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Abstract

The eukaryotic flagellum beats with apparently unfailing periodicity, yet responds rapidly to 

stimuli. Like the human heartbeat, flagellar oscillations are now known to be noisy. Using the alga 

C. reinhardtii, we explore three aspects of nonuniform flagellar beating. We report the existence 

of rhythmicity, waveform noise peaking at transitions between power and recovery strokes, and 

fluctuations of interbeat intervals that are correlated and even recurrent, with memory extending to 

hundreds of beats. These features are altered qualitatively by physiological perturbations. Further, 

we quantify the recovery of periodic breaststroke beating from transient hydrodynamic forcing. 

These results will help constrain microscopic theories on the origins and regulation of flagellar 

beating.

Patterns of coordinated movement in living organisms, such as walking, running, and 

galloping, may be variable yet simultaneously stable. Such repetitive dynamics are 

distinguished by their reproducibility, longtime sustainability, and robustness to moderate 

perturbations. In the precise, rhythmic beating of the flagella of the alga Chlamydomonas 
we find remarkable living oscillators that fulfill these three criteria. The synchronous beating 

of its twin ~10 μm long flagella allows Chlamydomonas to swim a fast breaststroke [1]. 

At ~60 Hz, its flagellar oscillations are self-sustained—repeated mechanochemical cycles 

continuously supply energy to motor dyneins within flagellar axonemes [2]. The stepping 

action of individual motors is intrinsically stochastic [3], and yet, beating can nevertheless 

persist, resilient against a cacophony of biochemical and background fluctuations. In 

assessing the fidelity or robustness of a biological oscillator, the stability and rhythmicity 

of its oscillations serve as prime indicators: one might identify pathological gaits of human 

walking from measures of cycle stability [4], determine the phase-dependent response of 

circadian clocks using external stimuli [5], or infer the health of a human heart from the 

variability of interbeat intervals [6,7]. While periodic oscillations of beating flagella are 

correlated with a cell’s responses and sensitivity to its environment, study of these features 

remains inchoate [8–13].

Here, drawing on data from a large population of cells (~100), we examine fluctuations in 

beating due to perturbations that are (a) continuous, or (b) transient. Case (a) encompasses 

contributions from sources over which the experimenter has little control: background 

thermal noise, intracellular biochemical processes [14], or even photon irradiance [15]. 

We find that flagellar dynamics are stable to these weak fluctuations, but waveform noise 

displays an intriguing phase dependence, or rhythmicity. Beat-to-beat intervals form time 
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series exhibiting fractal structure, and successive beats may remain correlated for many 

seconds, even displaying oscillatory correlation (recurrence). Yet in cells placed under 

physiological stress, measured time series signal much more erratic and variable flagellar 

beating dynamics. For (b), we inject fluid impulses near a beating flagellum and examine the 

postperturbation relaxation to the stable limit cycle of the breaststroke. This recovery from 

beating disruption is a crucial property of viable cilia and flagella.

To permit longtime, in-focus visualization of flagellar dynamics, wild-type cells (strains 

CC124 and CC125, Chlamydomonas Center) were individually caught and fixed by 

micropipette micromanipulation (Patchstar, Scientifica, UK) with gentle suction [8,11]. 

High-speed images (Fastcam SA3, Photron USA and Phantom v311, Vision Research) 

of beating flagella were captured at 2000–3000 frames=s—at least 1 order of magnitude 

above the natural beat frequency. Continuous recordings (1–10 minutes) were taken for 

each cell, from which ~1–5 × 103 contiguous beat cycles could be extracted. Recordings 

were conducted under conditions that appropriately mimic a cell’s natural daytime habitat, 

namely, white light illumination (halogen lamp), and hence some phototactic response is 

expected [16]. Pixel coordinates that track the flagellum in each frame were converted to 

spline fits and used to generate time series.

Automated waveform tracking gives unprecedented spatiotemporal resolution [11], which 

over thousands of cycles allows a determination of the spatial reproducibility of the beating. 

Relative to a reference axis, angles θ(t) traced by a point at fixed arclength [17] [Fig. 1(a)] 

are projections of the multidimensional dynamics. The point cloud (θ, θ̇) maps the attracting 

region around a limit cycle Γ—approximated numerically. Progression through each cycle 

was charted by associating the 2D flagellum center-line f(ti) at time ti with a uniformly 

rotating phase ϕ = ω0t defined from the polar angle φ = tan−1(θ − θ )/(θ̇ − 〈θ̇〉) using the 

transformation ϕ = ω0 ∫ (dφ/dt)−1dφ. Ratio distributions are approximated using Fourier 

series [11]. Trajectory crossings C = {xn∶ϕ( n(xn)) = ϕ0; n = 1, 2, 3, …} at fixed ϕ = ϕ0 

correspond to iterations of a Poincaré return map . We computed, for each cell and 50 

subdivisions of [0, 2π], eigenvalues of the Jacobian matrix of derivatives J = DP x∗ taking 

x* = ⟨x⟩x∈C and fitting to the bilinear model (Xn+1 − X*) =  (Xn − X*). The distribution 

of computed eigenvalues [Fig. 1(b)] is particularly dense on the real line. All eigenvalues 

have magnitude less than unity, fulfilling our intuition that limit cycles corresponding to the 

breaststroke gait are stable.

To examine the phase dependence in the noise suggested by Fig. 1(c), we appeal to the full 

dimensionality of the waveforms. The set Sk = f tj
k , where j:ϕ(t) t = tjk = ϕk  for phases ϕk 

= 2πk/50, k = 1; …, 50, groups periodic waveforms at an equivalent phase [Fig. 2(a)]. We 

measure the dissimilarity between f ∈ Sk and an average waveform fk
∗ by a (discrete) Fréchet 

distance

δF f, fk
∗ : = min

U
max

(p, q) ∈ U
∥ p − q ∥ ,

(1)
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with tracked waveforms approximated by polygonal curves corresponding to ordered 

vertices σ(f) = (p1; …; pm) and π fk
∗ = q1, …, qn  (m,n ∈ ℤ). and

U = pui, qvj ∈ σ(f) × π fk
∗ (i, j = 1, …, J) ,

comprising J pairs of vertices which are complete [for every p ∈ σ there exists i, j with (pi, 

qj) ∈  and p = pi; a similar statement holds for q ∈ π] and ordered (ui+1 = ui or ui+1 = 1 + 

ui, and vj+1 = vj or vj+1 = 1 + vj). The computation is performed recursively, in (mn) time 

[18]. At each phase δF gauges waveform noise in the periodic formation of the flagellum 

shape [Fig. 2(b)] and is minimized during recovery strokes (≲1.7%—a value comparable 

to measurement noise), and it is maximized at the transitions between power and recovery 

strokes (≳10.8%).

In a classic eukaryotic flagellum, beating emerges from periodic, selective activation of 

motor dyneins that cross-link internal filaments [2]. At putative switch-points between 

power and recovery strokes [19], geometrically opposed groups of dyneins detach on one 

side and reattach at the other to their respective microtubule tracks until beating direction is 

reversed. Thus, high waveform noise correlates with a large number of activated dyneins.

The timing of flagellar strokes is determined by the microscale action of dyneins, which in 

turn governs the frequency and amplitude of the beat. Here we partition flagellar positions 

by phase, averaging two different Poincaré sections to obtain the instantaneous period Tn 

and the frequency νn = 1/Tn, indexed by beat number n. From the data, we approximated the 

nth-cycle beat envelope by its alpha shape [20], which generalizes the concept of a convex 

hull [Fig. 2(c)]. Accuracy in the computed alpha shape area αn is defined up to discs of 

radii 5 pixels ≈ 1.11 μm. We find Tn and αn to be strongly correlated. Denoting by ⟨·⟩ an 

average over beat cycles and plotting Π = Tn/⟨Tn⟩ vs A = αn/⟨αn⟩ reveals directional but 

very noisy scatter. A similar correlation has been found independently [13]. To characterize 

this directionality, we compute the matrix

Cov[Π, A] = TT TA
AT AA ,

(2)

where  = Π − ⟨Π⟩ and  = A − ⟨A⟩. From the time series for each cell i we estimate 

/  by γ = tan−1(v2/v1), where (v1, v2) is the principal eigen-vector direction [Fig. 

2(d)]. We find γ (0.264 ± 0.146) ~ (0.264 ± 0.146) rad where the bar denotes an ensemble 

average over multiple cells and, correspondingly, a dimensional ratio of increments 

r ≈ 39.7 ± 31.0 μm2/ms, where r = ⟨αn⟩ / ⟨Tn⟩ × 1/ tan(γ). Assuming a flagellum “wing-

span” of 10 μm during the power stroke, this is equivalent to a velocity scale of δℓ/δT ~ 4 

μm/ms for an effective amplitude ℓ. A rodlike flagellum of length ℓ produces a motive force 

F ~ ηT−1ℓ2 and a power density P/ℓ, where P ~ ηT−2ℓ3 (where η is the medium viscosity); 

that amplitude and frequency are inversely correlated suggests a constancy of force, power 

production, or both by axonemal motors and is often assumed without proof in certain bead-

on-spring models of beating cilia. Fundamentally, hydrodynamic synchronization in coupled 
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ciliary arrays also necessitates that (within a physiologically relevant regime) decrease in 

beat frequency accompanies increase in amplitude [21], as we have demonstrated here.

The association of oscillatory dynamics with a well-defined frequency does not a 
priori imply stability. Stable flagellar beating, as we have now established for the 

canonical Chlamydomonas breaststroke, does not generalize to all flagellate species nor 

to Chlamydomonas cells that are physiologically “abnormal.” For instance, the time series 

ν(t) in Fig. 3(a) are representative of flagellar beat frequency fluctuations in a number 

of scenarios of interest. In case 1 we initiated complex calcium fluctuations and repair 

processes in a cell [22] by mechanical deflagellation of one flagellum; ν(t) was then 

measured for the remaining flagellum, which continues to beat as the amputated flagellum 

is regrown within 1–2 h. A heat shock treatment was used in case 2 to disrupt enzymatic 

pathways [23] in which cell cultures were immersed in a 35° water bath for ten minutes 

prior to experimentation. Case 3 is a control cell. Cells in case 4 were subject to a frontally 

directed flow, controlled by a syringe pump (PHD2000, Harvard Apparatus). Filtering 

the illumination light (> 620 nm filter) leads to persistent light-adaptation processes and 

frequency drift [10]; this is case 5. Noisy flagellar dynamics are thus a directly quantifiable 

measure of a cell’s physiological state.

Even control cells [Fig. 3(a), case 3] are subject to persistent, weak environmental 

fluctuations that feedback modulate flagellar beating. Measured beat frequencies in the 

two flagella of a given cell agree with remarkable precision [Fig. 3(b), inset]. From time 

series b(t) of the interbeat intervals, we construct the statistic C(τ) = ⟨ b(t + τ)b(t) − ⟨b⟩2⟩, 
where ⟨·⟩ denotes a time average. The decay of C(τ) was found to be unexpectedly slow, 

and in many cases even oscillatory [Fig. 3(c)]—suggestive of an underlying periodic process 

with noise. Let b(t) = b0(1 + β(t)) cos (ω0t + ϕ(t)), where b0 and ω 0 are the averaged 

amplitude and frequency of oscillations and β(t), ϕ(t) are independent functions respectively 

characterizing phase and amplitude noise. We assume that β(t) is stationary and that ϕ(t) is a 

Brownian motion with ⟨ϕ(t)⟩ = 0 and ⟨ϕ(t)2⟩ = Dt. The autocorrelation is

C(τ) = b0
2

2 1 + Cb(τ) e−D τ cos ω0τ ,

(3)

where Cb is the covariance of β(t). For a sample cell we fit C(τ) using Eq. (3) with an 

empirical function Cb(τ) = βe−|τ|/ξ [Fig. 3(c), inset], yielding b0 = 0.157, D = 0.002, ω0 = 

0.016, β = 9.928, and ξ = 1.85. In particular we find a time scale for the periodicity of slow 

oscillations: 2π/ω0 = 392 beats, or 6.01 s. Sampled over 65 cells, the average form of C(τ) 

takes ~250 beats for the correlation to reverse sign and persists over ~1000 beats, or ~15 s.

Our b(t) time series possess fractal structure and are correlated across multiple scales. In 

the first instance we can derive a scalar measure a via a detrended fluctuation analysis to 

characterize an individual time series [24], as follows. Construct first the integrated signal 

B tj = ∑i = 1
j b ti − b , (1 ≤ j ≤ L). Then for K sections {Ii ≔ [ti, ti+1], ti = iL/K, i = 1, 2, …, 

K – 1}, each of size N = L/K, the local trend in B is computed at the ith section [let BN(ti) be 

the least-squares linear fit to data points B(ti ∈ Ii)]. The fluctuation
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F (N) = 1
L ∑

i = 1

L
B ti − BN ti

2

(4)

is computed at multiple scales and a power-law scaling F(N) ~ Na is obtained. We calculated 

a = 0.83 ± 0.10 [for 67 cells, (103) successive beats each]. This persistent positive 

correlation is lost upon randomly permuting b(t) (each time averaging over 10 shuffles), 

which yields a = 0.48 ± 0.03, consistent with white noise.

The frequency (and hence synchrony) of flagellar beating is controlled at a biomolecular 

level by calcium [25,26]. Previously we found that the flagella of free-swimming 

Chlamydomonas switch stochastically [8] between synchronous and asynchronous beating 

(drifts) on a time scale of ~10 s, and we suggested this may be due to calcium fluctuations 

which affect cis and trans flagella differentially [11]. Our present discovery of slow 

oscillations in flagellar beat frequency might then relate these transitions in beating modes to 

stochastic crossings of a putative calcium threshold. Fluctuations in the cytosolic calcium of 

(s) have been measured in vivo, in Chlamydomonas cells ballistically loaded with calcium 

dyes [22].

Sudden elevations in intracellular calcium can be triggered by activation of either 

photoreceptors in the eyespot [27] or mechanosensitive channels in the membrane [28], 

leading to altered flagellar beating. By perturbing a beating flagellum with manually induced 

pulses of fluid from a second pipette (which delivers ~100 pN forces, according to particle 

image velocimetry measurements), we can compute the attractor strength σ of flagellar 

oscillations [Fig. 4(a), panels 1–3]. Limit cycles and phases are defined from tracked 

waveforms as previously (Fig. 1). The preperturbation cycle rL was chosen for reference 

purposes. If the perturbed trajectories r(t) evolving in time t contract linearly towards the 

stable attractor, then at a representative phase ϕ = ϕ0,

σ = 1
τ∞ − τ0

ln r τ∞; ϕ0 − rL ϕ0
r τ0; ϕ0 − rL ϕ0

,

(5)

where τ0 is chosen at maximum deviation and τ∞ when r first returns (and remains) within 

an acceptance band about rL. Averaging multiple experiments, we find σ ~ 2.94 ± 1.72 s−1 

or σ−1 ~ 20.4 beats. Thus normal flagellar beating can readily (and in characteristic time) 

recover from moderate hydrodynamic disturbances which mimic that which microalgae 

encounter in their native habitats. If local perturbation of one flagellum transiently elevates 

intra-cellular calcium, the observation of altered beating of both flagella in a coupled pair 

[Fig. 4(d)] is consistent with differential cis-trans flagellar calcium response, or dominance 

[11]. This rapid loss of biflagellar synchrony implicates internal biochemical control of 

normal breast-stroke coordination [Fig. 3(b), inset]; in contrast, the beating of flagella 

belonging to different cells can be synchronized solely by the hydrodynamics [29].
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Through dynamic high-resolution tracking, the rhythmicity of eukaryotic flagellar 

oscillations was revealed and the nature of flagellum noise explored. We demonstrated 

significant spatiotemporal correlation in the beating dynamics and suggested that while 

variations on time scales of beat cycles may be due to intrinsic motor stochasticity, long-

range correlations in beat frequency may be signatures of in vivo biochemical signalling via 

second messengers such as calcium [30]. Indeed, calcium governs ciliary beating in many 

different organisms [31–33]; oscillatory calcium dynamics would vastly improve specificity, 

allowing signals to integrate without sustained rise. It would be interesting to examine the 

noise spectrum of beating in artificial or reconstituted flagella, where feedback regulation 

would take on a very different form.

We thank M. Polin, K. C. Leptos, and P. Holmes for the discussions. Financial support 

is acknowledged from the Engineering and Physical Sciences Research Council, European 

Research Council Advanced Investigator Grant No. 247333, and a Senior Investigator Award 

from the Wellcome Trust.

References

[1]. Racey TJ, Hallett R, Nickel B. Biophys J. 1981; 35: 557. [PubMed: 7272452] 

[2]. Wemmer KA, Marshall WF. Curr Biol. 2004; 14 R992 [PubMed: 15589146] 

[3]. Shingyoji C, Higuchi H, Yoshimura M, Katayama E, Yanagida T. Nature (London). 1998; 393: 
711. [PubMed: 9641685] 

[4]. Bruijn SM, Meijer OG, Beek PJ, van Dieen JH. J R Soc Interface. 2013; 10 20120999 [PubMed: 
23516062] 

[5]. Mihalcescu I, Hsing WH, Leibler S. Nature (London). 2004; 430: 81. [PubMed: 15229601] 

[6]. Ashkenazy Y, Ivanov PC, Havlin S, Peng C-K, Goldberger AL, Stanley HE. Phys Rev Lett. 2001; 
86 1900 [PubMed: 11290277] 

[7]. Ivanov PC, Rosenblum MG, Peng C-K, Mietus J, Havlin S, Stanley HE, Goldberger AL. Nature 
(London). 1996; 383: 323. [PubMed: 8848043] 

[8]. Polin M, Tuval I, Drescher K, Gollub JP, Goldstein RE. Science. 2009; 325: 487. [PubMed: 
19628868] 

[9]. Goldstein RE, Polin M, Tuval I. Phys Rev Lett. 2009; 103 168103 [PubMed: 19905728] 

[10]. Leptos KC, Wan KY, Polin M, Tuval I, Pesci AI, Goldstein RE. Phys Rev Lett. 2013; 111 158101 
[PubMed: 24160630] 

[11]. Wan KY, Leptos KC, Goldstein RE. J R Soc Interface. 2014; 11 20131160 [PubMed: 24573332] 

[12]. Geyer VF, Jülicher F, Howard J, Friedrich BM. Proc Natl Acad Sci USA. 2013; 110 18058 
[PubMed: 24145440] 

[13]. Ma R, Klindt GS, Riedel-Kruse IH, Jülicher F, Friedrich BM. Phys Rev Lett. 2014; 113 048101 
[PubMed: 25105656] 

[14]. Sakakibara H, Kojima H, Sakai Y, Katayama E, Oiwa K. Nature (London). 1999; 400: 586. 
[PubMed: 10448863] 

[15]. Hegemann P, Marwan W. Photochem Photobiol. 1988; 48: 99. 

[16]. Ruffer U, Nultsch W. Cell Motil Cytoskeleton. 1998; 41: 297. [PubMed: 9858155] 

[17]. These results were found to hold, independent of this choice of reference arclength.

[18]. Eiter, T; Mannila, H. Information Systems Department, Technical University of Vienna Report 
No CD-TR 94/64. 1994. 

[19]. Lindemann CB, Lesich KA. J Cell Sci. 2010; 123: 519. [PubMed: 20145000] 

[20]. Edelsbrunner H, Kirkpatrick DG, Seidel R. IEEE Trans Inf Theory. 1983; 29: 551. 

[21]. Niedermayer T, Eckhardt B, Lenz P. Chaos. 2008; 18 037128 [PubMed: 19045502] 

Wan and Goldstein Page 6

Phys Rev Lett. Author manuscript; available in PMC 2024 June 10.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



[22]. Wheeler GL, Joint I, Brownlee C. Plant J. 2008; 53: 401. [PubMed: 18086284] 

[23]. Schulz-Raffelt M, Lodha M, Schroda M. Plant J. 2007; 52: 286. [PubMed: 17711413] 

[24]. Peng C-K, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL. Phys Rev E. 1994; 49 
1685 

[25]. Bessen M, Fay RB, Witman GB. J Cell Biol. 1980; 86: 446. [PubMed: 6447155] 

[26]. DiPetrillo CG, Smith EF. J Cell Biol. 2010; 189: 601. [PubMed: 20421426] 

[27]. Foster KW, Smyth RD. Microbiol Rev. 1980; 44: 572. [PubMed: 7010112] 

[28]. Fujiu K, Nakayama Y, Yanagisawa A, Sokabe M, Yoshimura K. Curr Biol. 2009; 19: 133. 
[PubMed: 19167228] 

[29]. Brumley DR, Wan KY, Polin M, Goldstein RE. eLife. 2014; 3 e02750 [PubMed: 25073925] 

[30]. Luan, S, editor. Coding and Decoding of Calcium Signals in Plants. Springer; New York: 2011. 

[31]. Evans JH, Sanderson MJ. Cell Calcium. 1999; 26: 103. [PubMed: 10598274] 

[32]. Schmid A, Salathe M. Biol Cell. 2011; 103: 159. [PubMed: 21401526] 

[33]. Salathe M, Bookman RJ. J Physiol. 1999; 520: 851. [PubMed: 10545149] 

Wan and Goldstein Page 7

Phys Rev Lett. Author manuscript; available in PMC 2024 June 10.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 1. Noisy flagellar limit cycles.
(a) Trajectories in (θ, θ̇) space at fixed arclength [= (2/7) of the total flagellum length]. Four 

Poincaré sections are highlighted. For the population (n = 48), (b) shows an accumulated 

density map of Floquet multipliers {λ} computed at different phases, while in (c) the 

distribution of |λ| is characterized by its mean (solid line) and 95th percentile (dashed line).
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Fig. 2. Noisy flagellar waveforms.
(a) Overlaid waveforms at phases 1–4 [Fig. 1(a)], colored by recurrence. Isophase 

waveforms f coalesce in a band about an average shape f*. (b) Length-normalized Fréchet 

distance δF(f, f*) / ℓ computed for multiple cells, showing phase-dependent noise. (Cyan) 

Average over (103) beat cycles for a single cell; error bars: one s.d. from mean. (Red) 

A multicell average; shading: one s.d. from mean. (c) Discretized points (blue) along 

a flagellum define an area per beat via an alpha shape (yellow) which fluctuates over 

successive beat cycles (red). (d) Per-beat area α and per-beat period T are strongly 

correlated. Individual lines summarize the per-cell noisy scatter.
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Fig. 3. Correlations in flagellar beating.
(a) Signatures of interbeat frequencies ν(t) in the flagella of cells, observed in a number 

of scenarios (1–5, see main text). (Time series have been displaced vertically, with mean 

frequencies as labeled.) (b) Long-range fluctuations in ν(t) are observed. For a control cell 

(case 3), the filtered signal is superimposed with the raw data, and its probability distribution 

function fit to a Gaussian function. Cis and trans flagella of the same pair exhibit perfect 

frequency locking, highlighting the accuracy of the measurement technique. (c) Decay of 

autocorrelation in interbeat intervals b(t) ≔ 1/ν(t), showing the population average (solid 

line) and one s.d. from the mean (shaded). (Inset) Parametric fit to a sample C(τ).
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Fig. 4. Stability to perturbations.
(a) Fluid is injected from a second pipette (arrow). Waveform sequences for the cis 
flagellum only are shown (1–3). (Insets) x-y coordinates of a reference point at a fixed 

arclength. (b) Trajectories veer off the preperturbation limit cycle during one perturbation 

event. This deviation is sampled at fixed phase as a function of time (c), which accompanies 

marked changes in the beat frequencies of both flagella (d).
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