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Abstract

The integration of cancer biomarkers into oncology has revolutionized cancer treatment, yielding 

remarkable advancements in cancer therapeutics and the prognosis of cancer patients. The 

development of personalized medicine represents a turning point and a new paradigm in cancer 

management, as biomarkers enable oncologists to tailor treatments based on the unique molecular 

profile of each patient’s tumor.
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In this review, we discuss the scientific milestones of cancer biomarkers and explore future 

possibilities to improve the management of patients with solid tumors. This progress is primarily 

attributed to the biological characterization of cancers, advancements in testing methodologies, 

elucidation of the immune microenvironment, and the ability to profile circulating tumor fractions. 

Integrating these insights promises to continually advance the precision oncology field, fostering 

better patient outcomes.

Introduction

A biomarker refers to any biological marker found in blood, body fluids, or tissues 

that signals the presence of normal or abnormal biological processes, conditions, or 

diseases.1,2 When tailored to the field of oncology, a cancer biomarker specifically 

identifies characteristics of cancer, ideally with a high degree of accuracy and reliability, 

reported as their sensitivity and specificity. The use of cancer biomarkers extends beyond 

merely determining the type of cancer a patient suffers from. Indeed, once a diagnosis is 

established, tumor markers can provide valuable insights into the likely progression of the 

disease, including the chances of recurrence and the expected outcomes of treatment. Cancer 

biomarkers play a crucial role in outlining the prognosis of a disease independently of any 

treatment (known as prognostic biomarkers) or in predicting how a cancer will respond to 

a specific treatment, which helps anticipate treatment outcomes (referred to as predictive 

biomarkers).

Numerous cancer biomarkers have been identified and are primarily classified according 

to the presence of proteins within different functional categories, such as enzymes, 

hormones, antigens, and receptors. Alterations in cancer-related genes, including mutations, 

amplifications, and translocations at the single gene level, or the creation of genetic profiles 

through microarrays, lead to unique genetic signatures. These changes contribute to the 

identification and categorization of cancer biomarkers, aiding in the understanding and 

treatment of the disease.2,3

Regardless of their type, the ideal characteristics of cancer biomarkers include methods of 

detection that are straightforward, reproducible, reliable, and cost-effective, all of which 

should correlate with demonstrable enhancements in patient outcomes. This review will 

explore the current applications and future prospects of cancer biomarkers, considering both 

the advancements in testing technologies and a more profound comprehension of tumor 

biology. The discussion will cover how these developments contribute to the effective use of 

biomarkers in cancer diagnosis, prognosis, and treatment planning.

Biomarkers for Cancer Detection, Diagnosis and Subclassification

In recent decades, the discovery and development of cancer biomarkers have evolved 

through meticulous exploration of substances in tissue, but also the biological fluids of 

cancer patients, encompassing hormones, enzymes, and proteins.

Such markers were mainly discovered by introducing immunological techniques, like 

the radioimmunoassay. The rapid expansion of biological sciences has markedly driven 
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technological advancements. Over successive decades, this progress has led to the 

emergence of sophisticated analytical methodologies, notably in mass spectrometry 

and the development of protein and DNA arrays. These methodologies are intricately 

linked to specific chronological eras and categorizations within the field of biomarker 

discovery. Genome sequencing, a pivotal advancement, has significantly enhanced the 

identification of oncogenes and tumor-suppressor genes. This has catalyzed the discovery 

of cancer biomarkers, which now serve as comprehensive tools for screening, diagnosis, 

prognosis, and prediction. Initially rooted in empirical observations, early cancer biomarker 

investigations have evolved alongside modern testing technologies. The transition from 

serial to parallel testing enables the simultaneous identification of multiple markers, 

providing insights into complex disease patterns. Present-day cancer biomarkers encompass 

diverse elements, including DNA, RNA, proteins, metabolites, and dynamic processes like 

apoptosis and angiogenesis, showcasing a rich array of attributes and combination patterns.

In the process of biomarker evaluation and development, preclinical screening employs 

gene-expression profiling or mass spectrometry to identify potential cancer markers. Upon 

discovery, a clinical assay is developed to non-invasively detect the chosen biomarker in 

tumor tissue or biological fluid, distinguishing positive and negative results. This assay is 

applied in clinical studies for screening (e.g., serum PSA in prostate cancer), diagnosis 

(e.g., identifying EGFR mutation in suspected lung cancer without histology confirmation), 

prognosis (e.g., hormone receptor status in breast cancer), and predicting treatment response 

(e.g., gene signatures for immunotherapy in various tumors). Despite study design biases 

and technical artifacts affecting single cancer biomarker history, they find applications in 

diagnosis (e.g., Bence-Jones protein in myeloma), prognosis (e.g., hCG in testicular cancer), 

and predicting treatment outcomes (e.g., ALK gene rearrangements guiding treatment in 

lung cancer).

The ideal cancer biomarker should possess attributes that facilitate easy, reliable, and cost-

effective assessment, coupled with high sensitivity and specificity. Additionally, it should 

demonstrate remarkable detectability at early stages and the capacity to accurately reflect 

tumor burden, enabling continuous monitoring of disease evolution during treatments. 

However, their low diagnostic specificity is a significant limitation in the real-world 

applicability of some biomarkers, especially the older blood-based ones like CEA, Ca125, 

and Ca15-3. This limitation arises from their potential expression by non-tumor tissues, 

introducing a risk of misinterpretation. The implications of this limitation are multifaceted. 

Firstly, there is a risk of patients undergoing incorrect or unnecessary treatments due to the 

need for more precision in diagnosis. This poses potential health risks and raises concerns 

about the economic burden associated with ineffective interventions. Moreover, the low 

specificity of these biomarkers may result in the oversight of actual cancer cases, leading 

to delayed or missed detections. This delay in diagnosis could significantly impact patient 

outcomes and overall survival rates. Healthcare systems may be reluctant to invest in or 

integrate these biomarkers into routine screenings and diagnostics if there are concerns 

about the cost-effectiveness and overall impact on healthcare budgets. By delving into these 

points, a more holistic case can be built to underscore the urgency and significance of 

advancing oncology biomarkers. Improved biomarkers can enhance the accuracy of cancer 

diagnosis and treatment and contribute to economic efficiency by minimizing unnecessary 
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interventions and optimizing healthcare resource allocation. This broader perspective aims to 

evoke excitement about the transformative impact of better oncology biomarkers on patient 

care, healthcare systems, and societal well-being.

Despite the potential drawbacks associated with single marker evaluations, such as lower 

specificity in prognostic or predictive roles compared to comprehensive approaches like 

assessing co-occurring gene alteration patterns, there are pragmatic reasons for their 

continued use. The simplicity and cost-effectiveness of analyzing single markers make them 

attractive when resources are limited or when a straightforward diagnostic or prognostic tool 

is sufficient. Some single markers have undergone extensive clinical validation, showcasing 

their reliability and accuracy in specific contexts. These well-established markers may 

continue to play a crucial role in routine clinical settings where their clinical utility has been 

firmly established. Therefore, while acknowledging the limitations, single markers’ practical 

advantages and validated efficacy support their continued relevance in specific molecular 

diagnostics and personalized medicine applications.

This applies also to immune biomarkers, which today serve as indispensable tools in cancer 

therapy, offering insights that guide treatment decisions and enhance the effectiveness 

of immunotherapies. By evaluating factors such as PD-L1 expression, tumor-infiltrating 

lymphocytes (TILs), and molecular signatures within the tumor microenvironment, 

clinicians can predict and monitor responses to immunotherapy. Additionally, biomarkers 

like microsatellite instability (MSI) and mismatch repair deficiency (MMR) help identify 

patients more likely to benefit from immune checkpoint inhibitors. The role of immune 

biomarkers extends beyond mere prognostication; they play a pivotal role in shaping 

personalized and targeted approaches, fostering a deeper understanding of the intricate 

interplay between the immune system and cancer cells. As our knowledge of these 

biomarkers continues to evolve, their integration into clinical practice promises to optimize 

cancer treatment strategies and improve patient outcomes. In this view, a pan-cancer 

approach would gain reliability regarding immune signatures able to predict the ability of 

tumor antigen recognition and T-cell response initiation.

In addition, the same identified biomarker might have different roles in different tumors 

and with different drugs (e.g., HER2 mutations, amplifications, and overexpression represent 

specific biomarkers for lung, breast, and gastric cancer, respectively, requiring different 

testing methods accordingly).

Conversely, the agnostic approach represents a paradigm shift in this scenario, which applies 

to two scenarios: the same biomarker across tumor types (e.g., NTRK gene rearrangements) 

and biomarker agnostic use of targeted drugs. This latter approach is at the basis of the 

emergence of antibody-drug conjugates (ADCs) across different tumor types. Indeed, ADCs 

use target antigens commonly present on tumor cells, not normal cells, to deliver cytotoxic 

drugs more selectively within tumor sites. As such, the presence of the target on tumor 

cells is theoretically required – as per historical data, but its specific quantification as a 

biomarker is not needed. The activity of the currently available ADCs was demonstrated 

regardless of the target’s expression levels across most tumors, across different targets (e.g., 

TROP2, HER3), and the evaluated ADCs. This critical consideration led to the repurposing 
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of previously excluded biomarkers, as it happened for the newly identified ‘HER2 low’ 

breast cancer receiving benefits with the ADC trastuzumab-deruxtecan.

As a take-home message, elevating cancer biomarker research requires shifting towards 

multiparameter approaches, incorporating dynamic processes and immune signatures. 

Embracing simplicity without compromising specificity will propel the development of 

reliable, cost-effective biomarkers, offering transformative potential in personalized cancer 

diagnosis and treatment.

Biomarkers to Inform Treatment Decision-Making: from Oncogenes to 

Multidimensional Assessment of Biology

Technologies such as immunohistochemistry (IHC) or polymerase chain reaction (PCR) 

remain standard basic tools given their affordable cost and rapidity. However, the use 

of next-generation sequencing (NGS) technology, enabling the rapid and cost-effective 

sequencing of large amounts of DNA or RNA, gradually increased, specifically for defined 

cancer types such as colorectal and non-small cell lung cancer and melanoma.

Recent advances in cancer research leverage advanced genetic analysis techniques, such as 

whole exome sequencing (WES), whole genome sequencing (WGS), and RNA sequencing 

(RNA Seq). WES delves into protein-coding DNA regions, shedding light on pertinent 

genetic changes in cancer. WGS takes a more comprehensive approach, sequencing 

the entire DNA, including non-coding areas, offering a holistic view of the genetic 

landscape. RNA Seq scrutinizes RNA molecules to decipher gene expression patterns. These 

methodologies collectively advance our comprehension of cancer pathways, contributing to 

the refinement of targeted diagnostics and therapies.

Expanding the scope, considering WES, WGS, and RNA Seq for DNA and RNA analysis, 

aims to deepen our understanding of oncogenic pathways. This approach becomes especially 

pertinent when targeted panels fail to identify actionable molecular abnormalities. The 

insights into molecular mechanisms have paved the way for developing drugs specifically 

targeting these mechanisms. Typically, these drugs prove effective in patients whose cancer 

biology is driven by the specific protein the drug targets. A notable historical example is the 

targeting of estrogen receptors and HER2 in breast cancer patients.

There has been a growing interest in expanding our understanding of cancer-related 

processes through advanced genetic analysis techniques. One such approach involves using 

comprehensive methods like whole exome sequencing (WES) or whole genome sequencing 

(WGS) to study the DNA, along with RNA sequencing (RNA Seq) to analyze the RNA 

molecules.

In the Oxford metanalysis, endocrine therapy by tamoxifen, an estrogen receptor modulator, 

decreased breast cancer mortality by around one-third in patients with early-stage breast 

cancer expressing estrogen receptors. No benefit was observed in patients without 

expression.4
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Since this historical example, genomics has emerged as a tool to decipher which oncogenes 

drive cancer progression. Historical examples include HER2 amplifications in breast 

cancers, EGFR mutations in lung cancer, cKIT mutations in GIST, and BRAF mutations in 

patients with melanoma.5,6 In all these examples, a targeted therapy by HER2, EGFR, KIT, 

and BRAF signaling inhibitors improved the outcome of patients with metastatic cancer 

presenting the genomic alteration.

This allows optimal bioactivity with minimal toxicity. As example, drugs targeting 

specifically KRAS G12C mutations 7 and 542/545/1047 PIK3CA hotspot mutations 8 have 

been developed. The further evolution included the detection of more complex genomic 

alterations like gene fusions, and the detection of germline alterations driving cancer 

progression. Gene fusions have been described and used a companion diagnostic since very 

long time. As example PML-RAR fusions in acute myeloid leukemia defines a group of 

patients with outlier sensitivity to retinoic acid and arsenic. In the last few years, several 

gene fusions have been identified as driver alterations and represent now a biomarker for 

treatment decision. This includes FGFR2, NTRK, ALK, RET, ROS1 and NRG fusions.

While targeting oncogene is now an established strategy, the targeting of tumor suppressor 

gene (TSG) is a major challenge. Several approaches have been developed to address 

this topic. First, synthetic lethality has been a major success for BRCA-mutant cancers. 

Indeed, PARP inhibitors have been shown to improve outcome in patients with BRCA1/2 

mutations and a breast, ovarian, prostate, pancreatic cancers.5 In the 2nd approach, drugs 

have been used to inhibit the pathway activated by the loss of the tumor suppressor gene. 

As example, patients with PTEN mutations and metastatic breast cancer derive benefit from 

AKT inhibitors.9 Finally, in the last approach, investigators aim at reactivating the mutated 

TSG.

The example discussed above, showed that targeting a validated driver oncogene improves 

patient outcome. Nevertheless, this comes with several challenges.

Resistance to targeted therapies

Firstly, treatment resistance inevitably occurs in most of the patients. Some co-mutations 

or protein expression leading to alternative signaling or feedback loops explain primary 

resistance to genomically driven targeted therapies. As example, KRAS mutations explained 

resistance to EGFR inhibitors in patients presenting a metastatic colon cancer.10 This led to 

identifying KRAS mutations as a biomarker of resistance performed in routine practice. At 

the opposite, EGFR expression has been reported to mediate resistance to BRAF inhibitors 

in patients with colon cancers, and targeting EGFR is now a mandatory treatment to 

optimize the use of BRAF inhibitors in patients with colon cancers.11

Examples abound, such as the utilization of MEK inhibitors alongside BRAF inhibitors in 

melanoma patients. Acquired resistance often stems from the emergence of new alterations 

conferring resistance to targeted therapies. The development of the EGFR T790M mutation 

following EGFR inhibitor treatment stands as a historical instance. Recent instances include 

the emergence of ESR1 mutations in breast cancer patients treated with endocrine therapy, 
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AR fusions after anti-androgen treatment, or reverse BRCA mutations post-PARP inhibitor 

therapy.

The debate over whether these mutations originate from preexisting subclones or are 

induced by exposure to targeted therapy persists, and it is highly probable that both 

phenomena contribute to cancer development. Detecting preexisting resistant subclones prior 

to targeted therapy exposure could profoundly impact precision medicine by elucidating the 

eventual resistance mechanisms a tumor may develop. Drugs addressing these secondary 

mutations have shown clinically meaningful improvements in outcomes. Some of these 

compounds have now transitioned to the first-line setting with the aim of preemptively 

preventing secondary resistance while effectively targeting the initial driver mutation.

As an example, osimertinib, a third-generation EGFR TKI, was initially developed to target 

the frequent EGFR T790M resistance mutations and is now given to treatment-naïve patients 

with EGFR-activating mutations in the first-line setting.12 The next challenge in this field 

will be to block the mutational process leading to the subsequent type of resistance.

Translating biomarker testing in clinical setting

Systematic and routine testing of these genomic alterations in daily practice represent the 

second challenge. Genome sequencing is the gold standard for assessing the previously 

mentioned genomic alterations, and the fastest and cheapest way of doing it is to perform 

multigene sequencing that assesses all alterations in a single assay. The clinical utility 

of multigene sequencing has been validated and this technology is now recommended in 

most of the cancer types. Several recent trials have suggested that the interpretation of 

genomic testing should be driven by dedicated frameworks, like ESCAT (ESMO Scale for 

Clinical Actionability of Molecular Targets) or ONcoKb, and that only validated genomic 

alterations should be considered for daily practice.5 The availability and use of biomolecular 

technologies in routine clinical practice remains heterogeneous and multifactorial, both 

within and across countries. Economic issues, barriers to access, and health system 

disparities limit their systematic interpretations. A recent ESMO (European Society of 

Medical Oncology) survey provides a comprehensive overview of the availability and 

accessibility of biomolecular technologies to patients in countries in the World Health 

Organization (WHO) European Region, formally demonstrating that comprehensive NGS 

panels remain largely inaccessible in clinical routine practice and are limited to clinical and 

translational research, even in EU and US area.

Improving the genomic-driven targeted therapies development flow

The third challenge is to change the frameworks associated with the development of 

genomic-driven targeted therapies. While these drugs target genomic alterations and 

sometimes present outstanding efficacy, they are still developed using historical randomized 

trials in diseases defined by organ of origin (breast, colon…). Developing drugs using 

single-arm phase II trials and across tumor types could dramatically speed up drug 

development and access to therapies. For example, TRK inhibitors were shown to be 

effective in single-arm phase II trials that were agnostic for organ-of-origin.13 Additionally, 

comparing the evidence generated by single arm performed in rare disease entities, and in 
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more frequent diseases in case of a very high magnitude of efficacy to synthetic matched 

real-world evidence arms would allow for a faster and broader registration of precision-

oncology strategies, improving access to medication and care of all affected patients.

Understanding cancer heterogeneity

To improve biomarker-driven therapies, the final challenge is enhancing genome sequencing 

with a broader biological assessment to boost accuracy and address tumor heterogeneity, 

with the characterization of co-mutations. Several technologies are being developed to 

address these needs. Spatial biology and organoid-based ex-vivo models represent cutting-

edge technologies in medical research, reshaping diagnostics and predictive disease 

modeling. Aligned with genomics, these tools unravel unique biological landscapes, 

identifying therapeutic targets and deciphering molecular mechanisms in cancer progression.

For example, spatial insights derived from advanced technologies like spatial biology 

and organoid-based ex-vivo models play a pivotal role in refining drug development 

for biomarker-driven therapies. By combining genome sequencing with a comprehensive 

biological assessment, these insights contribute to increased accuracy and the resolution of 

tumor heterogeneity, particularly in characterizing co-mutations. These cutting-edge tools, 

aligned with genomics, unravel distinctive biological landscapes, aiding in the identification 

of precise therapeutic targets and the deciphering of molecular mechanisms in cancer 

progression. This spatial information enables the development of drugs with a more tailored 

treatment strategy, optimizing their effectiveness in addressing the complexities of individual 

cases.

Integrating assessments into multidimensional scores promises a nuanced understanding 

of disease biology within individual patients over time, heralding a new era in precision 

medicine.14

Results of the assessments of these new dimensions of biology will be integrated in 

multidimensional scores that will ultimately recapitulate the biology of the disease in a 

defined patient over time.

In summary, the evolution of cancer research from oncogenes to advanced genetic 

analysis techniques like whole exome sequencing (WES), whole genome sequencing 

(WGS), and RNA sequencing (RNA Seq) has illuminated the intricacies of molecular 

pathways, facilitating targeted therapies. Despite successes, challenges persist. Identifying 

predictive biomarkers for resistance, implementing routine genomic testing, redefining 

drug development frameworks, and embracing a multidimensional approach to complement 

genomics are critical frontiers. Bridging these gaps holds the promise of accelerating drug 

development, enhancing treatment precision, and comprehensively understanding cancer 

biology, ultimately reshaping the landscape of precision medicine.

The Evaluation of Molecular Techniques for Biomarker Analysis

Clinical biomarker testing relies on detection of molecules such as DNA, RNA, protein 

metabolites or transcription factors that are either produced by the tumor or as a response 
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to the tumor that can help with diagnosis, as well as provide predictive and prognostic 

information to guide patient care. The evolution of molecular techniques with efforts to 

develop sensitive and specific biomarkers using novel analytical testing methods have 

contributed to the growing field of precision oncology. Some of the commonly used testing 

methods in clinical diagnostic practice are described below and shown in Table 1.

Immunohistochemistry (IHC) is a widely available, rapid, and relatively inexpensive testing 

methodology for detecting proteins expressed by specific cells in tissue specimens. While 

IHC has been used since the 1940s to visualize antigen-antibody interactions, frequently 

conjugated to an enzyme such as peroxidase (chromogenic IHC), other techniques 

such as tagging to a fluorophore (immunofluorescence), multiplex IHC with different 

antibodies used to stain the same tissue section, multiplex immunofluorescence (mIF), 

and newer technologies such as tyramide signal amplification and fluorescent quantum 

dot nanocrystals, with higher sensitivity can be employed to detect and quantify specific 

protein expression.15–18 For example, IHC is the recommended assay for assessment 

of estrogen receptor (ER) in breast cancer, the first established predictive biomarker, 

and the most widely used predictive marker for consideration of endocrine therapy in 

breast cancer patients. Several other predictive/prognostic IHC-based biomarkers such as 

progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), Ki-67, 

anaplastic lymphoma kinase (ALK), Ros proto-oncogene tyrosine-protein kinase (ROS1), 

DNA mismatch repair protein (MMR), Neurotrophic tyrosine receptor kinase (NTRK), and 

programmed death-ligand 1 (PD-L1) are routinely used in clinical practice for a variety of 

solid tumors.

Enzyme-linked immunosorbent assay (ELISA) is a commonly used immunological assay 

for detecting and measuring antibodies, antigens, and proteins in clinical practice, especially 

in blood and other body fluids. Newer techniques, such as electrochemical ELISA, have 

increased sensitivity for detecting low-abundance protein biomarkers.19,20 Some commonly 

used ELISA assays for detecting and estimating tumor marker levels include prostate-

specific antigen and carcinoembryonic antigen (CEA) in patients with prostate cancer and 

pancreatic/colon cancer, respectively.

Fluorescence in situ hybridization (FISH) is a routinely used technique that uses 

fluorescently labeled probes that can hybridize with a nucleic acid sequence to detect gene 

copy number changes (for instance, amplification) or gene rearrangements/fusions in tumor 

cells. Additional use of FISH techniques to detect diagnostic, predictive, and prognostic 

biomarkers include multiplex FISH and comparative genomic hybridization.21 One of the 

most widely used FISH-based biomarker assays is evaluating HER2 amplification. HER2 

is overexpressed in up to 20-30% of breast cancer patients as well in several other 

malignancies including gastric and gastro-esophageal cancer, colorectal cancer, ovarian 

cancer, prostate cancer, and lung cancer. 22–24 While HER2 can be reliably assessed using 

IHC, indeterminate staining with IHC (2+) is typically reflexed to FISH. Other predictive/

prognostic FISH-based biomarkers that are frequently used in clinical practice include ALK, 
ROS1, NTRK, rearranged during transfection (RET) and MET proto-oncogene, receptor 

tyrosine kinase (MET).
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PCR-based genomic profiling is the most common molecular methodology used for both 

DNA- and RNA-based applications in oncology. PCR-based amplification in combination 

with sequencing has been widely used for the detection of DNA mutations, gene fusions, 

copy number alterations, DNA methylation analysis in a variety of tumor types. Various 

modifications, including real-time PCR and digital PCR have been employed in clinical 

practice to increase the sensitivity of detecting biomarkers.

Next-generation sequencing (NGS) combines unique sequencing chemistries with 

bioinformatics, to allow for massively parallel sequencing with high throughput and 

scalability. NGS is routinely used for detecting both germline variants and somatic 

mutations for DNA-based testing, as well as RNA-based biomarkers, such as gene fusions 

and RNA sequencing.25–27 NGS can be performed using either an amplicon-based method 

with primer panels that amplify gene fragments harboring driver mutations, or targeted 

capture and hybridization of regions of interest for sequencing using capture probes. 

The last couple of decades have witnessed an increasing need for an expanded range of 

biomarker tests that are needed to tailor therapy based on specific molecular and immune 

characteristics of the tumor. Therefore, in the face of a growing need for more complex 

biomarker information, comprehensive genomic profiling platforms such as NGS-based 

assays are largely being preferred over single-gene testing.

Several gene expression profiling assays are currently being used to evaluate gene 

expression and transcriptome changes for classifying tumors into molecular subtypes 

that can be used for predictive or prognostic purposes. Gene expression microarrays are 

commonly used to evaluate differentially expressed genes in tumor samples and are used 

to assess prognosis and recurrence of disease and can serve as predictive biomarkers of 

therapeutic response. Microarray-based molecular classifications of breast cancer patients 

are used to predict recurrence risk and chemotherapy response.28,29

Advancements in molecular techniques drive precision oncology’s biomarker analysis. 

Immunohistochemistry, enzyme-linked immunosorbent assay, fluorescence in situ 

hybridization, polymerase chain reaction, and next-generation sequencing are vital tools, 

each playing a unique role. From protein detection to comprehensive genomic profiling, 

these techniques contribute to the evolving landscape of precision medicine, offering 

insights for tailored therapeutic approaches and enhancing our understanding of tumor 

biology.

Biomarkers to Characterize Immune Response

Lung cancer serves as a key example for development of biomarkers to characterize immune 

responses in cancer therapy. Immunotherapy has gained prominence in the treatment of 

non-small cell lung cancer (NSCLC), encompassing early-stage, locally advanced, and 

metastatic cases.30 Despite the progression free and overall survival benefits derived 

from the use of checkpoint inhibition, the number of patients benefitting from durable 

disease-control is limited.30,31 Therefore, stratification using biomarkers is important to 

avoid over- and under-treatment of patients. Commonly utilized biomarkers include PD-L1 

status32, tumour mutation burden (TMB)33 and more recently, pathological response after 
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neoadjuvant chemoimmunotherapy34. However, each of these biomarkers has limitations, 

and as our understanding of cancer-immune interactions evolves, new potential biomarkers 

are emerging. These biomarkers can be broadly categorised as tumour cell intrinsic, 

or microenvironment related. The optimal integration of these markers, especially in 

conjunction with emerging immunotherapies like vaccines, T-cell receptor engagers, and 

cellular therapies, remains to be determined.

Tumour cell intrinsic features

The immune system can recognize diverse tumour antigens, including somatic mutation-

derived neoantigens, oncoviral antigens (e.g., HPV E6), lineage-related proteins (e.g., 

Melan-A in melanoma), and cancer-testis antigens.

TMB reflects the potential neoantigen repertoire size, which has been shown to be targeted 

by checkpoint inhibitor-induced T-cell responses.35,36 It is estimated that ≤1-5% somatic 

mutations generate immunogenic neoantigens.37–42 Thus, a higher TMB increases the 

likelihood of generating immunogenic neoantigens and a productive T-cell response43–

48. Cancers with a high mutation load49 such as NSCLC, head and neck cancers, 

melanomas, urothelial cancers, and microsatellite unstable tumours often respond favourably 

to immunotherapy. TMB assessment is prognostic for response to immunotherapy and 

the FDA has approved the use of pembrolizumab for high TMB solid cancers (defined 

as ≥10 mutations/megabase using the FoundationOne CDx assay)50. A major challenge 

in using TMB as a biomarker is how to define the cut-off for TMB-high tumors with 

varying panel designs and bioinformatics pipelines. Whilst the feasibility of blood based 

TMB measurements has been demonstrated51–53, these assays cannot be used in non-ctDNA 

(circulating tumor DNA) shedding disease and may not be accurate in low ctDNA shedding 

disease54. Efforts to standardize TMB calculation in clinical assays are ongoing54,55.

Recent developments have highlighted that not all somatic mutations are equal. Cancers 

continue to acquire somatic mutations through their lifetime, with some being ‘clonal’ 

(present in every cell) and others ‘subclonal’. Clonal neoantigen burden correlated with 

durable responses in NSCLC treated with checkpoint inhibitors56. Furthermore, clonal TMB 

was the biomarker with the most substantial effect size in predicting radiological tumour 

response across 1008 checkpoint-inhibitor treated cancers (CPI1000 cohort) comprising 

of NSCLC, melanoma, renal, urothelial, breast, colorectal and head and neck cancers57. 

By contrast, subclonal TMB had no significant association with tumor response to 

immunotherapy drugs (e.g. immune checkpoint inhibitor), suggesting the clonal portion of 

TMB may be critical in immunotherapeutic response.

The type of mutation and the etiology driving mutagenesis are also important for responses 

to immune checkpoint inhibitor. Insertions/deletions (INDELs), particularly frameshift 

variants, can generate 3x more high affinity neoantigens per variant compared to a 

non-synonymous mutation58. Both INDEL TMB, and nonsense-mediated decay escaping 

frameshift INDEL burden correlate with checkpoint inhibitor responses57. The presence 

of a smoking mutational signature was also associated with checkpoint response in the 

lung subset of the CPI1000 cohort, independent of TMB burden57. This might reflect the 

dinucleotide mutation burden associated with smoking, increasing the likelihood of mutating 
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two amino acids and/or causing more radical amino acid substitutions57 for the immune 

system to detect.

Another source of antigens of interest in NSCLC are cancer/testis antigens (CTA), such 

as MAGE, PRAME, or NY-ESO-159. They are immunogenic 60,61, frequently expressed in 

NSCLC62,63, and their expression in normal tissues is restricted to immune-privileged sites 

that harbour germ cells. Off the shelf vaccine64–67 and cellular therapies68,69 have been 

developed to target these in multiple cancer types, and detecting these antigens is usually a 

pre-requisite biomarker for recruitment to such clinical studies.

Genomic background of the cancer

In addition to serving as potential neoantigens, some somatic alterations may confer 

differing sensitivities to immune checkpoint inhibition. For example, EGFR- and ALK-

driven lung cancers are associated with resistance to checkpoint inhibitors70. Whilst this 

may partially relate to a reduced TMB71 due to enrichment in non-smoker patients, a 

non-inflamed tumour microenvironment with reduced tumour infiltrating lymphocytes72 and 

reduced interferon gamma (IFNγ) signature may also contribute to this insensitivity73, and 

also to the activation of CD73 adenosine pathway, as a potential therapeutic target for 

EGFR-mutant NSCLC.74

The literature on PD-L1 expression in EGFR-mutant cancers is conflicting71,73,75–79, though 

pooled analyses suggest that PD-L1 expression might be reduced compared to EGFR-wild 

type cancers71,75. Conversely, MET exon 14 skipping mutations are associated with high 

PD-L1 expression79,80, and co-mutated TP53/KRAS NSCLCs are associated with increased 

sensitivity to checkpoint blockade81. However, if the KRAS-mutant tumor also harboured an 

STK11 mutation, this was associated with reduced PD-L1 levels; or if it harboured a KEAP 
mutation, there was an associated reduction in T-cell infiltration and downregulation of 

inflammatory cytokines70,79,82,83. Both these variants confer worse clinical outcomes with 

checkpoint inhibition82. Similarly, loss of PTEN is associated with increased expression 

of immunosuppressive chemokines, decreased T-cell infiltration, reduced IFNγ expression, 

and worse outcomes with PD-1 targeted therapy in melanoma84 and NSCLC85. Mutations 

in DNA damage repair pathways such as POLE, POLD1 and MSH2 are also associated 

with response with checkpoint inhibitors, likely reflecting increased TMB61. Mutations 

in BRCA1/286,87 and other genes within the homologous repair pathways87, as well 

as mutations in MUTYH69 are associated with increased TMB and tumour-infiltrating 

lymphocytes. Pan-cancer analyses also demonstrated that copy number gains and losses of 

certain genes may be associated with altered sensitivity to checkpoint blockade; for example, 

CCND1 amplification was associated with resistance, whereas 9q34.3 loss, encompassing 

TRAF2, was associated with increased sensitivity56. These examples demonstrate the 

potential utility of the tumour’s genomic background as a biomarker for checkpoint 

blockade response.

Other Mechanisms of Immune Evasion

Tumour cells employ various immune evasion strategies, impacting immunotherapy 

responsiveness. These include increased PD-L1 expression, alteration in antigen presentation 
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machinery (e.g. B2M or loss of heterozygosity in human leukocyte antigen (HLA LOH)), 

and loss of IFNγ sensitivity.

PD-L1 expression serves as a clinically validated biomarker for immunotherapy in 

NSCLC32, but not SCLC89. There are three FDA approved PD-L1 immunohistochemistry 

assays currently used as companion diagnostics: Dako 28-8 for the use of ipilimumab/

nivolumab in NSCLC; Dako 22C3 for the use of pembrolizumab with multiple solid 

tumours; and Ventana SP142 for the use of atezolizumab with NSCLC, urothelial 

malignancies and triple-negative breast cancer32. In advanced NSCLC, and in the absence 

of driver EGFR and ALK variants, a PD-L1 ≥1% cut-off is currently used to determine 

suitability for combination nivolumab/ipilimumab71 or pembrolizumab monotherapy13,72; 

and a PD-L1 ≥50% cut-off is used to determine suitability for atezolizumab monotherapy51 

or cemiplimab monotherapy92. Interestingly, high PD-L1 expression does not appear to 

be significantly associated with high TMB, suggesting that a combination of these two 

biomarkers may better than using either one alone93.

Aberrations in the antigen processing and presenting pathway are associated with poorer 

responses to checkpoint blockade94. An ‘antigen processing machine’ score generated 

from expression data of genes including B2M, CALR, NLRC5, PSMB9, PSME1, PSME3, 
RFX5, and HSP90AB1 was associated with response to checkpoint blockade in NSCLC94. 

Mutations or loss of B2M, encoding ß2-microglobulin, an extracellular component of 

the major histocompatibility complex class I (MHC I) molecule which stabilises cell 

surface expression of MHC I and plays a role in presenting antigenic peptides to the 

immune system95, have been implicated in acquired resistance to immunotherapy in 

melanoma96,97 and NSCLC98. Therefore, identifying these changes in B2M may provide 

an important biomarker for response to checkpoint blockade. Another strategy for cancer 

cells to reduce neoantigen expression would be through the loss of genomic segments 

harbouring immunogenic mutations, or through genomic loss or repression of HLA allele 

expression99,100. Work on NSCLC tumours demonstrated that B2M mutations tend to 

be mutually exclusive with HLA LOH and alterations in other components of antigen 

presentation machinery80. The presence of HLA LOH is enriched in ‘immune hot’ tumours, 

suggesting that it is a mechanism of immune evasion99. Thus, understanding the expression 

of HLA alleles would be particularly important when designing personalised neoantigen-

targeting treatments such as vaccines and cellular-based therapies.

JAK1 and JAK2 genes encode signal transducers that respond to IFNγ by increasing 

antigen presentation, producing chemokines to attract T-cells, and triggering tumour cell 

apoptosis101,102. JAK1/2 signalling also results in increased PD-L1 expression thereby 

allowing escape from T-cell mediated cytotoxicity103. Mutations or loss in JAK1/2 would 

therefore result in reduced response to IFNγ signalling, increased tumour growth, reduced 

T-cell infiltration and futility in using PD-1/PD-L1 targeting agents104. Indeed, JAK1/2 
mutations are associated with primary resistance to checkpoint blockade in melanoma 97, 

104–106.
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Microenvironmental features

The tumour microenvironment comprises immune and stromal cells. The roles various 

immune cells, such as tumour infiltrating lymphocytes (TILs), regulatory T-cells, B-cells, 

neutrophils, eosinophils, macrophages and dendritic cells, in promoting or suppressing 

tumour growth are subject to ongoing research107,108. The presence of these cells and their 

associated chemokine secretory signatures are being developed into potential biomarkers for 

immunotherapy responsiveness.

One of the most studied microenvironment-related biomarkers in NSCLC is TIL infiltration, 

with results suggesting that high infiltration, particularly those of CD8+ cells, is associated 

with better overall outcomes109,110, and increased sensitivity to checkpoint blockade100–119. 

TILs have demonstrated a more robust correlation with the response to checkpoint blockade 

compared to TMB levels in patients with PD-L1–negative disease115. The investigation into 

whether enhancing TIL assessment through staining for co-expressed markers like PD-1 or 

CD39 can optimize the predictive performance of these biomarkers for immunotherapy drug 

responses.120,121

Nevertheless, TILs can be assessed by pathologists through straightforward hematoxylin and 

eosin staining (H&E) slides, facilitating seamless integration into clinical practice, akin to its 

established use in breast cancer103.

Conversely, other cells, such as T-regulatory cells, M2 macrophages, and myeloid derived 

suppressor cells (e.g., neutrophils) are associated with immunosuppressive environments 
107,108,123–130. Circulating markers such as high baseline neutrophil-to-lymphocyte ratio or 

low eosinophil counts seem to correlate with worse outcomes with checkpoint blockade131–

138, and can also be easily incorporated into clinical practice.

To account for the multiple cell types within the immune microenvironment, as well as 

their activation and chemokine signaling, multiple transcriptomic signatures have been 

developed to predict response to checkpoint blockade. These vary in the platforms used, the 

numbers of genes assessed and the pathways involved: from T-cell activation and cytolytic 

activity, to IFNγ signalling, to antigen processing and B-cell responses139–146. Chemokines 

incorporated into these panels include CXCL9, CXCL10, CXCL11, CXCL13 and IFNγ. 

Pan-cancer analyses in the CPI1000 cohort identified CXCL13 as being highly and 

differentially expressed in responders to checkpoint blockade compared to non-responders, 

and CXCL9 having the largest effect size for association with response when compared to 

other markers of tumour infiltration56.

Host factors

Host-related factors also play a role in sensitivity to checkpoint blockade. For example, 

biological male sex appears to confer benefit when considering checkpoint blockade147. 

Several germline genetic variations appear to contribute to immune traits148,149. It is 

estimated that 15-20% of intratumour variability in T cell infiltration and IFNγ signalling is 

heritable. For example, polymorphisms in RBL1 are associated with T cell infiltration, and 

those in IFIH1, STING1, and TMEM108 seem to affect IFNγ signalling150. Polymorphisms 
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in IFT74, DCDC2 and NRSN1 are also associated with altered CD8+ T cell phenotypes151 

and those in CTLA4, CCR5, IRF5, CTSS seem to impact immunotherapy response152.

The germline HLA status of patients may also impact response to checkpoint blockade. 

Heterozygosity at all loci of HLA-A, B and C was associated with better survival outcomes 

than homozygosity in one of the alleles, likely reflecting the ability of the immune system to 

recognise a wider repertoire of antigens153.154.

In patients with different variants of the HLA genes (heterozygous HLA alleles), the success 

of checkpoint blockade immunotherapy is linked to the evolutionary divergence of these 

genetic variants, measured by something called the Grantham distance. Essentially, the 

Grantham distance helps quantify how much these genetic variants have evolved over time. 

Surprisingly, individuals with higher evolutionary divergence in their HLA alleles had better 

responses to checkpoint blockade treatments compared to those with less divergent alleles. 

This discovery underscores the importance of understanding the evolutionary aspects of 

our immune system’s genetic makeup in predicting the effectiveness of immunotherapy, 

shedding light on a potentially significant factor influencing patient outcomes. 153,154

This was seen in NSCLC and melanoma. Furthermore, specific alleles were associated with 

response to anti-CTLA4 treatments in melanoma, with HLA-B44 supertype being associated 

with better prognosis and HLA-B62 supertype being associated with poor outcome154. 

These results suggest that germline genotype can help predict response to immunotherapy 

and is an important consideration in neoantigen based therapeutic approaches. Indeed, 

neoantigen prediction pipelines rely on genotyping the HLA alleles155,156.

In this specific historical period of cancer treatment, characterized by the increasing use of 

immunotherapy drugs, understanding the immune response has become a daily challenge 

that, originating from research, has seamlessly integrated into daily clinical practice. 

Identifying and evaluating biomarkers, including PD-L1 status, tumor mutational burden 

(TMB), and other factors related to the microenvironment and genomic background, are 

crucial for shaping personalized treatment strategies and effectively stratifying patients. This 

comprehensive approach is essential for maximizing therapeutic outcomes in the era of 

immunotherapy. Furthermore, this understanding pave the way for advancements in cancer 

diagnostics, encompassing both tissue and liquid biopsy strategies, ultimately improving the 

precision and efficacy of diagnostic approaches in the evolving landscape of cancer care.

Current Perspective of Blood-Based Biomarkers

In recent years, the study of blood-based biomarkers has advanced dramatically, especially 

in the area of circulating tumor DNA (ctDNA). Based on a large body of work, it is 

now clear that ctDNA most often comprises a variable, although small, fraction of the 

total circulating cell-free DNA (cfDNA) in the plasma of cancer patients. This fraction 

is correlated with a variety of biological factors including tumor type, histology, disease 

burden, cell proliferation, and genomic instability158–162. The main clinical applications of 

ctDNA analysis include noninvasive tumor genotyping, monitoring response to therapy, 

detection of minimal residual disease (MRD) following treatment, and early cancer 
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detection. Each of these applications targets a unique patient population with a distinct 

distribution of ctDNA concentrations, requiring careful consideration of the required limit 

of detection (LOD) for assays. Patients with advanced disease have the highest average 

ctDNA levels (often >1%), allowing tumor variant identification directly from the plasma 

with assays that have relatively less sensitive LODs. However, in the setting of MRD 

detection or screening for early-stage tumors, ctDNA levels can be below one part per 

million, necessitating much more sensitive assays.

The first ctDNA application that became part of the standard of care was non-invasive 

tumor genotyping to identify therapeutically actionable mutations in patients with advanced 

disease. Increasingly, liquid biopsies are performed in parallel with tumor tissue biopsies 

due to the combination identifying more actionable mutations and liquid biopsies having 

faster turnaround times163,164. One key advantage of liquid over tissue biopsies is that 

ctDNA can contain contributions from multiple tumor deposits and may therefore better 

capture tumor heterogeneity than a tissue sample from a single site. Liquid biopsies can 

enable tumor genotyping in patients for whom a tissue biopsy is not available, or when the 

biopsy sample contains low tumor cellularity.

Initially implemented using quantitative and digital PCR assays165–168, ctDNA genotyping 

is now predominantly performed via next-generation sequencing (NGS) panels that 

interrogate an array of clinically actionable mutations. The limit of detection of ctDNA 

genotyping assays for individual mutations is ~0.2%169,170, making them suitable for 

application to patients with metastatic disease who generally have pre-treatment ctDNA 

concentrations of ~1-5%158. Studies in multiple cancer types have demonstrated high 

concordance between ctDNA and tissue genotyping171–175 and plasma-based genotyping 

has been found to recapitulate the expected tumor mutational landscape in large, multi-

center cohorts176. In addition, prospective studies have demonstrated that the addition of 

pre-treatment ctDNA analysis to tissue-based genotyping can increase the detection of 

therapeutically actionable mutations in lung163,177, breast178, and colorectal179 cancers. 

Therefore, performing liquid biopsy-based genotyping first or in parallel with tissue-based 

genotyping has been recommended in certain advanced disease settings by multiple expert 

groups180,181. Importantly, false-negative results due to low ctDNA abundance represent a 

key limitation of plasma-based genotyping, and reflex tissue testing is therefore strongly 

recommended in parallel or when no tumor mutations are found using a liquid biopsy first 

approach, imposing some delays.

Genotyping via ctDNA can also be used at the time of progression in order to identify 

resistance mechanisms that might be therapeutically actionable180. For example, in patients 

with EGFR-mutant NSCLC treated with tyrosine kinase inhibitors, ctDNA analysis at 

the time of resistance can identify mechanisms of resistance such as secondary EGFR 

mutations and MET amplification182,184. Separately, tumor mutational burden (TMB) and 

microsatellite instability (MSI), which are potential predictors of immunotherapy response, 

can be identified using ctDNA analysis in patients with advanced disease. Blood-based TMB 

(bTMB) measurements correlate with those determined from tumor tissue 183,185 and higher 

bTMB was associated with better response to atezolizumab in advanced NSCLC186.
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Beyond genotyping applications, another potential use of ctDNA in patients with metastatic 

disease is monitoring ctDNA dynamics over the course of treatment. Measuring ctDNA 

concentrations during treatment as a proxy for total tumor burden can be used to assess 

therapeutic efficacy. In many disease and treatment contexts, a drop in detectable ctDNA 

during treatment has been associated with clinical benefit187,193. This approach may allow 

identifying non-responders who might benefit from escalation of therapy earlier than the 

radiological follow-up, and trials testing such strategies are underway194. This strategy 

remains to be formally established in this palliative context though.

In patients with early-stage disease, two promising applications of ctDNA analysis 

are detection of MRD and cancer screening. In both scenarios, ctDNA levels are 

significantly lower than in patients with metastatic disease. The median pre-treatment 

ctDNA concentration in stage I lung adenocarcinomas, for example, is approximately 1 part 

per million161,162,195. Similarly, in localized lung cancer patients treated with curative intent, 

ctDNA MRD concentrations can be 1 part per million or lower195,196. These exquisitely low 

ctDNA levels necessitate assays with a much more sensitive LODs than are attainable by 

ctDNA-based genotyping assays.

The LOD of ctDNA MRD assays can be improved through several strategies, including 

leveraging prior knowledge of tumor mutations from previous tissue or plasma sequencing 

(i.e. tumor-informed ctDNA analysis), tracking multiple mutations, increasing the amount of 

plasma input, and reducing errors resulting from technical artifacts introduced during library 

preparation and sequencing197. The most sensitive MRD methods employ a personalized, 

tumor-informed approach, in which a pre-treatment tumor sample is first sequenced to 

identify patient-specific mutations that are then tracked in the plasma over the course 

of treatment. These assays have limits of detection of ~0.01%, approximately 100 times 

more sensitive than the plasma genotyping assays discussed above. ctDNA MRD measured 

using tumor-informed assays at a landmark timepoint in the weeks following curative-

intent treatment has been shown to be a powerful and early indicator of prognosis in 

early-stage lung162,198 breast199–201, and colorectal cancers191,202–204, among others197, 

usually with a significant lead time over imaging. Across studies and tumor types, patients 

with undetectable ctDNA after treatment have dramatically better outcomes than those who 

remain ctDNA-positive.

Importantly, while the positive predictive value of tumor-informed first generation ctDNA 

MRD assays is high, their sensitivity is suboptimal. For example, first generation assays can 

only detect MRD at the post-treatment landmark in approximately one third of early-stage 

NSCLC and half of colon cancer patients destined to develop recurrence 159,162,197,204–

206. This sensitivity issue implies that while first generation ctDNA MRD assays could 

potentially be used to escalate adjuvant therapy in MRD-positive patients, withholding 

standard of care adjuvant treatment in MRD-negative patients would result in undertreating 

a large fraction of patients who could benefit. Therefore, there is great interest in developing 

even more sensitive MRD assays, such as the recently described PhasED-Seq method which 

tracks phased somatic mutations and has an LOD below one part per million195,196. Future 

studies will strictly be required to test if these more sensitive approaches could be used to 

safely de-escalate treatment in MRD-negative patients, in a curative setting.
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Early detection of cancers in asymptomatic individuals using approved screening modalities 

can decrease cancer-specific mortality and therefore there has been intense interest in recent 

years in developing liquid biopsy-based screening tests. However, as mentioned above, 

ctDNA levels in early-stage cancer patients are usually extremely low, often below one part 

per million. However, unlike MRD analysis, where prior knowledge of tumor mutations 

can be used to increase assay sensitivity, screening methods must employ tumor-naive 

approaches. For this reason, existing ctDNA early detection assays cannot attain the same 

LODs as the tumor-informed MRD assays and instead have LODs more similar to ctDNA 

genotyping assays (~0.1%). Furthermore, screening assays require high specificity, since the 

majority of individuals being screened will not have cancer and therefore low specificity 

would result in the majority of positive tests being false positives.

Even in light of these challenges, numerous commercial and academic groups have 

demonstrated the potential of ctDNA analysis to detect early-stage cancers161,207–210. 

These studies have employed a variety of technical approaches, including analysis of 

somatic mutations, cfDNA methylation, cfDNA fragmentation patterns, and combinations 

of multiple approaches. While promising and in very fast development, ctDNA-based early 

detection methods continue to have important shortcomings. One recurring issue is that 

performance of assays is often overly optimistic in the initial studies that report them and 

degrades in subsequent validation studies. Additionally, given the relatively poor LOD that 

can currently be achieved by tumor-naive approaches, it is not surprising that sensitivity 

for early-stage cancer remains suboptimal. For example, the Grail Galleri test, which is 

based on DNA methylation and is clinically available, has a sensitivity of only 7% for 

stage I lung adenocarcinoma211. Therefore, there remains a major unmet need for further 

technical advances that improve the sensitivity of tumor-naïve ctDNA assays. Ultimately, 

large, randomized studies will be required to determine whether or not liquid biopsy-based 

early detection can achieve cancer-specific mortality benefits.

Although much cancer biomarker work in recent years has focused on ctDNA, detection 

of tumor-derived circulating RNA and novel protein-based technologies are two additional 

approaches that hold promise for developing clinically useful biomarkers. Though early 

cell-free RNA (cfRNA) studies primarily focused on small microRNAs as potential cancer 

biomarkers212,213, more recently several studies have reported proof of concept data 

demonstrating that messenger RNA (mRNA) can also be detected in plasma of healthy 

controls and cancer patients59–61. These studies have begun to reveal the cellular origins of 

cfRNA, finding that while the majority of cfRNA derives from hematopoietic cells, solid 

tissues also contribute cfRNA to the plasma214–216. A recent study that compared cfRNA in 

patients with lung or breast cancer to healthy controls found that plasma transcriptomes 

reflect the tumor’s tissue-of-origin215, suggesting that cfRNA may have utility in the 

detection, diagnosis, and monitoring of malignancies.

Plasma proteins have a long history as cancer biomarkers and are used routinely in the 

clinical setting. However, application of next generation protein assays has lagged behind 

next generation sequencing of nucleic acids for liquid biopsy assay development. Though 

mass spectrometry remains the primary tool for analyzing the proteome, it suffers from 

suboptimal sensitivity for low-abundance proteins, which usually include the key cancer-
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associated proteins to be measured. Recent breakthroughs in targeted multiplexed protein 

detection assays have facilitated the query of thousands of proteins with improved sensitivity 

for low-abundance proteins217. Two in particular that show promise for liquid biopsy 

applications are the proximity extension assay (PEA)218 from Olink Proteomics and the 

slow off-rate modified aptamer assay (SOMAscan) from SOMAlogic219. Using proximity 

ligation or DNA-based aptamers to capture protein targets of interest, respectively, both 

assays can measure thousands of proteins of varying abundance from a small biofluid 

sample. Recent studies have demonstrated the ability of these techniques to uncover 

cancer-related proteomic signals220–222. Compared to ctDNA, liquid biopsy proteomics 

and transcriptomics are early in their development, but recent advances suggest that these 

analytes may also play a more prominent role in the field in the future.

One of the crucial objective of cancer research has perpetually been the utilization of 

liquid biopsy in daily clinical practice. Particularly, the ctDNA analysis has transformed 

cancer diagnostics. Liquid biopsies, conducted alongside traditional tissue biopsies, offer 

advantages such as capturing tumor heterogeneity, monitoring treatment response, detecting 

minimal residual disease (MRD), and early cancer detection. Beyond ctDNA, emerging 

approaches involving circulating RNA and advanced protein detection hold potential, 

requiring further innovation and large-scale studies to determine clinical utility and impact 

on cancer-specific mortality.

Conclusions

In the rapidly evolving field of cancer therapeutics, biomarkers are increasingly recognized 

as central to advancing precision medicine, signifying a transformative phase in oncology. 

This manuscript highlights the diagnostic capabilities of biomarkers, such as circulating 

tumor DNA (ctDNA) and immune profiling, as integral to personalized cancer treatment 

strategies. Biomarkers, especially ctDNA, are set to revolutionize cancer therapy by enabling 

precise identification of genetic mutations, thereby allowing for treatment personalization 

that enhances efficacy and minimizes side effects. The adoption of ctDNA in therapeutic 

protocols marks a shift towards a strategy where biomarkers not only aid in diagnosis but 

also direct therapeutic choices, monitor residual disease, and track cancer evolution and 

heterogeneity in response to treatment resistance over time.

The integration of immune-profiling biomarkers with cancer therapies introduces a nuanced 

layer to treatment modalities, leveraging the complex interaction between the immune 

system and therapeutic agents to improve treatment outcomes. This approach underscores 

the importance of precise patient selection for the effectiveness of new therapeutic strategies 

and the development of synergistic, more potent treatments.

Predictive biomarkers are emerging as essential tools in optimizing treatment strategies, 

ensuring that therapies are not only effective but also specifically tailored to the molecular 

profiles of individual patients, thereby maximizing benefits and minimizing risks. This is 

crucial for the progression of precision oncology.
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Moreover, the narrative around biomarker-agnostic strategies in the context of Antibody-

Drug Conjugates (ADCs) suggests a nuanced paradigm. Such strategies recognize that 

certain ADCs might not strictly require a specific biomarker for efficacy, broadening their 

applicability but also highlighting the need for further biomarker discovery to enhance their 

activity and accessibility.

The potential for integrating germline genomics as predictive biomarkers opens up new 

avenues for personalizing cancer treatment, further refining therapeutic decisions based 

on genetic insights. This evolution towards incorporating both germline and somatic 

biomarkers, such as ctDNA, signifies a strategic pivot in cancer treatment, enriching our 

understanding of cancer progression, heterogeneity, and treatment resistance.

In summary, the future of biomarkers in cancer therapeutics is brimming with promise, 

elevating their function from mere diagnostic tools to indispensable orchestrators of 

personalized treatment paradigms. Navigating this future demands a nuanced grasp 

of the complex dynamics between biomarker-based and biomarker-agnostic strategies, 

stressing the need for exceptionally specialized and rigorously applied oncological care. 

Simultaneously, it calls for an immediate and well-supported dialogue among political, 

academic, and industry circles to improve global access to molecular biomarkers. Through 

collaborative efforts among policymakers, researchers, and industry participants, we can 

mobilize resources to overcome access barriers and disparities. This holistic vision not 

only addresses the immediate requirements for efficacious cancer care but also lays 

the groundwork for sustained advancement in personalized treatments. Ultimately, this 

collective endeavor is poised to transform cancer therapeutics, ensuring positive outcomes 

for patients worldwide. This comprehensive vision paves the way for more effective and 

individualized treatments for all cancer patients, heralding a new era in the fight against 

cancer.
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Table 1
Molecular Methods for Biomarker Testing in Solid Tumors

Technique Application Advantages Limitations

IHC Protein-based assay for 
detection of expression

• Cheap, rapid, widely available

• Direct visualization of protein 
expression

• Antibody availability

• Subjective interpretation/
quantification

FISH Hybridization using fluorescent-
labeled probes to detect gene 
copy number changes or gene 
rearrangements/fusions

• Relatively simple assay design

• Direct visualization of signals 
within cells of interest

• Probe availability

• Restricted to specific locus/
gene tested

PCR Detection of targeted gene 
mutations, fusions, copy number 
alterations, DNA methylation

• High sensitivity and specificity

• Relatively simple assay design

• Relatively low-cost

• Limited throughput

• Restricted to targeted genes 
and regions of interest 
interrogated

NGS Massively parallel sequencing 
of multiple genes for detecting 
mutations, fusions, copy number 
alterations

• High throughput

• High sensitivity and specificity

• Comprehensive coverage

• Site/tumor-specific applications

• High complexity

• Bioinformatics 
requirements

• Longer turnaround time

GEP Differential gene expression 
between tumor/normal or pre/
post-treated tumor

• High throughput • Bioinformatics 
requirements

• Restricted to targeted genes

Abbreviations: FISH, fluorescence in situ hybridization; GEP, gene expression profiling; IHC, immunohistochemistry; NGS, next-generation 
sequencing; PCR, polymerase chain reaction
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