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Abstract

We illuminate the nature of the three-dimensional random walks of microorganisms composed 

of individual organisms adhered together. Such aggregate random walkers are typified by 

choanoflagellates, eukaryotes that are the closest living relatives of animals. In the colony-forming 

species Salpingoeca rosetta we show that the beating of each flagellum is stochastic and 

uncorrelated with others, and the vectorial sum of the flagellar propulsion manifests as stochastic 

helical swimming. A quantitative theory for these results is presented and species variability 

discussed.

Active microparticles, self-propelled by stored energy or that available from the 

environment, typically exhibit directed motility combined with rotational diffusion, leading 

to random walks that at large times are statistically similar to their equilibrium counterparts. 

For artificial swimmers such as Janus particles [1], powered by inhomogeneous surface 

chemical reactions, the source of randomness is the same thermal fluctuations that translate 

Brownian particles, but here rotate them [2]. In biology, several paradigms for stochastic 

locomotion exist. For single-celled organisms, stochastic beating leads to noisy swimming 

paths [3], and active processes such as flagellar bundling or unbundling by bacteria [4] and 

synchronization or desynchronization in algae [5] enhances this stochasticity. “Obligate” 

eukaryotic polyflagellates such as the ciliate Paramecium [6] and the alga Volvox carteri [7], 

exhibit large-scale flagellar coordination, and increased regularity of motion.

Here we study motility in an important example of a “facultative” colonial organism, the 

choanoflagellate Salpingoeca rosetta (Fig. 1), which exhibits uni- and multicellular forms 

with variable cell number. Single cells of S. rosetta, like other microorganisms, are random 

walkers (see the Supplemental Material [8]). We report three main experimental results: (i) 

individual flagella of the constituent cells beat stochastically, (ii) flagella on a given colony 

display negligible cross-correlation, and (iii) the swimming trajectories of colonies are 

stochastic helices. These results suggest a hitherto unrecognized class of microorganisms, 

here called aggregate random walkers (ARWs): those built by stitching together individual 

random walkers [9]. We construct a minimal model to explain this motility.

Choanoflagellates are the closest unicellular relatives of animals [10]. They filter feed by 

using their flagellum to drive fluid through an eponymous funnel-shaped collar [11]. This 
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beating also confers motility. Figure 1 shows a rosette colony of S. rosetta which is held 

together by an extracellular matrix, filopodia, and intercellular bridges [12]. Colonies form 

by cell division, not aggregation [13]. The evolutionary advantage of the colonial form is 

not fully understood, but it is triggered by certain bacteria [12,14], and theory suggests that 

chainlike colonies have enhanced nutrient uptake [15].

S. rosetta (obtained from Dr. Barry Leadbeater, University of Birmingham, UK) were 

cultured in artificial seawater [36.5 g/L Marin Salts (Tropic Marin, Germany)]. To provide a 

food source for prey bacteria, organic enrichment [4 g/L Proteose Peptone (Sigma-Aldrich, 

USA), 0.8 g/L Yeast Extract (Fluka Biochemika)] was added to the cultures at 15 μl/ml. 

Cultures were grown at 22 °C and split every 4–7 days. To study the flagella beat dynamics, 

colonies were stuck to poly-L-lysine (0.01%, Sigma) treated microscope slides and flagella 

beats imaged at 500 fps (Fastcam SA3, Photron, USA) in bright field. Image template 

matching was employed to track the motion of the only slightly moving colonies, and in the 

local frame of the organism, the bases of the flagella were tracked by techniques similar to 

that of the active contour model [16], yielding as a readout of beating the angle θ(t) defined 

in Fig. 1(b).

Figures 2(a) and 2(b) show θ(t) from two flagella on the same colony, and it is clear 

that they have distinct frequencies. In general, the beating frequencies f, found by 

Fourier transforming θ(t), show a surprisingly high variability [Fig. 2(e)]. The normalized 

autocorrelation Cθ(Δt) = ⟨ θ (t) θ (t + Δt) ⟩ t / θ(t) 2 ⟩ t for a single flagellum is plotted 

in Fig. 2(c). Similar to the function discussed [3,17] in the context of flagellar beating in 

Chlamydomonas, the data are consistent with Cθ = exp (− |t| /τ) cos (2πft), the envelope 

of which is shown in the figure. The decay time τ also shows a very high degree of 

variability [Fig. 2(f)], but all are < 1 s, suggesting high stochasticity. Within colonies, 

the cross correlation between flagella Cθ, θ′(Δt) = θ(t)θ′(t + Δt) t/ θ(t)2
t

θ′(t)2  t [Fig. 2(d)] 

is negligible (only a very slight signal can be made out, which we attribute to the overall 

wiggling of the colony—see Supplemental Material [8], Video 1). All cross-correlation 

signals were found to be less than 0.05 [Fig. 2(g)]. The lack of correlation between beating 

flagella in colonies makes S. rosetta an ideal model organism for ARWs.

In studying the swimming trajectories of S. rosetta, ensemble averages taken over many 

colonies will eliminate features related to colony-specific morphology (cell location and 

flagella orientation). To overcome this lack of “ergodicity,” we obtained long tracks of 36 

individual colonies. In-house software logged and synchronized the position of the xy stage 

(MS-2000, ASI, USA) to a camera (Imaging Source, Germany) filming in bright field at 15 

fps. This enabled tracking of colonies moving in three dimensions at distances much longer 

than the field of view. To track the particles a Gaussian-mixture model [18] was applied 

to estimate the moving background and, subsequently, the tracks were manually controlled. 

Figure 3(a) shows three examples, all ~20 min in length. On close inspection [inset of Fig. 

3(a)] we observe that the trajectories are noisy helices. The mean squared displacement 

⟨Δr2⟩ = ⟨ [x (s + t) − x (s)] 2 ⟩s [Fig. 3(b)], shows an early time ballistic ~t2 behavior 

(for t < 1 s) and late time diffusive ~t form (inset) similar to that of Janus particles [2]. 

However, comparing these curves to those of conventional active Brownian particles (see 
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the Supplemental Material [8]), we observe a different intermediate time behavior. These 

bumps [Fig. 3(b)] appear precisely because some of the constituent cells may beat off center 

and induce internal (effective) torques producing stochastic helical trajectories. To highlight 

the underlying regularity of this helical swimming, we calculate the velocity autocorrelation 

Cv(t) = ⟨ v (s + t) · v (s) ⟩ s [Fig. 3(c)], which oscillates at the frequency of the induced 

rotation and decays on a time scale of several oscillation periods.

Active random walks have been the attention of much research [19,20], but only recently 

have rotational torques been incorporated. External torques appear on, e.g., magnetotactic 

bacteria in the presence of magnetic fields [21] and gyrotactic organisms such as certain 

algae in gravitational fields [22] and can be treated analytically [23]. However, the present 

internal torques can be treated analytically only in two dimensions [24] and numerical 

[25] or approximative [26] methods are needed in three dimensions. Below, we develop 

an approximate 3D theory with the goal of simple analytical functions that can be used to 

extract physical quantities and interpret the data.

The diffusion of a random walker can be described by the Langevin equation 

dx(t) = v(t)dt + 2DdW (t), where D is the translational diffusion constant and W(t) a 

standard vector Wiener process with ⟨ dWi(t)dWj(t′) ⟩ = δijδ(t – t′). The case v(t) = 0 is 

a passive particle and leads to the projected mean squared displacement ⟨ Δr2⟩ ≡ ⟨ Δx2 + 

Δy2⟩ = 4Dt. Building an ARW from passive particles leads to no new behavior, but motile 

particles also have a stochastic velocity term. In the simplest case in two dimensions, the 

speed v is constant and v(t) v(cos θ(t), sin θ(t)) evolves stochastically through θ(t). The 

choice dθ = 2DrdW r(t) leads to the conventional result Δr2 = 2v2/Dr
2 Drt + e−Drt − 1 + 4Dt, 

which behaves ballistically, ⟨Δr2 ~ t2⟩ ~ t2, at early times, but diffusively, ⟨Δr2⟩ ~ t, at 

longer times (see the Supplemental Material [8]) with an enhanced diffusion constant D∞ = 

D + v2/2Dr. Contrary to passive random walkers, active random walkers’effective diffusion 

constant can vary with dimension. The 3D result is D∞ = D + v2/3Dr for rotational diffusion 

around a random vector orthogonal to v and D∞ = D + v2/6Dr for diffusion around three 

orthogonal directions. Typically, D ≪ v2/Dr and passive diffusion can be ignored.

The Reynolds number for S. rosetta is Re ~ 10−4. At such low Reynolds numbers, inertia 

is negligible and the fluid dynamics becomes governed by the linear Stokes equation. 

Accordingly, self-propelled choanoflagellates are both force- and torque-free. We assume 

that S. rosetta are spherelike such that couplings between translations and rotations can be 

ignored. Heuristically then, the velocity of a colony v(t) is approximately a linear sum of 

the velocities that the constituents would have had swimming independently, v(t) ≈ η Σ vi(t), 
the factor η accounting for the change in drag with the radius a of the colony, as η ~ a−1. 

If some of the walkers comprising the colony, placed at positions {ri}, beat off center, an 

angular velocity ω(t) ≈ ηr Σ ri × vi will also be induced, where ηr ~ a−3. Since {vi} and 

{ri} are given in the local coordinate system of the particle, they must be rotated along with 

the particle. For a two dimensional ARW, this motion is described by v(t) = v(t)(cos θ(t); 
sin θ(t)), where |v(t)| = | v(t)|, dθ = ω(t)dt + 2DrdW (t), ω(t) = ±|ω(t)|, and Dr is an effective 

rotational diffusion constant which can be calculated if the individual stochastic processes 

are prescribed. With v(t) constant, constant ω(t) yields circles in the absence of noise. In 
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three dimensions, such motion leads to helices, making (2D projected) three-dimensional 

ARWs behave very differently from 2D ones and necessitating a full 3D theory.

In three dimensions we let the velocity evolve according to dv(t) = dΩ(t) ⊗ v(t) 
~ dΩ(t) × v(t) − 2Drv(t)dt, where dΩ(t) = ω(t)dt + 2DrdWr(t), ⊗ is the Stratonovich 

cross product and 2Drv(t) is the noise induced drift in the Itō interpretation, ensuring 

the correct magnitude of v(t) (see the Supplemental Material [8]). With the goal of 

a minimal model, we take the swimming speed constant in the approximation to 

follow. Likewise, we have dω(t) = 2DrdWr(t) ⊗ ω(t), and, similarly, we will assume 

the magnitude of ω(t) constant. The simultaneous update of the translation and 

rotational velocity makes the system analytically quite intractable and thus we shall 

seek an approximate solution. As motivation, consider the case Dr = 0 with specified 

initial conditions v(0) = v0, ω(0) = ω0. This system can be solved exactly to yield 

x(t) = x0 + ω0 ω0 ⋅ v0 ω0t + ω0 × v0 × ω0 sin ω0t + ω0 ω0 × v0 1 − cos ω0t /ω0
3, or

x(t) = ∫
0

t
v t′ dt′, v(t) = R ⋅

vωcosω0t
vωsinω0t

vp

,

(1)

where = vω |ω0 × v0| /ω0, vp = ω0 · v0/ω0, ω0 = |ω0|, and R is some orthogonal matrix. 

Equation (1) describes a helix of radius vω/ω0 and mean speed vp (averaged over 2π/ω0). 

The form of (1) inspires an approximative solution in the presence of noise in which the 

deterministic helix parameters define a continuous-time random walk with helixlike steps, 

the matrix R becoming a stochastic matrix process. As an effective description we assume 

R(t) = Rx (α) · Ry (β) · Rz (γ), where the matrix factors are rotations around the x, y, z 
axes and α, β, γ are taken independent and identically distributed with dα = 2DrdW α(t) , 
which strictly speaking is only valid at t =0. While the approach breaks x-y symmetry, the 

approximation makes the system much more manageable, and simulations show it to be an 

overall good approximation for the statistics of interest at early times.

In the stationary limit we find for the 2D projected result (see the Supplemental Material 

[8]):

v(Δt) ⋅ v(0) = e−2Dr Δt
6 2vp

2 1 + eDr Δt

+vω
2 3 + e−Dr Δt cos ω0Δt .

(2)

The 2D-projected mean squared displacement becomes
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Δr2(t) = vp
2e−2Drt

6Dr
2 1 + 4eDrt + 4D∞t − a0

+vω
2e−2Drt 4Dr

2 − ω0
2

4Dr
2 + ω0

2 2 + 9Dr
2 − ω0

2 e−Drt

3 9Dr
2 + ω0

2 2 cosω0t

−vω
2e−2Drt 4ω0Dr

4Dr
2 + ω0

2 2 + 2ω0Dre−Drt

9Dr
2 + ω0

2 2 sinω0t,

(3)

where the constant a0 enforces ⟨Δr2⟩ (t = 0) = 0. As t → ∞ we obtain ⟨Δr2⟩ = 4D∞t, where

D∞ = vp
2

4Dr
+ vω

2Dr
4

1
9Dr

2 + ω0
2 + 2

4Dr
2 + ω0

2 .

(4)

These results have been verified by simulations using the Euler-Maruyama method. It has 

previously been shown that reciprocal swimming enhances diffusion [20], and the last 

terms of Eq. (4), which are major contributions to the diffusion constant, embody this 

phenomenon.

Equations (2) and (3) describe the approximate functions corresponding to the data of Figs. 

3(c) and 3(b), respectively. The diffusion constant D∞ can be extracted from the linear 

late-time behavior of ⟨Δr2⟩ [dashed gray in inset of Fig. 3(b)], and can be used in Eq. 

(4) to fix one of the model parameters in terms of the others. The remaining three are 

fitted simultaneously to the curves of Figs. 3(b) and 3(c). The experimental data are well 

described by the model as shown by the dashed lines in the figures. The relative magnitudes 

of the extracted velocities, vp and vω, reveal how much energy the organisms spent on 

effective (vp) and circular (vω) swimming, for example, the blue curve in Fig. 3 has vp = 

11.4 and vω =13.6 μm/s. While not producing the precise morphologies of the colonies, 

the fitted velocities combined with the extracted frequency ω0, do constrain the possible 

configurations. Using the fitted velocities and a colony radius a ~ 5 μm, we find an effective 

translational force of ~1 pN, and using ω0, an effective torque ~4 pN · μm: the small residual 

forces that propel and rotate a colony are on the order of that of a single cell.

Just as flagella beating in S. rosetta varies between cells, morphology varies between 

colonies as a result of the cell division process [13]. This stochasticity enables two colonies 

of similar size to swim very differently. To quantify this, we used in-house software to track 

~750 colonies of varying size swimming in quasi-two dimensions between two cover slips, 

and when a colony was in focus the area of an ellipse fitted to its outline served as an 

estimator of size (see Supplemental Material [8], video 2). This method, while introducing 

uncertainty in area, enables high throughput. The speed of these versus size is shown in 

Fig. 4. To obtain model parameters, long tracks are needed. The parameters for 36 such 

tracks are given in the Supplemental Material [8], and the speed vp
2 + vω

2 of those tracks is 

shown in Fig. 4 as green circles. There is a slow increase in speed with colony size. This 

trend can be explained by simple ad hoc models such as random orientation of cells in a 
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spherelike structure: drag scales linearly with radius a but maximum propulsive force (the 

case where all propulsive forces point in one direction) scales like a2. However, there is an 

intriguing lack of very slow swimmers which would be predicted by such a model. Indeed, 

giving cells an orientation more parallel with its location would only yield slower swimming 

speeds. More importantly, Fig. 4 shows just how different colonies of similar size are: the 

stochastic processes underlying colony formation have high variances. From fits of the long 

tracks this stochasticity seems to apply to all model parameters (Supplemental Material [8]). 

This is contrary to, e.g., bacterial clumps where rotation rate clearly decreases with size 

[9]. Contrary to the phototactic response of Chlamydomonas and Volvox, in which the time 

scale of rotation is matched to inner chemistry [27], or the chemotactic response of sperm 

cells in which curvature and torsion of swimming paths are directly manipulated by the 

single beating flagellum [26], due to this stochastic morphology of S. rosetta, knowledge 

of the overall colony morphology and motion (e.g., ω0) is arguably not available at the 

single-cell level, rendering “deterministic” chemotactic strategies difficult. Thus, one of the 

most important issues is the possibility of chemotaxis in aggregate random walks through 

suitable modulation of the independent constituents [28].

A fundamental operation in the theory of stochastic processes is their summation to yield a 

single effective process. The corresponding operation for random walkers, “stitching” them 

together, yields ARWs. As we have shown, there is a crucial complexity for random walkers: 

the underlying flagellar beating can also yield rotations, so the “summation rules” differ. Our 

results suggest that for simple random walkers the ARWs can be described approximately 

through four numbers: vω, vp, ω0, and Dr. The question of the correct summation rules for 

general random walkers (e.g., anisotropic, hydrodynamically translation-rotation coupled) 

remains open. Likewise, the transition, via, e.g., self-assembly or flagella growth, from high 

to low stochasticity in ARWs with nonindependent constituents is intriguing. The present 

exemplar, S. rosetta, is a very good approximation to what one might call an ideal biological 

ARW: independent constituents and a roughly spherical shape. Its mode of swimming raises 

many interesting questions about the evolution of multicellularity and on the nature and 

origin of noise, both internal and environmental.
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Fig. 1. The choanoflagellate S. rosetta.
(a) Bright field image (5 μm scale) and (b) schematics of ‘slow-swimmer’ single cell, base 

angle θ, and rosette colony.
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Fig. 2. Flagellar beating dynamics.
(a,b) Time series of the base angle θ(t) on two flagella within a single colony. (c) 

Autocorrelation function of θ for one flagellum, with fit of the envelope to an exponential 

decay (dashed red). (d) Cross correlation of θ between two flagella on the same colony. 

(e) Peak frequencies of n = 23 tracked flagella. (f) Decay time of autocorrelation in single 

flagella. (g) Magnitude of cross correlations between flagella in same colonies.
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Fig. 3. Random walks.
(a) Long tracks of swimming S. rosetta. Inset scale bar is 10 μm. (b) Projected mean 

squared displacement for individual walks (solid, error shaded) and fits of model (dashed). 

Inset shows a zoom-out with late-time linear behavior ~4D∞t (dashed, gray). (c) Velocity 

autocorrelation (solid, error shaded) and model (dashed) with parameters as in (b). Fitted 

parameters (red curve): ω0 = 1.63 s−1, vp = 9.0 μm/s, vω = 12.1 μm/s, Dr = 0.09 s−1.
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Fig. 4. 
Speed vs size for ~750 colonies. Colony size is estimated by median xy-projected area. 

Colonies are blue and green circles, green speed being vp
2 + vω

2 from model fits to the long 

tracks. Green crosses are single-celled fast swimmers [12]. Colored background indicates 

running mean and standard deviation.
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