ u − v ∥ ]

(6)

where ∏(P, Q) is the set of all joint distributions over u and v. WD can be seen as the 

minimum work needed to transform one distribution to another, where work is defined as the 

amount of mass that must be moved from u to v to transform P to Q and the distance to be 

moved.

III Experiments

A Data sets

A short-axis 3D cardiac MR dataset of 1,383 subjects was used, acquired from 

Hammersmith Hospital, Imperial College London. Each cardiac cine image sequence 

comprises 20 time frames (T = 20) covering one complete cardiac cycle, with a spatial 

resolution of 1.25 mm × 1.25 mm × 2 mm. The temporal resolution ranges from 0.041 

to 0.048 seconds per frame, accommodating variations in the heart rate. The cardiac 

anatomy is described by the image segmentation map with four labels: background, the left 

ventricle (LV), myocardium (Myo) and the right ventricle (RV). Ground truth segmentation 

at end-diastolic (ED) and end-systolic (ES) frames was generated by using a multi-atlas 

segmentation method [3], then quality controlled and manually corrected by an experienced 

cardiologist using itkSNAP [58]. A state-of-the-art nnU-net model [23] was trained using 

the ED and ES segmentation and then deployed to all time frames generating the 3D-t 

segmentation, followed by manual quality control. To eliminate the influence of image 

orientations in the generation, all 3D-t segmentation were rigidly aligned to a template space 

Qiao et al. Page 7

IEEE Trans Med Imaging. Author manuscript; available in PMC 2024 April 29.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



using MIRTK [42], [44] and cropped to a standard size of 128 × 128 × 64. In this way, the 

generative model will focus on learning subject-specific variations of the anatomy instead of 

image orientations.

In terms of demographic information, all subjects were healthy volunteers, with 775 females 

and 608 males, aged between 18-73 years old, weighed between 33-131 kg, with height 

between 142-195 cm and systolic blood pressure (SBP) between 79-183 mm Hg. When 

incorporating the clinical information into the model, age was represented as a categorical 

factor with seven age groups with an interval of 10 years, from 10 to 80 years old. The 

dataset was randomly split into three subsets for training (n = 968), validation (n = 138) and 

test (n = 277).

B Experimental setup

1) Implementation—The model was implemented in PyTorch [37]. The encoder qϕ, 
consisted of four 3D convolution layers, one flatten layer and one bottleneck layer, 

outputting the latent code z0. The condition mapping network was constructed using an 

MLP, outputting latent code zc for input conditions c. A latent dimension of 32 was used 

for both z0 and zc, and 64 for the concatenated latent vector z0
c. The decoder consisted of 

one flatten layer and four 3D transposed convolution layers. All convolution and transposed 

convolution layers in the encoder and the decoder used a kernel size of 4. The temporal 

module was built with one-layer LSTMCells. The regularisation weight β in β-VAE was set 

to 0.001. The model was trained using the Adam optimiser with a learning rate of 5·10–4 

and a batch size of 8. It was trained for 500 epochs and an early stopping criterion was used 

based on the validation set performance. The training took 17 hours on an NVIDIA RTX 

A6000 GPU.

2) Baseline methods—Currently, there is no other existing work for performing 

conditional generation of 3D-t cardiac anatomies. For comparison, we implemented the 

following baseline generation methods developed in other application domains, extending 

them from 2D image generation to 3D-t data generation:

CGAN: A conditional version of the generative adversarial network (GAN) originally 

developed for MNIST images [34]. Note that the model can only perform cardiac sequence 

generation, not sequence completion.

CVAE: The conditional generative model CVAE [48]. It was modified to adapt to 

this application. CVAE applied condition incorporation by concatenating conditions and 

anatomies in both the encoder and decoder.

CVAE-GAN: A conditional variational generative adversarial network proposed in [6]. It 

is a general learning framework that combines a VAE with a GAN for synthesizing natural 

images in fine-grained categories.

PCA: The principal component analysis (PCA) [25]. It is a classical method for 

dimensionality reduction, which aims to preserve as much of the variation in data as possible 
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using the principal components. Note that the PCA is only used for performing sequence 

completion, but not for sequence generation.

C Sequence completion

A well-known challenge to generative modelling is the difficulty in evaluation, as we 

normally do not have access to the ground truth data distribution, e.g. the distribution of all 

possible cardiac anatomies in our case. Therefore, we adopt anatomical sequence completion 

as a surrogate task for evaluating the model performance. The sequence completion 

experiments were conducted to assess the ability of capturing the sequential information 

given the first frame of a cardiac anatomy sequence. One example of sequence completion is 

shown in Fig. 3. It can be seen in the figure that the generated anatomies across time frames 

maintain the same heart structures as the ED frame and capture the temporal motion pattern 

through time, contracting first and then expanding.

The sequence completion accuracy is evaluated between the generated anatomy and ground 

truth across the whole sequence in terms of the Dice metric, HD and ASSD for three 

structures: LV, Myo and RV. Table I reports the sequence completion accuracy of the 

proposed model and compares it to other generative models including CVAE-GAN [6], 

CVAE [48] and PCA [25]. It shows that the proposed model achieves a good sequence 

completion accuracy with an average Dice metric of 0.874, HD of 5.842 mm and ASSD of 

1.462 mm, which is comparable to or outperforms the other three generative models in most 

metrics. In addition, we conducted evaluations at the basal, mid-cavity, and apical slices. The 

proposed model achieved an average Dice metric of 0.929, 0.927, and 0.878 for LV at the 

three locations, surpassing the corresponding metrics of the other three generative models.

We also performed paired student’s t-tests between the results generated by our method and 

those of competing methods. The performance metrics of the proposed model marked with 

asterisk in Table I were significantly better than other methods at a p value smaller than 0.05. 

On a different cardiac MR dataset, [4] reports an average Dice metric of 0.94, 0.88, 0.90 for 

LV, myocardium and RV, respectively, for interobserver variability in manual cardiac image 

segmentation (Table 3 of [4]). The Dice metric of the proposed generative model is close 

to this value, which indicates its high performance and capability for anatomical sequence 

completion.

D Sequence generation

Apart from the sequence completion task, we also perform anatomical sequence generation 

and evaluate how close the generated anatomical sequences are to the real data. In this 

experiment, we generate new synthetic anatomies of the heart by providing the clinical 

conditions as the only input to the model. Given the stochastic nature of the VAE generation, 

for each set of input conditions, multiple anatomical sequences can be generated. We draw 

20 random samples from the Gaussian distribution of the latent vector, and correspondingly 

generate 20 synthetic anatomical sequences for this input condition set.

We first compare the synthetic anatomies to the real anatomy with the same clinical 

conditions and evaluate the mean similarity and the best similarity across 20 samples, in 

terms of the Dice metric, HD, ASSD and differences of clinical measures. This is similar to 
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the random average or random best evaluation in other recent generation works in computer 

vision [38]. Table II shows that the proposed model achieves a reasonably good sequence 

generation accuracy with a mean Dice metric of 0.713, HD of 10.940 mm and ASSD 

of 3.023 mm. We also reported the best value of each measurement, with a significantly 

improved maximum Dice of 0.793, minimum HD of 8.166 mm, and ASSD of 2.049 mm. 

This perhaps means the proposed method can capture a wide variation of anatomies and thus 

draw a sample that is close to the real sample. When we compare the differences of clinical 

phenotypes, Table III shows that our model achieved the lower measurement difference with 

a mean difference of 25.93 mL, 11.74 mL, 34.63 mL, 15.54 mL and 17.34 g and minimum 

difference of 6.87 mL, 3.54 mL, 6.88 mL, 5.12 mL and 2.95 g for LVEDV, LVESV, RVEDV, 

RVESV and LVM, respectively. The results of mean and best values indicate that our model 

achieves similar (Dice) or better sequence generation accuracy (HD, ASSD, difference in 

clinical measures) compared to other methods. The best values of the metrics indicate the 

high fidelity of the proposed generative model, which refers to the degree to which the 

generated samples resemble the real ones [35], [43]. It is important to acknowledge that in 

anatomical sequence generation, the model is not expected to replicate existing anatomies. 

But instead, the model generates a plausible anatomy that fulfils certain conditions, which is 

compared to a real anatomy with the same conditions.

Further, we visualised two examples of anatomical sequence generation in Fig. 4. For each 

example, we show five random synthetic samples which share the same clinical conditions 

as the real sample. It illustrates that the LV and RV structures look realistic and their shapes 

share a high similarity to the real anatomy. The contracting pattern of the ventricles and 

myocardium from ED to ES frame also looks realistic and similar to the real sample. This 

demonstrates our model can capture the overall anatomy and temporal dynamics of the 

heart during generation. The five samples with the same conditions also present certain 

degrees of variations, which demonstrates the diversity of synthetic data. This is due to 

the Gaussian sampling part of the generation process and reflects the individual differences 

between two hearts even if they are of the same gender and age, which can be caused by 

genetic, environmental, lifestyle and many other factors that are not easily accounted for by 

the model.

To further evaluate whether fidelity and diversity of the generated samples with respect to 

the real samples, we assess the distance between their distributions, conditioned on age, a 

common factor of interest in clinical research. In addition to quantitative assessments, we 

conducted qualitative comparisons by evaluating the distributions of five clinical measures 

for both real and synthetic anatomies against age, including LVM, LVEDV, LVEV, RVEDV, 

and RVEF, illustrated in Fig. 5. Compared to other methods, the synthetic data distributions 

from our model closely resemble the real distributions and cover the full variability of 

the real samples. Table IV reports the KL divergence and Wasserstein distance between 

synthetic and real data distributions. The proposed model achieves the best KL or WD 

metrics in most clinical measurements, with KL divergence values of 0.034, 0.043, 0.034, 

0.039, 0.031, and WD values of 15.053, 5.773, 12.214, 9.182, 9.215 for LVEDV, LVESV, 

RVEDV, RVESV, and LVM, respectively. These results demonstrate that the synthetic data 

generated by our model maintains a distribution against age that is similar to the real data.
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E Temporal dynamics

The proposed model encoded the anatomical and clinical information z0
c of the first frame 

(ED) and generated the latent vectors zt
c for the following frames by the temporal module. 

We use the dimensionality reduction technique, t-distributed stochastic neighbor embedding 

(t-SNE) [31], to visualise the latent space zt
c of the generated anatomical sequences, as 

shown in Fig. 6. The sequential latent codes z0:T − 1
c  start at ED (t = 0) and move along a 

cyclic path in the latent space. It shows that the generative model can capture the temporal 

dynamics of the anatomy during the heartbeat and form a cyclic pattern as a real heart 

[45]. More overlapped areas between frames 9 to 18 show that the variation of anatomies 

is smaller in the relaxation stage, which demonstrates the nonlinear trajectories of cardiac 

motion. We plotted one example of the anatomical sequence at time frame 0, 3, 4, 6, 9, 12, 

15, 18 in the figure. Through the time frames, the anatomies present first decreased and then 

increased LV volumes. The thickness of Myo has the opposite trend, which is consistent 

with the contraction and relaxation pattern of the heart [19].

F Condition manipulation

With the conditional generative model, we are able to simulate the change of anatomy 

when certain conditions (e.g. age) change. Fig. 7(a) shows a series of generated anatomies 

during ageing, when the condition age increases but all the other conditions as well as the 

latent vectors drawn from the Gaussian distribution are fixed. The difference map comparing 

the aged anatomy to the anatomy at 10-20 years old shows subtle changes to the LV and 

RV structures. We further generate 200 random samples of the synthetic ageing anatomies 

and derive the clinical measures. Fig. 7(b) illustrates the longitudinal evolution of these 

measures, stratified by gender. We observe a longitudinally increasing trend in LVM during 

ageing and a decreasing trend in LVEDV, consistent with findings in clinical literature 

[18] (Figure 3 of [18]). It demonstrates the potential of using this model for simulating 

anatomical data distributions. However, we need to be cautious in interpreting this result, 

as our training data is cross-sectional instead of longitudinal and also the mechanism of 

cardiac ageing is complex, confounded by more factors (genetics, lifestyle etc) than the five 

conditions we used in this work.

IV Discussion

The proposed model is built upon a β-VAE for learning the latent space of the 

cardiac anatomy. It integrates a conditional branch to model the influence of multiple 

clinical factors on the generation process and uses a temporal module to model the 

temporal relationship of anatomical latent vectors during cardiac motion. The experiments 

demonstrate good performance in both anatomical sequence completion and sequence 

generation tasks, qualitatively and quantitatively. The model enables condition manipulation 

for demonstrating the impact of clinical factors on anatomical shape variation. When 

using the common clinical measures (ventricular volumes and mass) for evaluation, the 

distribution of generated anatomies is close to the real data distribution visually (Fig. 

5) and quantitatively (Table IV), which indicate both the fidelity and diversity of the 

generation. While the model performs well in generating anatomically coherent structures, 

further improvement can be made in terms of achieving a closer similarity between the 
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distribution of generated anatomies and real data distribution. There is also potential for 

further exploration of the relationship between cardiac motion and clinical conditions

We foresee there are several potential downstream tasks for the generative cardiac anatomy 

model, including discovering patterns in large datasets, facilitating out-of-distribution 

detection and generating synthetic data etc. First, by training a generative model on a large 

dataset of cardiac anatomies, the trained model can capture complex patterns and variations 

of the anatomy associated with different clinical factors. This knowledge can be valuable 

for understanding population-level characteristics, identifying risk factors and informing 

public health strategies. Second, by learning the distribution of normal cardiac anatomy and 

dynamics, the proposed model can identify patterns of a given anatomy that deviate from 

the norm, indicating potential anomalies that require further investigation. More importantly, 

the proposed method is a conditional generative model, which means it can learn the norm 

specifically for certain conditions (e.g. a gender and age group) and evaluate the deviation 

from the norm in a personalised manner. Third, the trained generative model can provide 

a large amount of synthetic data for other tasks. Synthetic data can be used for performing 

data augmentation for training machine learning models [8], creating synthetic fair data 

to improve the fairness of prediction models [11], [50], or used as digital anatomies for 

performing in-silico trials [55]. Diverse and realistic synthetic data will alleviate the data 

scarcity issue in the medical field, where real data are often limited or not easy to share. This 

includes the creation of synthetic data for privacy-preserving research [39], [51].

There are a few limitations of this work. The first limitation is the high computational cost 

during training to learn the spatio-temporal patterns from 4D data, even after cropping the 

images to 128 × 128 × 64 and using sequences of only 20 time frames. An interesting future 

direction is to reduce the computational complexity of high-dimensional and high-resolution 

medical imaging data. Second, here we use a segmentation map as a representation of the 

anatomy so that the generative model can focus on learning the variations of anatomy, 

instead of intensity image styles. Future explorations could be extended to the generation 

of intensity images for the heart [1] or using mesh as a representation for the anatomy 

[33], which may be computationally more efficient. Third, we use a cross-sectional imaging 

dataset of mainly healthy volunteers for training the generative model, due to the challenge 

of curating large-scale longitudinal datasets with high spatial resolution. It would be 

interesting to extend this to longitudinal and clinical imaging cohorts with cardiac diseases 

in the future.

V Conclusion

In this work, we propose a novel conditional generative model that is able to synthesise 

spatial-temporal cardiac anatomies given clinical factors as input. It demonstrates the 

feasibility of generating highly realistic synthetic 3D-t anatomies for the heart that captures 

both the anatomical variations and motion of the heart. The work paves the way for further 

generative modelling research in cardiac imaging, such as incorporating disease types or 

representing anatomy as meshes. It also has the potential to be applied to downstream 

tasks, such as performing data augmentation based on various anatomies, building condition-

specific atlases and performing biomechanical modelling of the heart etc.
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Fig. 1. 
Overview of the CHeart model including training and inference stages. During training, 

an encoder is applied to learn the latent representations zc, z0 for the clinical conditions c 
and anatomy at the first time frame x0. A temporal module models the trajectory of z0:T − 1

c

in the latent space across the temporal dimension from the initial latent vectors zc and z0. 

The decoder then generates the 4D cardiac anatomy sequence x0:T–1 from the latent vectors 

on the temporal trajectory. The training process enables two inference mechanisms at test 

time: sequence completion and sequence generation. In sequence completion, the model is 

given x0 and c, and generates the remaining sequence of anatomies in the cardiac cycle. In 

sequence generation, a random latent code z0 sampled from the prior distribution and c are 

given to the model and the temporal module to generate the latent vector sequence z0:T − 1
c , 

which are used to generate synthetic cardiac anatomical sequence x0:T − 1
′ .
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Fig. 2. 
The temporal module for generating the sequential latent codes z0:T–1, constructed with a 

one-to-many long short-term memory (LSTM) structure.
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Fig. 3. 
An example of sequence completion, arranged in two rows with the left-to-right and top-to-

bottom order. With the end-diastolic (ED) frame in time t = 0 and conditions c as input, the 

model generates the remaining anatomical sequence at time frame t = 1–19, shown within 

the gray box. The top row depicts anatomy images at time frame t = 0 – 9, and the bottom 

row depicts at time frame t = 10 – 19.
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Fig. 4. 
Visualisation of synthetic anatomies (last five columns) generated by the model, compared 

to the real anatomy (first column) with the same clinical conditions (text annotation). The 

whole anatomical sequence is generated but only ED and ES frames are shown here. The 

first and second rows of each example show the ED and ES frames of the cardiac anatomical 

sequence.
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Fig. 5. 
Distributions of clinical measures for real data and synthetic data. Each graph displays a 

kernel density plot of an imaging phenotype (LVM, LVEDV, LVESV, RVEDV, RVESV) 

against age. For each plot, the x-axis denotes age and the y-axis denotes the value of the 

imaging phenotype. Darker areas in the plot indicate the regions where the data is more 

concentrated. Lighter areas show the regions where the data is sparser.
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Fig. 6. 
T-distributed stochastic neighbor embedding (t-SNE) visualization of latent space for 

generated anatomical sequences from frame 0 to frame 18. Each dot represents a single 

time frame of a sample, with colors indicating the frame index. A sequence of anatomies, 

decoded from a corresponding sequence of latent codes, belonging to one subject, is 

visualised in the figure.
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Fig. 7. 
(a) An example of the synthetic cardiac anatomy during ageing. The first and third rows 

show the cardiac anatomies at end-diastolic (ED) and end-systolic (ES) frames.

The second and fourth rows show the difference maps between the aged anatomy 20-80 

years old and the anatomy at 10-20 years old. (b) The simulated evolution of clinical 

measures (LVM, LVEDV, LVESV, RVEDV, RVESV) by generating 200 samples of gender-

specific ageing cardiac anatomy and plotting their mean measures with 95% confidence 

interval.
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Table I
The Sequence Completion Performance of Different Models in terms of Dice, Hausdorff 
distance (HD), average symmetric surface distance (ASSD). Mean and standard deviation 
are reported. Asterisks indicate statistical significance (* : P ≤ 0.05) when using a paired 
Student’s t-test comparing the performance of the proposed method to other methods

  Dice (unit: 1)

  LV Myo RV Average

CVAE-GAN [6] 0.845*±0.028 0.697*±0.054 0.832*±0.028 0.791*±0.032

CVAE [48] 0.900±0.023 0.800*±0.040 0.894±0.023 0.864*±0.026

PCA [25] 0.906±0.022 0.810±0.038 0.901±0.023 0.872±0.025

Proposed 0.908±0.023 0.814±0.037 0.902±0.021 0.874±0.024

  HD (unit: mm)

  LV Myo RV Average

CVAE-GAN [6] 10.361*±1.475 9.571*±1.379 14.070*±3.736 11.334*±1.849

CVAE [48] 5.920*±1.335 5.891*±1.055 6.525±1.076 6.112*±1.049

PCA [25] 5.517±1.029 5.710±1.125 6.165±1.072 5.797±0.978

Proposed 5.535±1.180 5.576±0.955 6.445±1.067 5.842±1.017

  ASSD (unit: mm)

LV Myo RV Average

CVAE-GAN [6] 2.120*±0.390 1.670*±0.236 2.244*±0.399 1.983*±0.306

CVAE [48] 1.657*±0.348 1.376*±0.212 1.622*±0.305 1.461±0.280

PCA [25] 1.565±0.324 1.319*±0.221 1.519±0.301 1.490±0.305

Proposed 1.535±0.330 1.298±0.208 1.620±0.323 1.462±0.266
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Table II
Comparison of sequence generation performance between CGAN, CVAE, CVAE-GAN 
and the proposed model, in terms of mean and best Dice metric and contour distance 
metrics for the average performance over LV, RV and Myo. The best value across 20 
samples for Dice metric (maximum), HD (minimum) and ASSD (minimum) are reported. 
Asterisks indicate statistical significance (*: p ≤ 0.05) when using a paired Student’s t-test 
comparing the performance of the proposed method to other methods.

Model
Dice (unit: 1) HD (unit: mm) ASSD (unit: mm)

mean best/max mean best/min mean best/min

CGAN [34] 0.713±0.061 0.717*±0.061 15.533*±2.258 13.956*±2.326 3.004±0.714 2.862*±0.712

CVAE [48] 0.694±0.056 0.789±0.049 11.461*±1.809 8.321±1.536 3.380*±0.710 2.317*±0.540

CVAE-GAN [6] 0.645*±0.052 0.774±0.039 16.844*±2.008 12.105*±1.815 3.693*±0.709 2.185±0.394

Proposed 0.713±0.058 0.793±0.052 10.940±2.343 8.166±1.621 3.023±0.757 2.049±0.521
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Table III
Comparison of sequence generation performance among CGAN, CVAE, CVAE-GAN and 
the proposed model. The clinical measures derived from each real sample are compared 
to those derived from 20 synthetic samples of exactly the same conditions. The mean and 
the minimal differences of the clinical measures are reported here.

Model
dLVEDV (mL) dLVESV (mL) dRVEDV (mL) dRVESV (mL) dLVM (g)

mean best/min mean best/min mean best/min mean best/min mean best/min

CGAN 
[34]

35.58±20.33 15.66±16.67 20.06±9.71 19.74±9.72 51.47±25.25 14.71±17.12 17.57±12.19 17.04±12.18 38.26±19.15 10.40±11.23

CVAE 
[48]

35.74±16.99 4.91±9.84 13.92±6.06 1.87±3.46 44.97±21.58 6.46±12.92 19.49±9.21 2.86±5.74 23.07±9.96 2.70±4.33

CVAE-
GAN [6]

51.32±20.40 6.33±11.96 19.80±6.53 1.69±2.57 48.94±28.66 8.28±17.52 25.26±10.99 2.57±4.11 51.03±11.40 8.29±7.91

Proposed 25.93±17.47 6.87±12.09 11.74±8.41 3.54±6.25 34.63±21.31 6.88±12.87 15.54±11.33 5.12±9.19 17.34±9.89 2.95±5.62
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Table IV
KL divergence and Wasserstein distance between synthetic data distribution and real data 
distribution.

Distribution 
similarity

Kullback–Leibler (KL) divergence Wasserstein Distance (WD)

LVEDV LVESV RVEDV RVESV LVM LVEDV LVESV RVEDV RVESV LVM

CGAN [34] 0.023±0.001 0.019±0.001 0.036±0.004 0.022±0.001 0.050±0.006 33.687±1.173 19.982±0.025 41.643±4.161 17.434±0.036 35.395±2.933

CVAE [48] 0.039±0.005 0.041±0.004 0.042±0.004 0.034±0.003 0.030±0.003 11.929±2.116 7.017±0.964 14.680±2.869 9.665±1.051 10.365±1.703

CVAE-GAN 
[6]

0.153±0.025 0.023±0.003 0.046±0.006 0.064±0.008 0.098±0.019 27.001±2.809 8.425±1.771 24.614±3.202 9.748±2.675 43.251±4.566

Proposed 0.034±0.002 0.043±0.002 0.034±0.002 0.039±0.002 0.031±0.002 15.053±3.597 5.773±1.358 12.214±2.408 9.182±2.145 9.215±1.713
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