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Abstract

In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through 

accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. 
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To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase 

MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma 

whole genome sequencing (WGS). We now introduce MRD-EDGE, a machine learning-guided 

WGS ctDNA single nucleotide variant (SNV) and copy number variant (CNV) detection platform 

designed to increase signal enrichment. MRD-EDGESNV uses deep learning and a ctDNA-specific 

feature space to increase SNV signal-to-noise enrichment in WGS by ~300X compared to 

previous WGS error suppression. MRD-EDGECNV also reduces the degree of aneuploidy needed 

for ultrasensitive CNV detection through WGS from 1 Gb to 200 Mb, vastly expanding its 

applicability within solid tumors. We harness the improved performance to identify MRD 

following surgery in multiple cancer types, track changes in TF in response to neoadjuvant 

immunotherapy in lung cancer and demonstrate ctDNA shedding in precancerous colorectal 

adenomas. Finally, the radical signal-to-noise enrichment in MRD-EDGESNV enables plasma-

only (non tumor-informed) disease monitoring in advanced melanoma and lung cancer, yielding 

clinically informative TF monitoring for patients on immune checkpoint inhibition (ICI).
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Introduction

Liquid biopsy offers to reshape cancer care through the noninvasive detection and 

monitoring of plasma circulating tumor DNA (ctDNA). Recent efforts have focused on 

extending the use of liquid biopsy to low tumor fraction (TF) settings including therapeutic 

response monitoring or minimal residual disease (MRD) assessment. To overcome ctDNA 

sparsity in these settings, many have employed deep targeted sequencing to capture 

mutations from tumor-informed bespoke panels1–3 or common cancer driver genes4–7. 

However, missed detections are prevalent in current assays. For example, MRD identified 

via bespoke panels in urothelial carcinoma is strongly prognostic of disease recurrence, 

though ~40% of ctDNA-negative patients experienced relapse1. Similar false negatives 

were seen in breast4,8 and colorectal cancer3,9,10, suggesting that further improvement in 

sensitivity is needed.

Sensitivity barriers in deep targeted panels arise from the limited number of ctDNA 

fragments recovered at targeted loci11–14. Even with ultra-deep sequencing, a somatic 

mutation cannot be observed if it is not sampled in the limited plasma volume collected 

in routine testing, which imposes a hard barrier on effective coverage depth. Targeted 

approaches seek to overcome this limitation by increasing the number of panel-covered 

mutations to dozens1,2,6,7,15 or hundreds11,16,17.

We previously proposed an alternative approach where sequencing breadth supplants 

sequencing depth via integration of thousands of single nucleotide variants (SNVs) and 

copy number variants (CNVs) across the cancer genome through plasma whole genome 

sequencing (WGS)14. We designed a support vector machine approach, MRDetect, to 

suppress low quality cfDNA SNV artifacts derived from WGS errors. Building on this 
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work, we reasoned that learning patterns specific to ctDNA mutagenesis can offer signal 
enrichment to complement suppression of sequencing error. We developed MRD-EDGE 

(Enhanced ctDNA Genome-wide signal Enrichment), which integrates complementary 

signal from SNVs (MRD-EDGESNV) and CNVs (MRD-EDGECNV) to increase ctDNA 

signal enrichment in plasma WGS. We demonstrate the clinical utility of this approach in 

critical low TF settings.

Results

Deep learning distinguishes ctDNA SNVs from sequencing error

Our previous error suppression framework (“MRDetectSNV”) focused on using quality 

metrics to eliminate WGS sequencing error. We posited that signal-to-noise enrichment 

may emerge not only from characterizing features specific to sequencing errors (decreasing 

noise), but also from learning features indicative of true ctDNA mutations (increasing 

signal). To do so, we developed a new model training paradigm in which we compared SNV 

fragments (true label) from plasma samples with high TF (range 8-37%, Supplementary 

Table 1) to SNV fragments containing sequencing errors drawn from controls without 

known cancer. First, we implemented a set of quality filters to remove low quality SNV 

artifacts prior to classification, eliminating ~90% cfDNA artifacts (Supplementary Table 

2). We next explored a feature space to help distinguish true ctDNA SNVs from cfDNA 

sequencing error variants. We evaluated features such as single base substitutions (SBS) 

sequence patterns18,19, cfDNA fragment size20–22, and regional predilection for somatic 

mutagenesis23–28 across cancer types (Fig. 1a-c, Extended Data Fig. 1a, Supplementary 

Table 2).

To integrate this expanded feature set for optimal classification, we developed a two-

dimensional convolutional neural network representation of a cfDNA fragment (fragment 

CNN; Fig. 1d) to capture fragment-level features such as SBS, fragment length, and quality 

metrics like read edit distance and position in read (PIR). In parallel, a second multilayer 

perceptron model was designed whereby each SNV-containing fragment is classified based 

on salient regional features (e.g., replication timing) associated with mutation frequency 

(regional MLP; Fig. 1d). We combined our fragment and regional models as inputs to 

an ensemble model, which outperformed each of the models individually as well as 

other machine learning architectures (Extended Data Fig. 1b, Supplementary Table 3). 

Our classification yielded high performance in distinguishing true ctDNA SNVs from 

sequencing artifacts across 3 common cancer types with high mutational burden: melanoma, 

non-small cell lung cancer (NSCLC), and colorectal cancer (CRC) (Extended Data Fig. 1c, 

Supplementary Table 1, interpretability assessments Supplementary Fig. 1).

We evaluated MRD-EDGESNV performance in the tumor-informed setting, where SNVs 

observed in matched tumor WGS are evaluated in patient-matched vs. control (non-cancer) 

plasma WGS. Here, we determine plasma ctDNA content by comparing the number of 

cfDNA fragments that match known tumor SNVs against a background rate of ‘noise’ 

(observed tumor SNV fragments in non-cancer plasma, Methods)14. Tumor-informed 

MRD-EDGESNV produced higher signal-to-noise enrichment (mean 118-fold) compared 

to MRDetectSNV (mean 8.3-fold, Extended Data Fig. 1d). We next evaluated the lower limit 
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of detection (LLOD) for MRD-EDGESNV with in silico TF admixtures (melanoma plasma 

WGS mixed into plasma WGS from an individual with no known cancer; see Methods 

for in silico admixtures detail; Fig. 1e, Supplementary Table 4). Detection sensitivity was 

at the parts per million range (AUC of 0.84 for discriminating TF = 1*10-6 samples from 

samples with TF = 0 as controls), with further effective discrimination between different 

TFs (Supplementary Fig. 2). To confirm sensitivity in other high mutational burden solid 

tumors, we evaluated MRD-EDGESNV LLOD in CRC and SCLC in in silico TF admixtures 

and found strong performance at low TFs (AUC of 0.80 at 1*10-5 in CRC, 0.86 at 5*10-6 

in SCLC; Extended Data Fig. 2a-b, clinical detection sensitivity Extended Data Fig. 2c). 

In each mixing study, MRD-EDGESNV trended towards improved LLOD performance 

compared to MRDetectSNV and provided more accurate TF resolution at low TFs (Extended 

Data Fig. 2d-f).

To experimentally validate in silico results, we diluted cfDNA from plasma sample from 

a melanoma patient into healthy donor plasma (Methods), confirming parts per million 

detection and demonstrating accurate estimated TFs (Methods, Extended Data Fig. 3a-b). 

Finally, to orthogonally validate TF estimates, we applied MRD-EDGESNV and digital 

droplet PCR (ddPCR, Methods) to preoperative plasma samples from 48 patients with stage 

III CRC. At low TFs (< 4*10-4), MRD-EDGESNV detected 89% (16/18) of samples that 

were ctDNA-negative by ddPCR. Samples classified as ctDNA-positive by both methods 

(n = 30) showed high correlation in estimated ctDNA levels (r=0.94 95%-CI: 0.87-0.97, 

p=1.9*10-14, Pearson’s correlation; Fig. 1f-g).

Multiple features enhance ctDNA detection with MRD-EDGECNV

Aneuploidy is observed in most of solid tumors and is a prominent hallmark of the cancer 

genome29. We have shown that MRDetect-based CNV detection (“MRDetectCNV”) can 

monitor disease burden in cancers with high aneuploidy but low SNV mutation burden using 

read depth skews14. This approach, however, required substantial aneuploidy (>1 Gb altered 

genome) to detect TFs of 5*10-5.

Detection of subtle read-depth skews in low TF ctDNA may be hindered by biases that 

arise from sample preparation (e.g., GC bias), alignment (e.g., variable mapping), and 

biological factors (e.g., replication timing). To correct for such biases, we developed a 

machine-learning guided CNV denoising platform for plasma WGS30. Our plasma read 

depth classifier uses robust principal component analysis (rPCA) trained on a panel 

of normal samples (PON) to correct read depth distortions due to background artifacts 

(Methods, Fig. 2a). To evaluate performance, we admixed in silico reads from a high-burden 

CRC or NSCLC plasma sample into a non-cancer control sample (Supplementary Table 

4), identifying signal from read depth skews at TF admixtures as low as 1*10-5 (Fig. 2b, 

Extended Data Fig. 4a, left. Lack of directionally skewed signal in copy neutral regions in 

the matched tumor served as a negative control (Extended Data Fig. 4b).

Loss of heterozygosity (LOH) can also be an important additional source of CNV signal. 

Copy neutral LOH (cnLOH) cannot be captured by read depth skews but can be measured 

through allelic imbalances in germline single nucleotide polymorphisms (SNPs) in plasma. 

Here, inference of the major alleles in LOH and amplification regions is derived from tumor 
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WGS31,32 and the B-allele frequency (BAF) in plasma is indicative of ctDNA signal (Fig. 

2a). Our BAF classifier aggregates SNPs across these regions (see Methods for quality 

filters, Extended Data Fig. 4c, and estimates sample-wide plasma allelic imbalance from 

a least squares linear regression accounting for regional copy number state (Methods). To 

validate this approach, we created in silico admixtures by diluting reads from plasma WGS 

of a CRC or melanoma patient into their matched peripheral blood mononuclear cells WGS 

to maintain SNP phasing consistency (Supplementary Table 4), identifying allelic imbalance 

signal in TF admixtures as low as 5*10-5 (Fig. 2c, Extended Data Fig 4a, middle).

Finally, we leveraged well-characterized abnormal ctDNA fragmentation patterns20,22,33–35 

as an additional source of aneuploidy signal. ctDNA is associated with more heterogenous 

fragment lengths than normal cfDNA33,34. We therefore measured fragment length 

entropy (Methods) in plasma WGS segments. While existing approaches identify altered 

fragmentation profiles inherently or compared to non-cancer plasma33,36, our fragment 

length entropy classifier compares cfDNA fragment lengths in tumor-informed CNV 

segments versus copy-neutral segments, overcoming sample-level technical variation in 

fragment length. Thus, in regions with copy number amplifications, we anticipate greater 

fragment length entropy due to a larger contribution of ctDNA fragments, whereas in 

deletions less plasma fragment length entropy is expected due to lower ctDNA contribution. 

In our in silico admixtures, our fragment length entropy classifier identified signal in TFs as 

low as 5*10-5 (Fig. 2d, Extended Data Fig 4a, right, discrimination between mixed TFs for 

each CNV classifier Supplementary Fig. 3).

Read depth, BAF, and fragment length entropy serve as independent and complementary 

sources of CNV signal. MRD-EDGECNV combines signals from these classifiers as 

independent inputs at the sample level to comprehensively assess for plasma TF (Methods). 

Because the aneuploidy signal in plasma WGS is a function of both the proportion of the 

cancer genome affected by aneuploidy and the TF, we evaluated classifier performance by 

downsampling both the TF (as above in Fig. 2b-d) and the cumulative size of CNV segments 

to characterize a LLOD matrix (Fig. 2e). As expected, classifier performance improved 

with increased aneuploidy. While MRDetect required 1 Gb of aneuploidy14 for a LLOD 

of 5*10-5, MRD-EDGECNV achieved the same LLOD with only 200 Mb of aneuploidy, 

extending applicability to many solid tumors37.

MRD-EDGE detects early-stage cancer and postoperative MRD

In our WGS tumor-informed ctDNA detection paradigm, tumor WGS provides patient-

specific SNVs and CNVs. Sample ctDNA enrichment is measured as a Z score for 

the matched patients’ plasma signal against a noise distribution generated by applying 

the patient-specific SNVs and CNVs to unmatched non-cancer (control) plasma samples 

(Methods). Throughout the study, a Z score exceeding the 95% specificity threshold in the 

control noise distribution was used as the ctDNA detection threshold.

We first applied tumor-informed MRD-EDGE to perioperative plasma samples from 

patients with stage III CRC (n=15) compared to controls without known cancer (n=40, 

Supplementary Table 5). Samples were drawn preoperatively and postoperatively following 

completion of adjuvant chemotherapy (ACT, mean 8.1 months after surgery, Fig. 3a-b). Any 
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samples used in machine learning model training (Supplementary Table 1) were excluded 

from clinical analyses. AUC for tumor-informed preoperative ctDNA detection with MRD-

EDGE was 0.998 (95% CI: 0.99-1.00, Fig. 3c, Extended Data Fig. 5). MRD-EDGESNV 

maintained performance in a cross-patient analysis (Methods) that compared the detection 

in plasma WGS of patient-specific SNVs in matched versus unmatched preoperative plasma 

from CRC patients (Extended Data Fig. 5b).

In samples drawn after ACT completion, MRD-EDGE detected MRD in 9 / 15 patients, 

5 of whom later had disease recurrence. Post-adjuvant MRD was associated with shorter 

disease-free survival (Fig. 3d) over a median 54 months (range 37.4 – 67.2) of follow-up. 

Recurrence was not observed in any of the 6 patients without ctDNA detection. A lead 

time analysis at this first available timepoint after definitive treatment found lead times of 

14.2 months (range 4.1 - 28.5 months, Fig. 3e), which compares favorably to lead times in 

leading bespoke panels (8.7 months)38. The 4 patients with positive MRD-EDGE detection 

with no evidence of recurrence may be due to late recurrence not captured in the available 

follow-up or to false positive detection, as has been observed for WGS 14,39 and leading 

bespoke panels8–10 including after adjuvant therapy in CRC40.

MRD-EDGE maintained robust performance in CRC and NSCLC samples from our 

previous manuscript29 (Supplementary Fig. 4-8).

Tracking plasma TF throughout neoadjuvant therapy in NSCLC

We next applied MRD-EDGE to the challenging setting of tracking plasma tumor burden 

in response to neoadjuvant therapy. Disease burden monitoring during neoadjuvant therapy 

could help optimize care during the crucial period between early-stage cancer detection 

and definitive surgery. We evaluated plasma from 22 early-stage NSCLC patients on 

a neoadjuvant immunotherapy protocol [NCT0290495441] that randomized early-stage 

bulky NSCLC patients to treatment with the immune checkpoint inhibition (ICI) agent 

durvalumab, with or without stereotactic body radiation therapy (SBRT), followed by 

surgical resection (Fig. 3f-g).

MRD-EDGE was highly sensitive for pretreatment cancer (AUC 0.98: 95% CI 0.95-1.00, 

Fig. 3h and Extended Data Fig. 6), as ctDNA was undetectable in only two patients with 

clinical stage IA disease. Serial sampling allowed us to observe ctDNA kinetics in the 

neoadjuvant period. In patients who received durvalumab and SBRT, ctDNA shedding 

increased during SBRT, as is seen with ddPCR42, and subsequently decreased at Week 

4 following SBRT treatment (Fig. 3i), demonstrating dynamic TF trends during and after 

radiation. For patients on durvalumab monotherapy, MRD-EDGE monitored TF trends 

throughout the neoadjuvant treatment period, reflecting a response (Fig. 3j, bottom) or lack 

of response to ICI (Fig. 3j, top).

Sixteen patients had postoperative plasma available for WGS analysis; at the time of surgery, 

2 patients had unresectable tumors and were excluded from our survival analyses. Among 

the 14 patients that underwent surgical resection, MRD detection was associated with 

shorter disease-free survival (P=3.6*10-2, logrank test, Fig. 3k). None of the MRD-negative 

patients (n=6) had recurrence, while recurrence was observed in 5/8 of MRD positive 
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patients. As postoperative samples analyzed for MRD were drawn amid adjuvant therapy, 

including immunotherapy, chemotherapy, or chemoradiation therapy (Supplementary Table 

6), the detection of residual disease in patients without recurrence may be due to short 

follow-up (cohort median 30 months), clearance of residual disease following adjuvant 

therapy, or may indicate false positive results.

MRD-EDGECNV in monitoring of high aneuploidy tumors

To demonstrate the value of standalone MRD-EDGECNV ctDNA monitoring in a high 

aneuploidy but low mutational burden solid tumor, we evaluated serial plasma samples from 

an observational cohort of triple negative breast cancer (TNBC) patients (n=18) with disease 

recurrence after definitive therapy (surgery combined with neoadjuvant (n=9) or adjuvant 

(n=9) chemotherapy, Fig. 3l-m, Supplementary Table 6).

MRD-EDGECNV demonstrated strong sensitivity for MRD in this cohort, as ctDNA was 

detected following treatment initiation (neoadjuvant chemotherapy or surgery) and prior to 

recurrence in 17 of 18 patients (94.4%, Fig. 3m). As in other tumor-informed analyses, 

positive detection required an MRD-EDGECNV Z score in excess of 95% specificity in 

the control noise distribution (Supplementary Table 7). Following completion of definitive 

treatment (surgery and ACT), average lead time of ctDNA detection was 9 months and 

maximum lead-time was 27 months (Fig. 3m), competitive with leading bespoke panels43 in 

TNBC despite sparse sampling at varying time points.

Detection of ctDNA shedding in adenomas and pT1 carcinomas

Whether noninvasive (precancerous) lesions shed ctDNA is unknown. While tumor-

informed MRD-EDGE cannot be used for screening, the exquisite sensitivity of our 

approach allowed us to address whether ctDNA is shed from adenomas and polyp cancers 

(pT1pN0), where ctDNA detection through existing methods such as ddPCR has been 

limited44–46.

We evaluated pre-resection plasma from 30 patients with early lesions detected through 

screening47 (Fig. 4). Ten patients had pT1 lesions (defined as invasion of the submucosa but 

not the muscular layer, Fig. 4d), and 20 patients had screen-detected precancerous adenomas 

(Fig. 4a). Consistent with prior reports48–50, we found decreased aneuploidy in adenomas 

(median 235 Mb of genome-wide aneuploidy) compared to our stage III CRC samples 

(median 1.2 GB, P=2.8*10-6).

We compared these samples to healthy control plasma samples (n=40), using a prespecified 

ctDNA detection threshold value drawn from our preoperative stage III CRC cohort (Fig. 

3a-b). MRD-EDGE detected ctDNA shedding in 6 / 10 (60%) pT1 lesions and 7 / 20 (35%) 

precancerous adenomas (Fig. 4a-d, cross-patient Extended Data Fig. 7a, clinical features 

Extended Data Fig. 7b, Supplementary Table 8). Detection AUCs were higher for pT1 

lesions than adenomas, as expected (Fig. 4b). We further found lower estimated TFs in 

detected adenomas (median 8.0*10-6) and pT1 lesions (median 9.1*10-6) than stage III 

(median 1.1*10-4) and metastatic (median 1.2*10-2) CRC samples (Fig. 4c, for description 

of additional detection metrics see Supplementary Note). These data demonstrate that even 

without a significant invasive component, dysplastic tissue may shed ctDNA, forming an 
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important consideration as advanced non-tumor informed methods are deployed for early 

cancer detection efforts.

Plasma-only ctDNA monitoring in metastatic disease

In prior bespoke panel studies, a substantial proportion of eligible patients were excluded 

due to low tumor DNA purity or absence of matched tumor tissue2,43,51, introducing the 

need for plasma-only ctDNA detection in clinical application.

Tumor-informed approaches consider only positions in the genome that overlap with 

tumor SNVs, thereby excluding the vast majority of non-overlapping sequencing artifacts. 

Without matched tissue, we can instead form a sample-level ctDNA detection rate defined 

as the number of SNV fragments classified as ctDNA over all cfDNA SNV fragments 

evaluated (Methods). Because we evaluate all cfDNA fragments that contain a variant (~108 

per plasma WGS, Supplementary Table 5), plasma-only (non-tumor informed) fragment 

classification requires a higher specificity threshold than the fragment classification in the 

tumor-informed setting (for optimal specificity calculation see Methods, Supplementary Fig. 

9).

To evaluate our plasma-only MRD-EDGESNV approach, we first evaluated LLOD by using 

the same in silico admixtures used in the tumor-informed setting (Fig. 1e). Here, we found 

plasma-only detection of TF admixtures at 5*10-5 (AUC 0.77 for discrimination against 

TF=0 as controls, Fig. 5a). To benchmark performance improvement relative to our prior 

work14, we compared signal-to-noise enrichment for MRD-EDGESNV with MRDetectSNV 

and found 301-fold (Fig. 5b) higher enrichment for MRD-EDGESNV.

We evaluated MRD-EDGESNV performance on samples from patients with advanced 

cutaneous melanoma treated with combination ICI on The Adaptively Dosed 

Immunotherapy Trial52 (‘adaptive dosing cohort’, n=26 patients Fig. 5c). The protocol 

aimed to spare excess combination ICI treatment by identifying responders through early 

imaging at Week 6 and transitioning these patients to monotherapy with nivolumab. Plasma-

only MRD-EDGESNV fragment detection rates distinguished pretreatment melanoma 

samples from non-cancer plasma samples (n=30) with an AUC of 0.94 (95% CI: 0.86–1.0, 

Fig. 5d). In keeping with our tumor-informed analyses, detection threshold was set at a 

specificity of 95% or greater, yielding sensitivity of 92%. As a negative control, we included 

pre- and posttreatment plasma from a patient with acral melanoma, a cancer without SBS7 

UV light signature, within the same sequencing batch. As expected, we observed no ctDNA 

detection in these samples (Extended Data Fig. 8a), confirming that our classifier is specific 

to cutaneous melanoma.

We benchmarked MRD-EDGESNV ctDNA detection in pretreatment plasma against a 

targeted panel7 with tumor-informed mutation calling covering 129 common cancer genes 

(‘tumor-informed panel’) in a subset of 14 patients with available samples (Supplementary 

Table 9). In parallel, results were also compared to the same targeted panel with de novo 
mutation calling (‘de novo panel’) and to ichorCNA53, an established WGS CNV TF 

estimator. Among these approaches, ctDNA sensitivity was highest for MRD-EDGESNV 

and the tumor-informed panel (Fig. 5e). Comparison of serial samples demonstrate broadly 
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similar trends following ICI treatment between MRD-EDGESNV and the tumor-informed 

panel (Fig. 5f, Methods).

Among samples evaluated across platforms (n=43 total, 14 pretreatment and 29 post-

treatment samples), detection consistency (the agreement between platforms for detected 

versus undetected ctDNA) was highest between MRD-EDGESNV and the tumor-informed 

panel (88%, Fig. 5g), and MRD-EDGESNV detected the lowest VAF detected by the tumor-

informed panel, estimated at 1*10-4. To benchmark MRD-EDGESNV in clinical surveillance, 

we compared changes in ctDNA TF at Week 6 following ICI treatment and found that 

MRD-EDGESNV showed higher agreement with the tumor-informed panel than the de novo 
panel and ichorCNA (Fig. 5h).

Tracking response to ICI with plasma-only MRD-EDGESNV

In advanced melanoma, radiographic imaging may lag ICI response by months, and 

bespoke panel approaches have shown that liquid biopsy can provide faster response 

readouts2,6,51,54,55. To explore the role of plasma-only MRD-EDGESNV in ICI response 

prognostication, we expanded the adaptive dosing melanoma52 cohort described above to 

include additional patients treated with standard of care immunotherapy (‘conventional 

immunotherapy’, n=11 patients, Fig. 6a, Supplementary Table 5). We evaluated the ability 

of MRD-EDGESNV to prognosticate clinical outcomes at serial plasma timepoints (122 

plasma samples from n=37 patients, Supplementary Table 10). Serial cfDNA measurements 

were normalized to pretreatment levels, and patients with undetected pretreatment ctDNA 

(n=3) were excluded from further clinical analyses. Trends in MRD-EDGESNV normalized 

fragment detection rate (nDR, Methods) tracked radiographic imaging results (Fig 6b). We 

found that decreasing ctDNA TF was associated with longer progression-free survival (PFS) 

(P=0.01) and overall survival (OS) (P=0.03, Fig. 6c) as early as at week 3 after the first ICI 

infusion and at week 6 (Extended Data Fig. 8b). In contrast, CT imaging at week 6, which 

defines PFS, showed no significant relationship between RECIST response and OS (P=0.40, 

Extended Data Fig. 8c).

We observed several instances where decreasing ctDNA at week 3 was not linked to a 

durable ICI response. For example, both MRD-EDGESNV and the tumor-informed panel 

captured decreasing ctDNA at week 3 in patient MEL-17. However, both platforms found 

increasing ctDNA between week 3 and week 6 and the patient had progression of disease 

in the liver on week 6 imaging (Fig. 6d). We reasoned that the high toxicity rate from 

combination ICI, where nearly 40% of patients will stop treatment early because of immune-

related adverse events (irAEs)56, may have confounded classification at week 3. Clinically, 

irAEs are often treated with corticosteroids, and early steroid use (within 8 weeks of ICI 

treatment) is associated with shorter PFS and OS in melanoma57. We therefore stratified 

our melanoma patients into 3 groups, patients with no ctDNA response (n=7), and patients 

with an initial ctDNA response either treated or untreated with early steroids (n=9 and 

n=18, respectively). Here, we observed an association between shorter PFS (P=6.7*10-7) 

and OS (P=4.8*10-3, Fig. 6e) and early steroid administration. Our findings invite further 

inquiry into how to incorporate ctDNA serial measurement to optimize immunosuppressive 

treatment in the weeks following ICI initiation.
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To determine if MRD-EDGESNV is applicable to other high-mutation burden solid tumors, 

we applied MRD-EDGESNV to 16 advanced SCLC patients treated with combination ICI. 

In silico mixing studies demonstrated detection at TF=5*10-4 (AUC 0.72, Extended Data 

Fig. 9a). MRD-EDGESNV was highly sensitive for pretreatment SCLC ctDNA (Extended 

Data Fig. 9b, Supplementary Table 10). As in melanoma, increasing ctDNA at week 3, as 

measured by nDR, was associated with shorter PFS (Extended Data Fig. 9c).

Discussion

The use of noninvasive liquid biopsy to detect MRD and track response to therapy heralds 

the next frontier in precision oncology. MRD-EDGE leverages the breadth of plasma WGS 

to increase liquid biopsy sensitivity. Broadly, MRD-EDGESNV uses advanced machine 

learning and a biologically-informed feature space to enrich ctDNA signal. The deep 

learning SNV architecture in MRD-EDGESNV provides a flexible platform for integrating 

disease-specific molecular features, outperforms other machine learning approaches, and 

demonstrates generalizability across cancer types and sequencing preparations. For CNVs, 

machine-learning guided signal denoising enables accurate inference of plasma read depth 

skews, BAF inference expands applicability through incorporation of plasma cnLOH, and 

fragment length entropy provides an orthogonal metric for CNV assessment. The lower 

degree of aneuploidy needed for ultrasensitive detection (Fig. 2e) and ability to capture 

signal from cnLOH will enable application to a diverse set of solid tumors lacking high 

somatic SNV burden, as demonstrated by our CNV-only analysis of TNBC recurrence after 

definitive treatment (Fig. 3m-l).

Our simple WGS molecular workflow avoids the clinical complexity of bespoke panels, 

and the smaller plasma cfDNA input requirements will enhance MRD-EDGE’s translational 

impact in diverse clinical settings, especially given the rapid decline in sequencing costs58. 

MRD-EDGE enabled the detection of postoperative CRC and TNBC MRD, as well as 

tracking of plasma TF dynamics in response to neoadjuvant ICI. Further, the unique 

sensitivity of MRD-EDGE allowed us to examine ctDNA shedding from precancerous 

colorectal adenomas. While this tumor-informed approach cannot be used for screening, the 

detection of ctDNA in a substantial proportion of cases argues that ctDNA may be present 

without invasive disease. ctDNA-guided detection of premalignant lesions is therefore a 

viable goal, if tools with sufficient sensitivity can be developed for this setting. Finally, we 

leveraged the enhanced signal-to-noise enrichment of MRD-EDGE to perform plasma-only 

(non-tumor informed) ctDNA detection in advanced melanoma and SCLC. MRD-EDGESNV 

allowed for early and accurate assessment of response to ICI, a challenging clinical setting 

for prognostication54,59.

Collectively, our data support using plasma WGS as a complementary strategy to the 

prevailing paradigm of ctDNA mutation detection via deep targeted panel sequencing in 

critical therapeutic contexts. Future large-scale interventional studies will be necessary to 

demonstrate the value of this approach to inform real-time clinical decision making.
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Methods

Human subjects and sample processing

This study was approved by the relevant local ethics committees and institutional 

review boards (IRB), and was conducted in accordance with the Declaration of Helsinki 

protocol. Blood samples were collected from patient and healthy adult volunteers enrolled 

in clinical research protocols at NewYork-Presbyterian/Weill Cornell Medical Center, 

Memorial Sloan Kettering Cancer Center, Massachusetts General Hospital, the Royal 

Marsden NHS Foundation Trust in the United Kingdom, British Columbia Cancer Center 

in Canada, or Aarhus University Hospital, Bispebjerg Hospital, Randers Hospital, Herning 

Hospital, Hvidovre Hospital, and Viborg Hospital in Denmark. Melanoma tumor, normal 

and plasma samples from the Royal Marsden NHS Foundation Trust were obtained 

under the ethically approved protocol Melanoma TRACERx (Research Ethics Committee 

Reference 11/LO/0003). Adenoma and pT1 lesion samples were obtained under the 

ethically approved Endoscopy III protocol H-4-2013-050. Tumor tissues were collected 

from biopsied or resected lung, melanoma, colorectal, triple negative breast cancer, and 

adenoma specimens. Cutaneous melanoma, NSCLC, CRC, TNBC, adenoma, and SCLC 

were diagnosed according to World Health Organization criteria and confirmed in all cases 

by an independent pathology review. Informed consent on IRB-approved protocols for 

genomic sequencing of patients’ samples was obtained before the initiation of sequencing 

studies. Sex was self-reported. Participants did not receive compensation for participation.

Germline and tumor DNA processing

Tumor tissue and matched germline DNA from PBMCs or adjacent normal tissue were 

collected and stored at −80 °C until they were processed for extraction. Genomic DNA was 

extracted from tumor tissue using the QIAamp DNA Mini Kit (Qiagen). Genomic DNA 

was extracted from PBMCs using the QIAamp DNA Blood Kit (Qiagen). Libraries were 

prepared using either TruSeq DNA PCR-Free Library Preparation Kit (Illumina) or Agilent 

Sure Select (Supplementary Table 11 and Supplementary Table 12). Input was 1 μg of 

DNA per the recommended protocol63, with minor modifications as described below. Intact 

genomic DNA was concentration normalized and sheared using the Covaris LE220 sonicator 

to a target size of 450 bp. After cleanup and end repair, an additional double-sided bead-

based size selection was added to produce sequencing libraries with highly consistent insert 

sizes. This was followed by A-tailing, ligation of Illumina DNA Adapter Plate adapters and 

two post-ligation bead-based library cleanups. These stringent cleanups resulted in a narrow 

library size distribution and the removal of remaining unligated adapters. Final libraries 

were run on a Fragment Analyzer (Agilent) to assess their size distribution and quantified 

by qPCR with adapter-specific primers (Kapa Biosystems). Libraries were pooled together 

based on expected final coverage and sequenced across multiple flow cell lanes to reduce 

the effect of lane-to-lane variations in yield. WGS was performed on the HiSeq X (HCS HD 

3.5.0.7; RTA v2.7.7) or NovaSeq 6000 (Illumina) at 2 x 150-bp read length, using SBS v3 

(Supplementary Table 11).
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Plasma DNA processing

On the same day of blood collection, blood collection tubes (Streck or K2-EDTA, 

Supplementary Table 5) were centrifuged at 2,000 r.p.m. for 10 min to separate plasma. 

cfDNA was then extracted from human blood plasma by using the Mag-Bind cfDNA Kit 

(Omega Bio-Tek). The protocol was optimized and modified to optimize yield14. Elution 

time was increased to 20 min on a thermomixer at 1,600 r.p.m. at room temperature and 

eluted in 35-μl elution buffer. The concentration of the samples was quantified by a Qubit 

Fluorometer (Thermo Fisher), and samples were run on a fragment analyzer by using 

the High Sensitivity NGS Fragment Analysis Kit (Agilent) to define the size of cfDNA 

extracted and genomic DNA contamination. For plasma samples with significant genomic 

DNA contamination (fragment size > 240 base pairs for more than 20% of fragments at 

library preparation in tape station analysis), we performed a 0.4x cleanup using SPRIselect 

magnetic beads (Beckman Coulter) on the extracted cfDNA. Samples that underwent bead 

cleaning are listed in Supplementary Table 5. Bead cleanup did not change fragment insert 

size distributions in affected samples (Supplementary Fig. 10).

A subset of plasma samples was sequenced at Aarhus University in Denmark 

(Supplementary Table 5). For these samples, cfDNA was extracted from human blood 

plasma using the QIAmp Circulating Nucleic Acids kit (Qiagen) and eluted in 60 μl elution 

buffer (10 mM Tris-Cl, pH 8.5). The concentration of the samples was quantified by droplet 

digital PCR (ddPCR, Bio-Rad Laboratories), using assays specific to two highly conserved 

regions on Chr3 and Chr7, as previously described64. In addition, all samples were screened 

for contamination of genomic DNA from leukocytes using a ddPCR assay targeting the 

VDJ rearranged IGH locus specific for B cells, as previously described64. No samples were 

contaminated by genomic DNA from leukocytes.

Plasma cfDNA library preparation and sequencing

Samples sequenced at the New York Genome Center and the British Columbia Cancer 

Center were processed using KAPA Hyper Library Preparation. Cohorts included in Zviran 

et al. were processed as previously described14. Samples with a mass above 5 ng were 

prepared for next-generation sequencing on Illumina’s HiSeq X or NovaSeq by using a 

modified manufacturer’s protocol. The protocol was scaled down to half reaction by using 

25μl of extracted cfDNA. IDT for Illumina TruSeq Unique Dual Indexes63 was used by 

diluting 1:15 with EB (elution buffer), and ligation reaction was adjusted to 30 minutes. 

Additional 0.8x SPRIselect magnetic bead (Beckman Coulter) cleanup was included after 

post-ligation cleanup to remove excess adapters and adapter dimers. cfDNA from 1 mL 

of plasma was used for all of the plasma samples in this study. For samples with low 

concentration, an additional 1 ml of plasma was extracted, and the DNA aliquot with the 

highest mass was used for library preparation. The number of PCR cycles was dependent 

on initial cfDNA total mass. For samples with more than 5 ng of total cfDNA, 5-7 PCR 

cycles were performed. For samples with less than 5 ng of total cfDNA, 7–10 PCR cycles 

were performed (Supplementary Table 5). Quality metrics were performed on the libraries 

by Qubit Fluorometer, High Sensitivity DNA Analysis Kit and KAPA SYBR FAST qPCR 

Kit (Roche). WGS was performed on the HiSeq X (HCS HD 3.5.0.7; RTA v2.7.7) at 2 × 
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150-bp read length or NovaSeq 6000 at 2 x 150-bp read length (Supplementary Table 5) to a 

target depth of 30x.

At Aarhus University, cfDNA from 2mL plasma (see Supplementary Table 5 for DNA 

mass) was used as input for library preparation using a modified manufacturer’s protocol. 

xGen UDI-UMI Adapters were used and the ligation reaction was adjusted to 30 minutes. 

Agencourt AMPure XP beads (Beckman Coulter) were used for both cleanup steps 

with a bead:DNA ratio of 1.2x and 1.0x for the post-ligation and post-PCR cleanup, 

respectively. The number of PCR cycles was 7 for all cfDNA samples. Qubit Fluorometer 

and TapeStation D1000 were used for library quality control. WGS was performed on 

NovaSeq 6000 at 2 x 150-bp read length to a target depth of 30x.

Preprocessing, quality control analysis and sample identification and concordance

WGS reads for primary tumor, matched germline and plasma samples were demultiplexed 

using Illumina’s bcl2fastq (v2.17.1.14) to generate FASTQ files. The primary tumor 

and matched germline WGS were submitted to the New York Genome Center 

somatic preprocessing pipeline, which includes alignment to the GRCh38 reference 

(1000 Genomes version) with BWA-MEM (v0.7.15)65. For plasma cfDNA, we used a 

modified alignment pipeline to accommodate adapter trimming after observing increased 

adapter contaminated reads in cfDNA samples compared with tumor samples, given 

that cfDNA has shorter fragment size, which can lead to R1 and R2 overhang. 

We therefore used Skewer66 for adapter trimming (default settings) and subsequently 

aligned samples using BWA-MEM (default settings) to the GRCh38 reference (1000 

Genomes version). For all samples, duplicate marking and sorting was done using 

NovoSort MarkDuplicates (v3.08.02), a multi-threaded bam sort/merge tool by Novocraft 

Technologies; http://www.novocraft.com), followed by indel realignment (performed 

jointly for the tumor and matched germline) and base quality score recalibration using 

GATK (v4.1.8; https://software.broadinstitute.org/gatk), resulting in a final coordinate 

sorted bam file per sample. Alignment quality metrics were computed using Picard 

(v2.23.6; QualityScoreDistribution, MeanQualityByCycle, CollectBaseDistributionByCycle, 

CollectAlignmentSummaryMetrics, CollectInsertSizeMetrics, CollectGcBiasMetrics) and 

GATK (v4.1.8; average coverage, percentage of mapped and duplicate reads). To specifically 

assess for sample contamination, we applied Conpair67 (v.0.2), which validated genetic 

concordance among the matched germline, tumor and plasma samples, as well as evaluated 

any inter-individual contamination in the samples. Samples that showed low concordance 

(<0.99) were excluded from further analysis. Specifically, one set of serially monitored 

cutaneous melanoma samples from the melanoma patient MEL-155 was rejected from 

analysis due to low concordance score (Supplementary Table 5).

Tumor / Normal somatic mutation calling

To achieve stringent somatic variant calling, we enforced high-confidence SNV calls 

according to published methods from our center68. The tumor and normal bam files were 

processed through NYGC’s variant calling pipeline which consists of MuTect2 (GATK 

v4.0.5.1), Strelka2 (v2.9.3) and Lancet (v1.0.7) for calling SNVs. High confidence SNV 
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calls were defined as those that were called by two or more variant callers. We further 

excluded variants that were present at any allelic fraction in the matched normal sample.

To identify SNVs for colorectal adenomas and pT1 lesions within formalin-fixed paraffin-

embedded (FFPE) tumor tissue, we used univariate Gaussian mixture models (GMM, 

sklearn.mixture) with the underlying assumption that FFPE artifactual noise SNVs and true 

SNVs can be expressed as a mixture of Gaussian densities according to VAF (low VAF for 

artifactual noise and high VAF for true tumor mutations). For each FFPE tumor sample, we 

set a VAF threshold at a 10% false positive rate according to the GMM, and only included 

SNVs with VAFs above this threshold.

CNVs, including deletions, amplifications and copy-neutral LOH, were called using 

Sequenza (v3.0.0)69. We only considered CNVs in autosomal regions (chr1-22) of the 

genome where the size of the CNV was greater than 1.5 Mb. Segments with Depth Ratio 

of 1 (Depth Ratio 0.8-1.2) were characterized as neutral while those with Depth Ratio 

>1.2) were selected as amplifications, and Depth Ratios < 0.8 were selected as deletions. 

Copy neutral LOH segments were selected when Minor Copy-number was assigned 0 by 

Sequenza.

Sequenza required >15% tumor purity for tumor-informed BAF and CNV calling at WGS 

sequencing depths of 20-80X, as used in this study. A subset of NSCLC CNVs was called 

with ichorCNA (Supplementary Table 11) as low tumor purity precluded accurate CNV calls 

with Sequenza. In this low purity setting, CNV calls were quality filtered using tumor BAF 

and read depth ratio to separate aneuploidy from artifact.

Tumor-informed plasma cfDNA SNV identification

Detection of patient-specific SNV profiles was performed by searching the plasma WGS 

for all sites from the matched tumor SNV profile with corresponding mutations in the 

same genomic site and the same substitution. To efficiently identify variants present in the 

sequencing data, we used a custom Python script (Python version 3.6.8), which uses the 

pysam (v0.15.2) module to efficiently extract alignments harboring variants and extracted 

any read that both uniquely maps to a variant of interest and was in an aligned portion of the 

read (no clipping or soft masking at the position of the variant).

Plasma and tumor recurrent artifact, germline, and regional filters

In all plasma samples, we removed artifactual variants using a local recurrent artifact 

plasma ‘blacklist’ filter generated by aggregating pileup SNVs within our plasma WGS 

and tumor WGS databases. We then counted individual SNVs within all pileups, excluding 

recurrent SNVs in samples from the same patient. For tumor-informed analyses, both 

plasma and tumor recurrent artifact filters were applied, while for plasma-only analyses, 

only plasma blacklists were applied. Use of cohort-specific blacklists is summarized in 

Supplementary Table 13. To further exclude potential germline variants, we used the 

gnomAD database (version 3.0) which contains genetic variants from >70,000 whole 

genomes70. We downloaded the gnomAD version 3.0 variant call format (VCF) file that was 

available in hg38 coordinates from the gnomAD browser. We annotated single base changes 

that we identified with their population allele frequency and removed any candidate variants 
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that were present in gnomAD with an allele frequency > 1/100. Finally, we excluded 

variants from simple repeat regions and centromeres from a problematic region blacklist71.

Construction of ctDNA SNV training sets

Training sets consisted of ctDNA SNV fragments (true label) from plasma samples with 

high ctDNA burden from patients with metastatic disease and cfDNA variant containing 

fragments (false label) from healthy controls without known cancer, processed in the same 

location and sequenced under the same settings. Supplementary Table 1 lists samples used in 

training for NSCLC, CRC, and melanoma. These plasma samples were drawn from patients 

with high TF, advanced disease and were not included in any downstream MRD-EDGESNV 

clinical application such as ctDNA detection from early-stage CRC or NSCLC plasma (Fig. 

3).

Prior to fragment classifier training, we first implemented quality filters to filter low-quality 

noise, germline SNPs, and genomic DNA contamination (see Supplementary Table 2 for 

quality filters by model type). Filters removed SNV fragments with low base quality (<25 

on Phred scale) or low depth (<10 supporting reads), and removed fragments with insert 

sizes outside of a 40 bp – 240 bp range to reduce genomic DNA contamination. Germline 

variants were excluded by filtering high VAF variants (VAF > 0.2), except in cases where 

estimated ichorCNA TF was > 0.2. In plasma-only settings, only candidate variants found on 

overlapping paired reads (R1 and R2 concordant) were retained.

To maximize the accuracy of true (positive) labels, we implemented the following strategies 

to limit noise contamination in our ctDNA (true label) SNV fragment sets. In all true label 

settings, we used training samples from patients with high burden metastatic disease (TF 

9-24% as called by ichorCNA, Supplementary Table 1). In samples with matched tumor 

tissue, we identified ctDNA SNVs by intersecting tumor high confidence somatic calls from 

the NYGC Somatic Pipeline68 with SNVs in plasma. When matched tumor tissue was not 

available, we called mutations directly in the plasma against normal germline samples using 

Mutect272, leveraging the high TF in these samples to identify consensus somatic mutations 

(Supplementary Table 1). To further filter noise, when possible, we used the intersection of 

ctDNA SNV fragments from two high TF timepoints from the same patient (Supplementary 

Table 1).

To identify cfDNA SNV artifacts for our false labels, we identified all fragments with 

a SNV against the reference genome through samtools (v.3.1) mpileup. Fragments were 

then subjected to the above quality filters, including VAF filter and recurrent artifact filter. 

After filtering, remaining SNV fragments were randomly sampled to select the quantity 

required to match the number of positive label fragments for each model training set in 

Supplementary Table 1.

Construction of SNV feature space

Feature evaluation was performed on high quality SNV fragments that passed initial quality 

filters (Supplementary Table 2, see Construction of ctDNA SNV training sets). To 

preclude batch effects from sample mixing in this analysis, our positive label ctDNA SNV 
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fragments (see Tumor / Normal somatic mutation calling) were compared to negative 

label cfDNA SNV artifacts drawn from the same plasma sample. For example, ctDNA 

fragments from the NSCLC sample NSCLC-206 were compared to cfDNA SNV artifacts 

from NSCLC-206, meaning inferences on feature predictive power cannot be attributed to 

plasma sample quality or sequencing batch effects. To measure the individual contribution 

of candidate features, we assessed svROC (single variable area under the receiver operating 

curve), a measure of how well each individual feature separates ctDNA (true label) from 

cfDNA artifacts (false label). For example, svROC for the feature fragment length represents 

the AUC of the fragment length size for discriminating ctDNA SNV fragments from cfDNA 

SNV artifacts. For categorical features, AUC is assessed on a held-out validation set of 

fragments after a linear classifier was trained to predict positive or negative label based on 

one-hot encoded categorical features. Features and corresponding svROC scores are reported 

in Supplementary Table 2.

We implemented several strategies to create tissue-specific regional features that could 

inform the regional likelihood of somatic mutagenesis. For each candidate feature, 

quantitative values were calculated in a sliding interval window around every individual 

SNV fragment. The size of this window was optimized by comparing the correlation 

between feature and label between true and false label SNVs from our training set. 

Window sizes are reported in Supplementary Table 2. Quantitative features were min / max 

normalized to values between 0 and 1.

To evaluate local tumor mutational density, we aggregated WGS SNV mutation calls 

from the PCAWG database60 and counted the aggregate number of SNV mutations across 

all available tumor samples in a specific primary disease (melanoma, NSCLC or CRC). 

Local transcription factor and histone ChIP-Seq marks as well as tissue-specific bulk RNA 

expression values were calculated as reads per kilobase per million mapped reads (RPKM) 

and were obtained from primary tissue alignments in ENCODE73. For each feature category 

(e.g., H3K4me3 ChIP-Seq marks), we assessed all alignments in ENCODE and selected 

those with the highest Pearson correlation between training set true and false label SNVs 

on Chromosomes 1-10. Regional DNase peaks were downloaded as narrowpeak files from 

ENCODE73,74 and lifted to GRCh38. Disease-specific ATAC peak calls were downloaded 

from TCGA61. Plasma WGS sequencing error density was calculated by aggregating all 

SNV pileup variants from non-cancer control plasma sequenced at the New York Genome 

Center. ChromHMM62 chromatin annotation tracks were downloaded from ENCODE and 

lifted to GRCh38. Hi-C compartment information was drawn from Hi-C SNIPER75 bed 

files. Replication timing and mean expression values were taken from prior work25 and 

lifted to GRCh38. Supplementary Table 2 lists features used in each model type.

SNV deep learning model architecture and model training

To evaluate SNV fragments with our MRD-EDGESNV fragment classifier, candidate SNV 

fragments were pulled from alignment files using pysam (v0.15.2) and salient features 

were encoded as input to our deep learning model architecture (Fig. 1d) with a custom 

Python (v3.6.8) script. There are two main components of our deep learning SNV fragment 

classifier: a regional MLP, and a fragment CNN. The MLP takes a tabular feature 
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representation as input and consists of five fully-connected layers with ReLU activation 

functions of decreasing size. Each layer is preceded by a batch normalization layer and 

followed by a dropout layer (with the exception of dropout following the final layer).

We chose to represent cfDNA fragments as an 18x240 tensor (Fig. 1d). Within the rows of 

the tensor, we compared the one-hot encoded reference sequence to the R1 and R2 sequence 

of a cfDNA fragment containing a variant (either true somatic mutation or sequencing 

artifact). We also encoded the length and position of R1 and R2, and we marked the position 

of the SNV to be classified as ctDNA or noise. The columns of the matrix mark individual 

nucleotides along the length of the fragment. The R1 and R2 regions were padded with 

neutral values (0.2 in each of the 5 possible nucleotides N, A, C, T, G) where the read does 

not overlap the reference sequence. This tensor serves as input to a CNN which consists 

of 4 one-dimensional convolution layers (convolving over the base pair width dimension), 

each followed by a max pooling operation. This is then followed by three fully-connected 

layers (with ReLU activation) and a subsequent dropout layer, and ends with a single 

sigmoid-activated fully-connected layer (parallel to the MLP). Model architectures were 

built in Keras (v.2.3.0) with a Tensorflow base (1.14.0). The fragment tensor has potential 

access to features including fragment length; key genomic features including mutation type, 

trinucleotide context, and leading or lagging strand; and quality metrics such as PIR and edit 

distance (how many variants against the reference sequence are present in a fragment). The 

tensor structure was coded to account for all possible CIGAR outputs, including insertions, 

deletions, skips, and soft masks, by inserting ‘N’ (base undetermined) values in reads 

(deletions, soft skips, soft masks) or the reference sequence and as needed in the alternate 

read (insertions).

Finally, to integrate fragment and regional information, an ensemble classifier with sigmoid 

activation jointly evaluated the latent space outputs from both the fragment CNN and 

regional MLP to generate a score between 0 and 1, reflecting the model-based likelihood 

that a candidate variant containing cfDNA fragment harbored a true somatic mutation (1) vs. 

a sequencing artifact (0).

We trained our deep learning classifiers (melanoma, CRC, NSCLC) using Keras with 

tensorflow base on randomly chosen fragments from our disease-specific training sets 

(NSCLC, CRC, and melanoma, Supplementary Table 1). Validation and test sets were 

held out from training and drawn from separate patient samples. All performance metrics, 

including F1, AUC and accuracy within balanced sets, are reported for train, validation, and 

test sets (Supplementary Table 1).

Our models were constructed for specific use in the tumor-informed or de novo mutation 

calling setting. In the tumor-informed setting, to harvest more candidate SNVs overlapping 

tumor SNV loci, we allowed mutations to be present on R1, R2, or on both R1 and R2 

(paired read concordance). In the de novo mutation calling setting, we enforced paired read 

concordance as an additional quality filter to reduce sequencing artifacts. This resulted in 

the application of two lung cancer models: tumor-informed NSCLC and de novo SCLC. The 

models share the same feature space and training samples, and the sole difference between 
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them is the use of paired read concordance as an additional quality filter in the de novo 
setting. All reads with discordant SNVs were excluded.

Comparison of MRD-EDGESNV deep learning classifier performance to other machine 
learning models

The MRD-EDGESNV ensemble classifier (Fig. 1d) was compared to its individual 

components (fragment CNN and regional MLP) and other machine learning architectures 

(MLP random forest, and gradient boosting model) by randomly subsampling without 

replacement in ten parts ctDNA and cfDNA SNV fragments from the held-out melanoma 

validation set (Supplementary Table 1) and assessing F1 performance on each subsampling 

set (Extended Data Fig. 1b). To assess fragment-level features in the random forest, gradient 

boosting, and MLP models, salient features were encoded as tabular values, including 

one-hot categorical encodings for trinucleotide context and mutation type of the candidate 

SNV as well as numerical representation of fragment-length, position of the variant within 

the read (PIR), read 1 length, and read 2 length. For both gradient boosting and random 

forest classifiers, we performed a grid search across the space of feature count (1-5) and 

number of trees (1-20), nominating an optimal parameter choice for maximizing AUC 

performance on our validation set. The MLP for Fragment + Regional Features has the 

same architecture as the Regional MLP (see SNV deep learning model architecture 
and model training). The Random Forest Fragment + Regional Features model and 

the Gradient Boosting Classifier Fragment + Regional Features model were constructed 

using the Python (version 3.6.8) module sklearn sklearn.ensemble.RandomForestClassifier 

and sklearn.ensemble.GradientBoostingClassifier, respectively, with default settings. The 

computational time for model training for each approach is reported in Supplementary Table 

3.

Model performance was evaluated at the sample level for the training sample MEL-05_B 

and the held-out validation sample MEL-100, and held-out test sample MEL-137_B against 

SNV fragments from non-cancer plasma (control samples evaluated are in Supplementary 

Table 1). Results are reported in Supplementary Table 3. The MRD-EDGESNV classifier had 

the highest F1 and AUC in held-out validation and test sets of all methods evaluated.

Generation of in silico plasma DNA admixtures

See Supplementary Table 4 for samples and metrics. In each study, a high TF sample is 

paired with a non-cancer plasma sample from the same sequencing center and sequencing 

platform to remove cohort-specific biases in mixing. Coverage depth is dictated by the 

underlying coverage of the cancer and non-cancer plasma samples (Supplementary Table 5). 

In each study, mu and sigma for Z scores are derived from ctDNA detection rates in the 

set of unmixed control plasma (TF=0) replicates (see Plasma SNV-based ctDNA detection 
and quantification in the tumor-informed approach and Evaluating SNVs for de novo 
mutation calling in MRD-EDGESNV.)

For the MRD-EDGECNV BAF classifer, given the challenges of applying LOH-based 

classification on samples with different germline SNPs, we generated in silico dilutions, 

with varying fractions (range 10-6–10-3), of reads from a pretreatment high burden 
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melanoma plasma sample (MEL-12, pretreatment timepoint, TF 17%, with 1.6 GB of 

aneuploidy) into a posttreatment plasma sample from the same patient following a major 

response to immunotherapy (MEL-12 Week 6 timepoint, TF <5% without observable 

aneuploidy).

SAMtools (v1.1, view -s and merge commands) was used to downsample and admix high-

burden cancer plasma cfDNA reads into low-burden or healthy control plasma cfDNA reads 

accounting for TF and tumor ploidy.

The downsampling ratio S to generate dilutions at various TFs was described previously14 

and is as follows:

S = TFrequired
HTF

= TFrequired ∗ HTF ∗ PL + 1 − HTF ∗ 2
HTF ∗ PL

Eq. 1

Where HTF denotes ctDNA TF in the high burden cfDNA sample, PL denotes ploidy in the 

tumor sample. High burden and control coverage is scaled followed by merging of reads:

ℎigℎ burden read ratio = S ∗ covreq
covH

control read ratio = (1 − S) ∗ covreq
covC

Eq. 2

Where covreq is the required read depth coverage for the admixture sample and covH, covC 

are the read depth coverage of the high burden and control samples, respectively. Each study 

was performed using independent technical replicates, and mu and sigma for Z scores are 

derived from the set of unmixed control plasma (TF=0) replicates. Z scores are derived 

from summed read-depth skews for read depth classifier, BAF score for BAF classifier, 

and summed fragment length entropy for fragment length entropy classifier (see Plasma 
read depth denoising, Evaluation of B-allele frequency in plasma, and Evaluation of 
tumor-informed fragment-length entropy).

Generation of experimental plasma DNA admixtures

For synthetic MRD-EDGESNV performance evaluations, we generated synthetic admixtures 

(range, 10-6–10-3) from pretreatment plasma from the melanoma patient MEL-137 mixed 

with expired plasma from a plasma donor without known cancer (Plasma Bag-01). Initial 

TF estimation from MEL-137 (TF 13%) was drawn from ichorCNA53 and diluted in 

expired plasma harvested from a single plasma donor without known cancer to form 

two 1:10-3 admixtures in duplicates. Plasma samples were serially diluted in duplicates 

to create 1*10-4, 1*10-5, and 1*10-6 mix fractions (Supplementary Table 4). To form a 

noise distribution for ctDNA detection, TF=0 samples were downsampled to 90% coverage 

to form 15 independent replicates (n=30 replicates in noise distribution, 15 downsampled 

alignment files from 2 TF=0 replicates). Positive ctDNA detection was defined as MRD-

EDGESNV or MRDetectSNV Z score above 95% specificity against this noise distribution 
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for each platform (see Plasma SNV-based ctDNA detection and quantification in the 
tumor-informed approach).

Plasma SNV-based ctDNA detection and quantification in the tumor-informed approach

As described previously14, we modeled the relationship between coverage, mutation load 

(SNV/tumor), number of detected variants in cfDNA WGS, and the tumor fraction 

according to the following equation:

M = N 1 − (1 − TF )cov + μ ∗ R

Eq. 3

Where M denotes the number of SNVs detected in the plasma sample, N denotes the 

number of SNVs (mutation load) in the patient-specific mutation profile, TF denotes the 

tumor fraction, cov denotes the mean coverage depth of the sample (used to approximate 

the number of opportunities to detect a given variant aggregated across all SNVs in the 

sample), μ denotes the mean noise rate (number of_errors/number of reads evaluated) 

that corresponds to the patient-specific SNV profile evaluated in control plasma WGS 

data (see below), and R denotes the total number of reads covering the patient-specific 

mutation profile. This relationship allows the calculation of the plasma TF from the mutation 

detection rate, even in extremely low allele fraction where the mutation allele fraction itself 

is not informative (random sampling between 0 and 1 supporting read at best).

To address variation in sequencing artifact noise (μ) across patients with different mutation 

profiles, we apply the patient-specific mutation profile to calculate the expected noise 

distribution across the cohort of control plasma samples. This process is performed to 

detect the patient-specific SNVs in control plasma samples or other patients (cross-patient 

analysis). These detections represent the background noise model for which we calculate 

the mean and standard-deviation (μ,σ) of artifactual mutation detection rate. Confident 

ctDNA detection can then be defined by converting the patient-specific detection rate 

(det_rate = number of SNVs detected in cfDNA/number of reads checked = M/R) to a 

Z−score = det_rate − μ
σ  , and define a threshold that will keep the specificity above 95%. 

Specificity and sensitivity performance values were further validated using ROC analyses 

using the Python (version 3.6.8) module sklearn sklearn.metrics.roc_curve.

The patient TF was then calculated based on point mutation detection using the following 

equation (which is an inversion of Eq.3), as described previously14:

TF = 1 − 1 − [M − μ ∗ R]
N

1
cov

Eq. 4

Where M denotes the number of SNVs detected in the plasma sample, N denotes the 

number of SNVs (mutation load) in the patient-specific mutation profile, TF denotes the 

tumor fraction, cov denotes the local coverage in sites with a tumor-specific SNV, μ denotes 
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the noise rate (number of errors/number of reads evaluated) that corresponds to the patient-

specific SNV profile, and R denotes the total number of reads covering the patient-specific 

mutation profile.

In preoperative plasma samples, MRD-EDGESNV and MRD-EDGECNV Z scores are 

evaluated independently and are summed via Stouffer’s method to form a composite MRD-

EDGE detection Z score. In postoperative plasma samples, we define MRD as ctDNA 

detection with either the MRD-EDGESNV or MRD-EDGECNV classifier, in keeping with 

our prior work14. We used this approach to maximize MRD sensitivity, as we view a role for 

our classifier in de-escalation from adjuvant therapy, which requires optimal sensitivity to 

justify withholding standard-of-care treatment. This approach further allows us to optimize 

the most salient features of each tumor type for classification (e.g., MRD-EDGECNV will 

be most useful for detecting plasma samples from highly aneuploid tumors, while MRD-

EDGESNV will function optimally in plasma samples from tumors with high mutational 

burden).

Selection of control plasma samples for tumor-informed approaches

In the tumor-informed setting, patient-specific mutation profiles are applied to both matched 

plasma and control plasma. To exclude batch-specific biases, we used control plasma 

samples obtained from the same collection site, sequencing platform and sequencing 

location as our cancer plasma samples. For example, our HiSeq CRC plasma, sequenced 

at the New York Genome Center on Illumina HiSeq X, was compared to similarly sequenced 

healthy control plasma (HiSeq Controls, Supplementary Table 5), while NovaSeq stage 

III perioperative CRC cohort, sequenced with Illumina NovaSeq 1.5 at Aarhus University 

in Denmark, was compared to healthy control plasma sourced and sequenced from that 

institution (Aarhus Controls). Control plasma samples used in model training or to construct 

a read depth classifier PON were not used in downstream clinical analyses (Supplementary 

Table 14).

Cross-patient analysis

To address potential batch confounding between cancer samples and non-cancer controls 

sequenced in different batches, we performed cross patient analyses in which we apply the 

patient-specific mutation profile to calculate the expected noise distribution across the cohort 

of different patients plasma samples sequenced in the same batch. This is enabled by the low 

rate of shared variation between any two tumor VCFs in WGS cohorts (Supplementary Fig. 

11), consistent with expectations from other WGS datasets60. Thus, the unmatched plasma 

from other cancer patients is an effective control. The cross-patient analysis is otherwise 

entirely consistent with the control plasma approach detailed above in Plasma SNV-based 
ctDNA detection and quantification in the tumor-informed approach.

Plasma read depth denoising

We recently introduced a read depth denoising approach for reducing recurrent noise and 

bias for WGS-based tumor CNV detection30. Our read depth pipeline separates foreground 

(CNV signal) from background (technical and biological bias) in read depth data by learning 

a low rank subspace across a panel of normal samples (PON) using robust Principal 
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Component Analysis (rPCA) and applies this subspace to a tumor sample to infer CNV 

events. To optimize our approach for plasma, we first created PONs from healthy control 

plasma generated with the same sequencing preparation (see Selection of control plasma 
for tumor-informed approaches, Supplementary Table 15). We then created sample-wide 

median-normalized read depths across the PON for each sample within 10-kb genomic 

windows. Loess regression was applied at the sample level to account for GC bias76. We 

performed a window-based rPCA decomposition on our PON to yield a subspace of biases 

that define “background” noise. Cancer plasma samples were subsequently projected on this 

background subspace to produce two vectors: a background bias projection and a residual 

corresponding to plasma CNV read depth skews.

To generate sample read depth scores for our read depth classifier, we median-normalized 

window-level GC-corrected read depth values. We then aggregated this signal based on the 

direction of the CNV change in tumor (-1 * deletion and +1 * amplification) to produce a 

mean per-window read depth score as described previously14. This sample-level read depth 

score was compared to read depth scores from held-out control plasma samples in matched 

genomic regions to generate a final sample-level Z score.

Evaluation of B-allele frequency in plasma

We applied GATK (v4.1.8, https://software.broadinstitute.org/gatk) HaplotyeCaller to 

identify genome-wide germline SNPs in PBMC WGS data (cancer patients) and plasma 

WGS data (non-cancer controls). Plasma and PBMC allelic imbalance may be biased due 

to allele-specific read-mapping77 which may confound inference of allelic imbalance. We 

applied WASP (v0.3.4, https://github.com/bmvdgeijn/WASP) to filter heterozygous SNP 

reads that map to an alternative location in the genome when one genotype is permutated 

to the other. In PBMC, SNPs sites that exhibit mapping bias (e.g., a SNP site with one or 

more reads in which permutation of the SNP allele causes the read to map to an alternative 

location) are removed.

Matched tumor tissue was used to identify regions of LOH and to identify the major allele, 

defined as the allele with highest read count in the tumor, at each SNP site (see Tumor / 
Normal somatic mutation calling). In control plasma, where matched tumor tissue is 

unavailable, we chose the major allele randomly. To ensure that we evaluated only true 

SNPs and that our signal was not biased by coverage or subtle clonal mosaicism in PBMCs, 

we also implemented outlier filters based on BAF in plasma (0.1 < Plasma BAF < 0.9) 

and normal tissue (0.2 < Normal BAF < 0.8) at the individual SNP level. To enrich for 

local signal, we aggregated SNPs into bins of 50 SNPs matched with other SNPs from 

the same tumor copy number state (e.g., major copy number 2 and minor copy number 0 

as assigned by Sequenza in cnLOH in a ploidy 2 tumor sample). Outlier bins (BAF > 2 

standard deviations from the sample mean for each copy number state) were excluded.

We reasoned that quantifying allelic imbalance from ctDNA in plasma cfDNA is similar 

to using BAF to estimate tumor fraction in impure tumor samples78. Thus, bin-level allelic 

imbalance score can be calculated from plasma TF and total and major copy numbers for 

tumor and normal per the following published equation78:
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BAF = TF ∗ MajorCNt + MajorCNn(1 − TF )
TF ∗ ( TotalCNt) + TotalCNn(1 − TF )

Eq. 5

Where TF denotes the tumor fraction, MajorCNt and MajorCNn denote the copy number of 

the greater expressed allele in tumor and normal, respectively, and TotalCNt and TumorCNn 

denote total ploidy of tumor and normal, respectively.

In a diploid normal where TF is very small, as is the case in cfDNA from early-stage cancer 

and MRD, major allele fraction attributable to normal as described in the second term of Eq. 

6 should approximate 0.5.

MajorCNn(1 − TF )
TF ∗ TotalCNt + TotalCNn(1 − TF ) ≈ 1

2

Eq. 6

We can represent observed BAF in terms of coverage as follows:

BAFobs = covm
covt

Eq. 7

Where covt denotes total read counts and covm denotes number of reads in a given site or bin 

expressing the major allele.

This, when combined with assumptions made in Eq. 7, allows us to reframe Eq. 6 to 

characterize the relationship between TF, copy number, and number of reads in a SNP or 

bin:

covm
covt

= TFMajorCN
TF ( TotalCN ) + 2(1 − TF ) + 1

2

Eq. 8

Isolating for cellularity produces the following equation:

BAFScore = −4covM + 2covT
2covm TotalCN − 4covM − covT TotalCN + 2covT − 2covT MajorCN

Eq. 9

We then fit our observed BAFScore values and copy number calls, aggregated into equal 

sized bins of SNPs (n=50), to this equation using linear least squares regression (sklearn) to 

yield a sample-wide BAF score. Sample-level BAF scores in cancer plasma were compared 

to controls in matching genomic regions to produce a final sample-level Z score that 

reflected the contribution of ctDNA in cancer plasma compared to noise in non-cancerous 

control plasma.
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Evaluation of tumor-informed fragment length entropy

We calculated fragment length entropy to capture the heterogeneity of fragment insert size 

for cfDNA fragments within consecutive non-overlapping 100-kb genomic windows. We 

restricted analyses to fragments with insert size between 100–240bp. First, we calculated in 

each window the fraction of fragment sizes in each 5bp interval from 100 – 240bp. We then 

calculated Shannon’s entropy on the set of these fractional inputs. At the sample level, we 

converted window entropy values from all 100-kb windows (neutral and CNV) to median-

normalized robust Z scores. By normalizing to the distribution of entropy values in each 

sample, neutral regions served as an internal control that accounted for the baseline fragment 

length heterogeneity within each sample inclusive of entropy noise from different sample 

preparations and pre-analytic biases. Following normalization, we multiplied window-level 

Z scores based on the direction of the CNV change using our underlying knowledge of 

tumor events. We expected more fragment length entropy from the contribution of additional 

ctDNA fragments in tumor amplifications and thus multiplied these values by +1, versus 

less fragment length entropy from the contribution of fewer ctDNA fragments in tumor 

deletions and therefore multiplied these values by -1. We noted that recurrent amplifications 

in chromosome 1p and 22q were uniformly present in control plasma samples in HiSeq 

controls (n=38 plasma samples) and NYGC controls (n=35 plasma samples), and these 

regions were excluded from analysis as likely cfDNA WGS-specific artifacts.

At the sample level, we aggregated signed window-level CNV Z scores (after multiplication 

by expected direction based on matched tumor amplification / deletions) across windows 

to generate a sample-level fragment length entropy score. Sample-level fragment length 

entropy scores in cancer plasma were compared to controls in matching genomic regions 

to produce a final sample-level Z score that reflected the contribution of ctDNA in cancer 

plasma compared to noise in non-cancerous control plasma.

Aggregation of CNV scores

Our 3 CNV features (read depth, fragment length entropy, and BAF) independently 

informed our estimation of ctDNA signal. We therefore aggregated our features into an 

MRD-EDGECNV Z score by combining Z scores using Stouffer’s method Z = Σi = 1
k Zi

k .

Integration of MRD-EDGESNV and MRD-EDGECNV scores to form MRD-EDGE

To combine MRD-EDGESNV and MRD-EDGECNV into a composite MRD-EDGE Z score, 

we combined the Z scores for both platforms independently using Stouffer’s method. This 

was performed in the preoperative setting to assess the combined sensitivity of the MRD-

EDGESNV and MRD-EDGECNV classifiers.

In the assessment of MRD and ctDNA shedding from adenomas and pT1 lesions, MRD-

EDGESNV and MRD-EDGECNV classifiers provided orthogonal sources of information 

and were used to independently quantify ctDNA. We evaluated MRD and pT1 / adenoma 

detection as a sample-level Z score above either the MRD-EDGESNV or MRD-EDGECNV 

Z score threshold, obtained through calculating the 95% specificity boundary compared 

to plasma from healthy controls matched against the same patient-specific mutational 
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compendium. For example, in stage III CRC, we defined a positive detection as a Z score 

threshold above 95% specificity against healthy control plasma sequenced at the same 

laboratory (Aarhus University) and sequencer (Illumina NovaSeq with v1.5 flow cells). We 

applied these same, prespecified Z score thresholds to identify postoperative MRD (Fig. 3b) 

in our pT1 and adenoma lesions (Fig. 4a), and our HiSeq CRC samples (Supplementary Fig. 

4). The same was done in NSCLC for our neoadjuvant immunotherapy cohort (Fig. 3g), 

and the same, prespecified Z score threshold was applied to identify MRD in our HiSeq 

NSCLC samples (Supplementary Fig. 7). For MRD-EDGECNV application in TNBC cohort, 

we defined MRD-detection as an MRD-EDGECNV Z score in excess of 95% specificity 

among held-out control samples (Fig. 3m).

Evaluating SNVs for de novo mutation calling in MRD-EDGESNV

We collected all variants against the hg38 reference genome through samtools (v.3.1) 

mpileup with no exclusion filters. Only SNVs mapping to chromosomes 1 - 22 were 

included in our analysis. Indels were excluded. We ran a custom Python (v3.6.8) script to 

collect all fragments containing SNVs that matched pileup variants from the bam alignment. 

Fragments were then subjected to quality filters and the recurrent artifact blacklist and 

encoded as inputs to our model architecture (see SNV deep learning model architecture 
and model training). We defined SNV detection rate, a function of the two unknown 

variables plasma TF and tumor mutational burden (TMB), as the number of fragments 

classified as ctDNA over the number of post-filter fragments evaluated.

Determination of de novo mutation calling specificity threshold

In a tumor agnostic setting (de novo mutation calling), our datasets were more heavily 

imbalanced between signal and noise than in the tumor-informed setting, where knowledge 

of tumor SNVs was used to inform candidate variants. We determined the specificity 

threshold for de novo mutation calling within our plasma-only MRD-EDGESNV deep 

learning classifier by optimizing the trade-off at the fragment level between increasing signal 

enrichment at higher specificity thresholds (Supplementary Fig. 9a) vs. decreasing signal 

availability from overly stringent filtering (Supplementary Fig. 9b). We therefore evaluated 

performance of our classifier at high specificity thresholds within in silico TF admixtures 

of MEL-100 and a healthy control plasma sample (CTRL-216, Supplementary Table 4). 

We evaluated detection sensitivity vs TF=0 in admixtures TF=5*10-5 and found AUC to be 

highest at a specificity threshold of 0.995 (Supplementary Fig. 9b), with decreasing AUC at 

0.9975 and 0.9925. We used this empirically chosen specificity threshold for evaluation of 

plasma TF in subsequent de novo mutation calling analyses. The MEL-100 plasma sample 

used in threshold determination was excluded from all downstream analysis.

Evaluating TF trends with MRD-EDGESNV, tumor-informed panel, and de novo panel

While in the tumor-informed setting, the fraction of mutations from the tumor detected 

in the plasma can serve to estimate TF (Methods), in the de novo setting, the number 

of mutations in the tumor is unknown. To enable dynamic assessment of plasma ctDNA 

burden, we used a normalized detection rate (nDR) to evaluate MRD-EDGESNV TF trends. 

Detection rates (fragments detected / fragments evaluated) in subsequent timepoints were 
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normalized to the pretreatment TF to indicate increasing or decreasing plasma TF. For 

comparison in targeted panels, VAF across all mutations was normalized to the pretreatment 

timepoint (‘normalized VAF’, nVAF).

Application of MRDetect support vector machine (MRDetectSNV) and MRDetectCNV

MRDetectSNV and MRDetectCNV were applied as described previously14. Both components 

were trained on NovaSeq samples for clinical application in NovaSeq and trained on 

Illumina HiSeq samples for clinical application in HiSeq. Application of both classifiers 

in the HiSeq setting was performed as described previously14. For application in NovaSeq, 

plasma samples included in the MRDetectCNV plasma reference sample are listed in 

Supplementary Table 15.

ichorCNA

ichorCNA53 (version 2.0) was used as an orthogonal CNA-based method for cfDNA 

detection and the estimation of plasma TF in high-burden plasma samples. We optimized the 

input setting for more sensitive detection in low-tumor-burden disease using the modified 

flags - altFracThreshold 0.001, -normal .99 along with a GRCh38 panel of normal (https://

gatk.broadinstitute.org/). All other settings were set to default values.

Evaluation of TF through ddPCR

A set of plasma samples (n = 48, Supplementary Table 15) from CRC patients were 

analyzed by ddPCR using the Bio-Rad platform. For each patient, a single clonal mutation 

was chosen for ddPCR analysis based on whole-exome sequencing of the patient’s tumor as 

previously described52. The ddPCR approach, including assay design, cycling optimization, 

and error correction was performed as previously described79,80. In brief, all ddPCR assays 

consisted of a single primer set amplifying the target regions, one mutation-specific probe, 

and a wild-type-specific probe. An assay-specific noise profile was generated for each assay 

by analyzing PBMC DNA from healthy donors. For each patient sample, cfDNA from 8 mL 

of plasma was used for ddPCR analysis. Each ddPCR setup included a no-template control 

(water), a tumor DNA positive control, and a PBMC DNA negative control. Droplets were 

generated by the Automated Droplet Generator (Bio-Rad) and read on the QX200™ Droplet 

Reader (Bio-Rad). The CASTLE (v.1.0) algorithm79 was used to compare the observed 

plasma signal to the assay-specific noise profile thereby statistically determining the ctDNA 

status and variant allele frequency (VAF) of each sample.

Tumor-informed and de novo targeted panel

MSK-ACCESS7 was used as an orthogonal SNV-based method for evaluation of plasma 

TF in melanoma samples. MSK-ACCESS was run independently on a subset of pre- and 

posttreatment plasma samples for 14 patients with cutaneous melanoma with available 

material allowing concurrent analysis. Application of MSK-ACCESS panel and data 

analysis was performed by the MSK-ACCESS team. Results for the tumor-informed 

panel were informed by somatic mutations found in matched tumor samples through MSK-

IMPACT81 and were reported as average adjusted VAF across evaluated genes. Criteria 
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for detection was 1 supporting duplex read or 2 simplex reads found in plasma in the 

tumor-informed setting in accordance with the MSK-ACCESS mutation calling pipeline.

VAF was adjusted to account for copy number alterations at the locus of interest. Copy 

number alterations are inferred by applying FACETS82 to Whole Exome or Whole Genome 

tumor tissue used in MSK-IMPACT analysis. The ACCESS team assumes that there are no 

changes to copy numbers of these segments between the IMPACT and ACCESS samples. 

Adjusted VAF is calculated as follows

V AF = TALT ∗ TF
TCN ∗ TF + NCN ∗ (1 − TF )

Eq. 10

Where VAF is the expected variant allele fraction, TF is tumor fraction, TALT = alternate 

copies in tumor, TCN = total copies in tumor, and NCN = total copies in normal.

Solving the equation for TF yields:

TF = NCN ∗ V AF
TALT + NCN − TCN ∗ V AF

Eq. 11

For ACCESS samples, this TF value is computed and named adjusted VAF (VAFadj). For the 

de novo panel, only adjusted VAFs above 0.005 contributed to average VAF. Reads classified 

as containing a somatic mutation and total reads evaluated for use in MSK-ACCESS VAFadj 

are listed in Supplementary Table 9.

Statistical analysis

Statistical analyses were performed with Python 3.6.8 and R version 3.6.1. Continuous 

variables were compared using Student’s t-test, the Wilcoxon rank-sum test or the 

nonparametric permutation test, as appropriate. All P values were two sided and considered 

significant at the 0.05 level, unless otherwise noted. Cox proportional hazards models were 

fit using lifelines83 and forest plots were plotted using EffectMeasurePlot from zEpid84 

(v0.9.0).

Data exclusions

Perioperative plasma samples (n=2) from the HiSeq NSCLC patient NSCLC-136 was 

excluded from analysis because of low tumor purity which prevented identification of SNVs 

or tumor aneuploidy.
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Extended Data

Extended Data Fig. 1. MRD-EDGESNV feature selection, model architecture and performance
a) Feature density plots for ctDNA and cfDNA SNV artifacts used in the MRD-EDGESNV 

NSCLC model. These fragments were subject to quality filters (Supplementary Table 2) 

to remove low quality SNV artifacts prior to this analysis. In this comparison, ctDNA 

SNV fragments are identified from consensus mutation calls in high-burden NSCLC plasma 

samples (Supplementary Table 1) and compared to cfDNA SNV fragments (sequencing 

errors) drawn from within the same plasma sample to preclude sample-specific biases when 

establishing predictive ability of individual features. b) SNV classification performance for 

different machine learning models. F1 score was assessed on tumor-confirmed melanoma 

ctDNA SNV fragments vs. cfDNA artifacts from healthy controls. Random subsamplings 

were drawn from the held-out melanoma validation set (Supplementary Table 1), which was 

split into tenths for this analysis. We compared performance between MRD-EDGESNV and 

its separate components (left), as well as to other ML architectures (right) c) Fragment-level 

ROC analysis for MRD-EDGESNV classifier for different cancer types. Performance is 
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assessed on filtered fragments (~90% of low-quality cfDNA artifacts are excluded by quality 

filters) in held-out validation sets (Supplementary Table 1) for melanoma (blue), CRC 

(green), and NSCLC (red). Colored dots on curves indicate the tumor-informed decision 

threshold (0.5) used in each tumor type to classify individual SNV fragments as ctDNA 

or cfDNA artifact. d) Signal-to-noise enrichment analysis for MRDetect and for each step 

of the MRD-EDGESNV tumor-informed pipeline. Final pipeline enrichment is 118-fold for 

MRD-EDGESNV vs. 8.3-fold for MRDetectSNV in the same datasets.

Extended Data Fig. 2. Lower limit of detection studies with MRD-EDGESNV

a) In silico studies of cfDNA from the metastatic colorectal cancer sample CRC-863 mixed 

into cfDNA from a healthy plasma sample (CTRL-335) at mixing fractions TF = 10-6–10-3 
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at 29X coverage depth, performed in 30 technical replicates with independent sampling 

seeds. Tumor-informed MRD-EDGESNV enables sensitive detection of TF as low as 1*10-5 

(AUC 0.80), measured by Z score of SNV detection rates against unmixed control plasma 

(TF=0, n=30 randomly chosen replicates). b) In silico studies of cfDNA from the metastatic 

small cell lung cancer sample SC-128_0w mixed into cfDNA from a healthy plasma sample 

(CTRL-216) at mixing fractions TF = 10-6–10-3 at 25X coverage depth, performed in 20 

technical replicates with independent sampling seeds. Tumor-informed MRD-EDGESNV 

enables sensitive detection of TF as low as 5*10-6 (AUC 0.86), measured by Z score 

of SNV detection rates against unmixed control plasma (TF=0, n=20 randomly chosen 

replicates). Box plots represent median, lower and upper quartiles; whiskers correspond to 

1.5 x interquartile range. An AUC heatmap measures detection vs. TF=0 at different mixed 

TFs. c) Sensitivity at 95% specificity for tumor-informed MRD-EDGESNV in silico studies 

in green) CRC, red) SCLC, and blue) melanoma. Mixed TF replicates were compared to 

TF=0 replicates by sample-level MRD-EDGESNV Z score. d-f) Detection performance vs. 

TF=0 at different mixed TFs for MRD-EDGESNV (blue) and MRDetectSNV SVM (gray). 

The AUC is measured by a sample Z score (positive label) compared to TF=0 distribution 

(negative label) for each replicate at each TF. Error bars represent 95% CI (DeLong AUC 

variance). (bottom) Normalized error for a subset of mixed TFs between MRD-EDGESNV 

and MRDetectSNV. Error bars represent 95% CI. Normalized error is shown for TFs where 

AUC is less than 1 and is measured as (TFestimated-TFmixed)/TFmixed. d) in silico CRC 

studies as defined in (a), e) in silico SCLC studies as defined in (b), f) In silico studies of 

cfDNA from the metastatic cutaneous melanoma sample MEL-100 mixed into cfDNA from 

a healthy plasma sample (CTRL-216) at mixing fractions TF = 10-7–10-4 at 16X coverage 

depth, performed in 20 technical replicates with independent sampling seeds.
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Extended Data Fig. 3. Estimated tumor fractions in experimental mixing studies with MRD-
EDGESNV

a) Plasma TF inference with MRD-EDGESNV using genome-wide SNV integration for 

in vitro dilutions of the pretreatment melanoma plasma MEL-137_A in expired plasma 

harvested through plasmapheresis from a donor without known cancer. Dilutions were 

performed in 2 replicates, and a mean noise rate for the patient-specific mutation profile 

was drawn from n=17 concurrently sequenced SCLC plasma samples (Supplementary Table 

5). b) MRD-EDGESNV (left) and MRDetectSNV (right) Z score discrimination between 

ctDNA detected in experimental plasma replicates (blue dots, replicate 1, and green dots, 

replicate 2) from the patient MEL-137 and downsampled TF=0 replicates (white boxes, 

n=30, 15 downsampled alignment files from 2 TF=0 replicates). Signal is measured from 

SNV detection rates on patient plasma and the downsampled TF=0 plasma samples using 

the patient-specific SNV profile for MEL-137. Positive ctDNA detection (dotted blue line) 

was defined as patient plasma MRD-EDGESNV or MRDetectSNV Z score above a detection 

threshold of 95% specificity against downsampled TF=0 plasma in the ROC for each 

platform (Supplementary Table 4). Sample-level Z scores were capped at 10 to allow greater 

visibility of Z scores around the detection threshold.
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Extended Data Fig. 4. In silico mixing studies of MRD-EDGECNV in CRC, NSCLC, and 
melanoma
a,b) In silico mixing studies in which high TF plasma samples were admixed into non-

cancer plasma (a) or low TF plasma samples (b). Admixtures model tumor fractions of 

10-6–10-3 (see Methods for detailed description of in silico admixture process). Box plots 

represent median, lower and upper quartiles; whiskers correspond to 1.5 x interquartile 

range. An AUC heatmap demonstrates detection performance vs. TF=0 at different mixed 

TFs as measured by a sample Z score (derived from summed read-depth skews for 

read depth classifier, BAF score for BAF classifier, summed fragment length entropy 

for fragment length entropy classifier, Methods) compared to TF=0 distribution for each 

replicate. a) Pretreatment NSCLC plasma from the patient NSCLC-45 was mixed into 

non-cancer control plasma from the patient CTRL-206 in 25 technical replicates (each 

subsampling seed represents a technical replicate). The read depth (left) and fragment 

length entropy (right) classifiers demonstrate similar performance in pretreatment NSCLC 

admixtures compared to CRC admixtures (Fig. 2b-d). (middle) Pretreatment melanoma 

plasma from the patient MEL-12 was mixed into posttreatment plasma following a major 

response to immunotherapy in 25 technical replicates. The BAF classifier demonstrates 

similar performance compared to CRC admixtures (Fig. 2c) and accounts for bias that 

may be encountered when mixing plasma into matched peripheral blood mononuclear 

cell (PBMC) normal, as performed in CRC. b) Z scores for the read depth classifier in 

neutral regions (no copy number gain or loss in the matched tumor WGS data) for NSCLC 

demonstrates the expected absence of directional read depth skew in copy neutral regions. 

c) Assessment of preoperative plasma, post adjuvant plasma, and matched normal (from 

PBMCs) BAF in SNPs before (left) and after (right) SNP quality filters in CRC (patient 

CRC-465). Filters include mapping bias correction and outlier exclusion criteria (Methods). 
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BAF signal is calculated through least squares linear regression on SNPs from LOH regions 

identified in matched tumor WGS, accounting for underlying copy number state in tumors 

(Methods). To demonstrate the relationship between signal and phased SNPs, the major 

allele in plasma is randomly permuted to be in phase or out of phase at the percentage 

specified along the x axis. Following quality filtering, signal can be appropriately inferred 

and demonstrates the expected relationship between preoperative plasma (highest signal), 

postoperative MRD (intermediate signal), and PBMC BAF (minimal signal).

Extended Data Fig. 5. Clinical performance of tumor-informed MRD-EDGE in stage III 
perioperative colorectal cancer
a) (left) ROC analysis on MRD-EDGE (blue), a combined detection model of SNV and 

CNV mutation profiles, and MRDetect (gray) in preoperative stage III CRC. Preoperative 

plasma samples with matched tumor mutation profiles (n=15, Supplementary Table 5) 

are compared with control plasma samples assessed against all unmatched stage III CRC 

tumor mutation profiles (n=15 tumor profiles assessed across 25 control samples from 

Aarhus controls cohort, n=375 control-comparisons). Twenty control samples included in 

SNV model training and / or used in the MRD-EDGECNV read depth panel of normals 

were withheld from this analysis. (middle) ROC analysis with MRD-EDGESNV (blue), 
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and MRDetectSNV (gray). Preoperative plasma samples with matched tumor mutation 

profiles (n=15) are compared with unmatched control plasma samples assessed against all 

unmatched stage III CRC tumor mutation profiles (n=15 tumor profiles assessed across 

40 control samples from Aarhus controls cohort, n=600 control-comparisons). Five control 

samples included in SNV model training were withheld from this analysis. (right) ROC 

analysis with MRD-EDGECNV (blue), and MRDetectCNV (gray). Preoperative plasma 

sample CNV-based Z scores (n=15) are compared against control plasma samples assessed 

against all unmatched stage III CRC tumor mutation profiles (n=15 tumor profiles assessed 

across 25 control samples from Aarhus controls cohort, n=375 control-comparisons). 

Twenty control samples included in the read depth panel of normals were withheld from 

this analysis. b) Cross-patient ROC analysis on preoperative stage III CRC plasma samples 

for MRD-EDGESNV demonstrates similar performance to control (non-cancer) plasma. 

Preoperative plasma samples with matched tumor profiles (n=15) are compared with stage 

III CRC plasma samples assessed against all unmatched stage III CRC tumor profiles (n=15 

tumor profiles assessed across 14 cross-patient samples, n=210 cross-comparisons). c) ROC 

analysis performed on CNV-based Z-score values for read depth (left), BAF (middle), and 

fragment length entropy (right) CNV classifiers in preoperative stage III CRC. Preoperative 

plasma samples with matched tumor profiles (n=15) are compared with control plasma 

samples assessed against all unmatched tumor profiles (n=375 comparisons for read depth, 

15 tumor profiles assessed across 25 control samples; n=675 comparisons for BAF and 

fragment length entropy, 15 tumor profiles assessed across 45 control samples). Twenty 

control samples included in the read depth panel of normal samples were withheld from 

read-depth analysis.
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Extended Data Fig. 6. Comparison of MRD-EDGE and MRDetect in preoperative, pretreatment 
NSCLC
a) (left) ROC analysis of NSCLC plasma samples for MRD-EDGE (blue) and MRDetect 

(gray). NSCLC plasma samples with matched tumor profiles (n=22 samples, Supplementary 

Table 5) are compared with control plasma samples assessed against all unmatched NSCLC 

tumor mutation profiles (n=22 tumor profiles assessed across 20 control samples from 

NYGC controls cohort, n=440 control-comparisons). (middle) ROC analysis of NSCLC 

plasma samples for MRD-EDGESNV (blue) and MRDetectSNV (gray). NSCLC plasma 

samples with matched tumor profiles (n=22, Supplementary Table 5) are compared with 

control plasma samples assessed against all unmatched NSCLC tumor mutation profiles 

(n=22 tumor profiles assessed across 40 control samples from NYGC controls cohort, 

n=660 control-comparisons). Five patients used in MRD-EDGESNV NSCLC model training 

were excluded from downstream analysis. (right) ROC analysis of NSCLC plasma samples 

for MRD-EDGECNV (blue) and MRDetectCNV (gray). NSCLC plasma samples with 

matched tumor profiles (n=22, Supplementary Table 5) are compared against control plasma 

samples assessed against all unmatched NSCLC tumor mutation profiles (n=22 tumor 

profiles assessed across 20 control samples from NYGC controls cohort, n=440 control-

comparisons). Fifteen patients used in the read depth panel of normal samples were excluded 

from downstream analysis. b) Cross-patient ROC analysis on pretreatment NSCLC tumor 
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profiles for MRD-EDGESNV demonstrates similar performance to control (non-cancer) 

plasma. Preoperative plasma samples with matched tumor profiles (n=22) are compared 

with NSCLC plasma samples assessed against all unmatched NSCLC tumor profiles (n=22 

tumor profiles assessed across 21 cross-patient samples, n=462 cross-comparisons). c) ROC 

analysis performed on CNV-based Z-score values for read depth (left), BAF (middle), and 

fragment length entropy (right) CNV classifiers in preoperative stage III CRC. Preoperative 

plasma samples with matched tumor profiles (n=22) are compared with control plasma 

samples assessed against all unmatched tumor profiles (n=440 comparisons for read depth, 

22 tumor profiles assessed across 20 control samples; n=770 comparisons for BAF and 

fragment length entropy, 22 tumor profiles assessed across 35 control samples). Twenty 

control samples included in the read depth panel of normal samples were withheld from 

read-depth analysis.

Extended Data Fig. 7. MRD-EDGE detection of ctDNA from colorectal pT1 carcinomas and 
adenomas
a) Cross-patient ROC analysis for MRD-EDGESNV in screen-detected pT1 lesions (left) 

and adenomas (right). Preoperative plasma samples with matched tumor mutation profiles 

are compared with a cross-patient panel of plasma samples assessed against all unmatched 

cross-patient tumor profiles (n=44, including 29 pT1 and adenoma cross patients and 15 
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stage III preoperative patients). b) Tumor resection volume for adenoma samples in which 

ctDNA was detected (orange) and non-detected (blue). Box plots represent median, bottom 

and upper quartiles; whiskers correspond to 1.5 x interquartile range.

Extended Data Fig. 8. Use of MRD-EDGESNV in acral melanoma and monitoring response to 
immunotherapy with MRD-EDGESNV

a) ctDNA detection rates for pretreatment cutaneous melanoma samples from the adaptive 

dosing cohort (n=26, orange, detection rate was capped at 0.0005) compared to acral 

melanoma samples (n=3, blue, pre- and posttreatment timepoints from one patient with 

acral melanoma) sequenced within the same batch and flow cell and detection rates 

as healthy control plasma (n=30, gray). ctDNA is not detected from acral melanoma 

plasma, demonstrating absence of batch effect and the specificity of MRD-EDGESNV 

for the UV signatures associated specifically with cutaneous melanoma. b) Forest plot 

demonstrating relationship between ctDNA TF trend (increase or decrease) and progression-

free survival (PFS) and overall survival (OS) at serial posttreatment timepoints. MRD-

EDGESNV TF estimates are measured as a detection rate normalized to the pretreatment 

sample (normalized detection rate, nDR). Each posttreatment timepoint is prognostic of PFS 

outcomes. HR, hazard ratio. c) (left) Kaplan–Meier overall survival analysis for Week 6 

RECIST response (n=10 partial response, ‘PR’, n=8 stable disease, ‘SD’, n=6 progressive 

disease, ‘PD’) in the adaptive dosing melanoma cohort (n=26 patients) where CT imaging 

was available at Week 6 shows no significant relationship with OS (multivariate logrank 

test). (right) Kaplan–Meier OS analysis for Week 6 ctDNA trend in adaptive dosing 

melanoma patients with decreased (n=17) or increased (n=5) nDR compared to pretreatment 

timepoint as measured by MRD-EDGESNV. Patients with undetectable pretreatment ctDNA 
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(n=2) were excluded from the analysis, as were 2 patients where Week 6 plasma was not 

available for analysis. Increased nDR at Week 6 was associated with shorter overall survival 

(two-sided log-rank test).

Extended Data Fig. 9. Use of MRD-EDGESNV to monitor response to ICI in small cell lung 
cancer
a) In silico studies of cfDNA from the SCLC sample SC-128 (pretreatment TF = 22.9%) 

mixed in n=20 replicates against cfDNA from a healthy plasma sample (TF=0) at mix 

fractions 10-5–10-2 at 25X coverage depth. MRD-EDGESNV enables sensitive detection of 

TF as low as TF=5*10-4 (AUC 0.72), measured by Z score of SNV fragment detection rate 

against unmixed control plasma (TF=0, n=20 randomly chosen replicates), without matched 

tumor tissue to guide SNV identification. Box plots represent median, bottom and upper 

quartiles; whiskers correspond to 1.5 x interquartile range. An AUC heatmap measures 

detection vs. TF=0 at different mixed TFs. B) ROC analysis on detection rates for MRD-

EDGESNV (blue) and TF estimation with ichorCNA (gray) in pretreatment SCLC plasma 

samples (Supplementary Table 7). Fragment detection rates in SCLC plasma samples (n=16 

plasma samples, Supplementary Table 5) were compared with fragment detection rates in 

control plasma samples (n=30). C) Kaplan–Meier progression-free survival analysis for 

Week 3 ctDNA trend in SCLC patients with decreased (n=7) or increased (n=3) normalized 

detection rate (nDR) as measured by MRD-EDGESNV. Increased nDR at Week 3 was 

associated with shorter progression-free survival (two-sided log-rank test).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. MRD-EDGESNV deep learning classifier distinguishes ctDNA SNV fragments from 
cfDNA artifacts
a) MRD-EDGE schematic. b) Selected feature density plots for ctDNA and cfDNA SNV 

artifacts: trinucleotide context (left), replication timing (middle)25, PCAWG60 (right). c) 
Heatmap of predictive power of selected features (Methods) measured by single variable 

area under the receiver operating curve (svAUC, Methods) in NSCLC, CRC, and melanoma. 

Feature use in MRDetect or MRD-EDGESNV is indicated. d) (top) Illustration of the 

fragment tensor, an 18x240 matrix encoding of the reference sequence, R1 and R2 read 
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pairs, R1 and R2 read length, and SNV position in the fragment (‘Alt position’). The 

fragment tensor is passed as input to a convolutional neural network (CNN). (bottom) 

Relationship between local ctDNA SNV mutation density at the chromosome level and 

regional features: cancer type-specific chromatin inaccessibility (ATAC-Seq), late replicating 

regions (Replication timing) and quiescent genomic regions (Chromatin state) are associated 

with increased density of tumor-confirmed ctDNA SNVs. Regional features (Supplementary 

Table 2) are encoded as tabular values and passed as input to a multilayer perceptron 

(MLP). An ensemble classifier takes input from both the fragment and regional models 

to determine the likelihood that each fragment is ctDNA or cfDNA SNV artifact. e) In 
silico studies of cfDNA from the metastatic cutaneous melanoma sample MEL-100 mixed 

into cfDNA from a healthy plasma sample (CTRL-216) at mix fractions TF = 10-7–10-4 

at 16X coverage depth, performed in 20 technical replicates with independent sampling 

seeds. An AUC heatmap demonstrates detection performance at the different admixed TFs 

vs. negative controls (TF=0) as measured by Z score, with tumor-informed MRD-EDGESNV 

enabling sensitive detection at TF=5*10-7 (AUC 0.70). Box plots represent median, lower 

and upper quartiles; whiskers correspond to 1.5 x interquartile range. f) ctDNA detection 

status of preoperative stage III CRC plasma samples analyzed by MRD-EDGESNV and 

ddPCR (n = 48). g) Comparison of estimated ctDNA levels estimated by MRD-EDGESNV 

(TFs) and ddPCR (variant allele frequency, VAF). Estimated TFs/VAFs of ctDNA-negative 

samples were set to 0. Linear regression includes samples called positive by both ddPCR and 

MRD-EDGESNV (black dots). Shaded area represents 95% confidence interval.
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Figure 2. Machine learning-based error suppression and additional features enhance plasma 
WGS-based CNV detection sensitivity
a) (left) Copy number denoising for inference of plasma read depth. Patient-specific 

CNV segments are selected by comparing tumor and germline WGS. In plasma, CNV 

segments may be obscured within noisy raw read depth profiles. Machine-learning guided 

denoising using a panel of normal (PON) healthy control plasma samples removes recurrent 

background noise to produce denoised plasma read depth profiles. PON plasma samples 

are excluded from downstream CNV analysis. (middle) Loss of heterozygosity (LOH) can 

be measured via changes in the B-allele frequency of SNPs in cfDNA. (right) Increased 

or decreased fragment length heterogeneity is expected in regions of tumor amplifications 

or deletions, respectively, due to varying contribution of ctDNA (shorter fragment size) to 

the plasma cfDNA pool. Fragment length heterogeneity is measured through Shannon’s 

entropy of fragment insert sizes. b-e) In silico mixing studies of admixed high and low TF 

samples from the CRC patient CRC-930. Pretreatment plasma (TF = 12%) was mixed into 

non-cancer plasma (CTRL-443, b and d) or matched PBMC (c) in 25 replicates. Admixtures 

model tumor fractions of 10-6–10-3. Box plots represent median, lower and upper quartiles; 

whiskers correspond to 1.5 x interquartile range. An AUC heatmap demonstrates detection 

performance at the different admixed TFs vs. negative controls (TF=0), measured by Z 

score (derived from summed read-depth skews for read depth classifier, BAF score for 

BAF classifier, summed fragment length entropy for fragment length entropy classifier, 

Methods). b) Read depth classifier demonstrates detection sensitivity above TF=0 as low as 

5*10-5 (AUC 0.92). c-d) SNP B-allele frequency (BAF) (c) and fragment length entropy (d) 
classifiers demonstrate detection sensitivity at 5*10-5 (AUC 0.95 and 0.73, respectively). e) 
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Measurement of the MRD-EDGECNV lower limit of detection for the combined feature set 

as a function of the CNV load and admixture modeled TF. Sensitive detection (AUC 0.70) is 

observed at TF = 5*10−5 at 200 Mb. Control row is shown for an additional 25 TF=0 seeds 

held out from downsampling analysis. AUCs were confined to a range of 0.50-1.00.
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Figure 3. Tumor-informed monitoring of minimal residual disease in perioperative, neoadjuvant, 
and recurrent disease settings
a) Perioperative colorectal cancer ctDNA assessment. Plasma TF is tracked prior to surgery, 

and after surgery and adjuvant chemotherapy. b) Clinical characteristics and detection status 

of the stage III CRC cohort. c) ROC analysis on MRD-EDGE in preoperative stage III CRC 

with matched tumor mutation profiles (n=15) compared to control plasma samples assessed 

against all unmatched stage III CRC tumor mutation profiles (n=15 tumor profiles assessed 

across 25 control samples from Aarhus controls cohort, n=375 control-comparisons). d) 
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Kaplan–Meier disease-free survival analysis of all patients with detected (n=9) and non-

detected (n=6) postoperative ctDNA. Postoperative ctDNA detection was associated with 

shorter recurrence-free survival (two-sided log-rank test). e) Time to recurrence in stage 

III CRC patients with disease recurrence (n=5) after ctDNA detection post-therapy (green 

dot). Red dot indicates confirmed recurrence on CT imaging. f) Neoadjuvant NSCLC 

clinical treatment protocol41. Plasma TF is tracked in the preoperative period to evaluate 

for response to SBRT and ICI (durvalumab) therapy and after surgery to evaluate for 

MRD. g) Clinical characteristics and detection status of the neoadjuvant NSCLC cohort 

(n=22 patients). h) ROC analysis on MRD-EDGE in pretreatment early-stage NSCLC. 

Preoperative plasma samples with matched tumor mutation profiles (n=22) are compared 

with control samples assessed against all unmatched NSCLC tumor mutation profiles (n=22 

mutation profiles assessed across 20 control samples from NYGC control cohort, n=440 

control-comparisons). i) Tumor burden monitoring on neoadjuvant immunotherapy and 

SBRT with MRD-EDGESNV (blue) and MRD-EDGECNV (orange) Tumor burden estimates 

are measured as the Z score of the patient tumor mutation profile against healthy control 

plasma. j) Tumor burden monitoring with MRD-EDGESNV and MRD-EDGECNV in 2 

NSCLC patients on neoadjuvant ICI monotherapy (top, NSCLC-40; bottom, NSCLC-41). 

Red dot indicates recurrence; black dot indicates absence of recurrence at last known follow-

up. k) Kaplan–Meier disease-free survival analysis of all patients with detected (n=8) and 

non-detected (n=6) postoperative ctDNA. Postoperative ctDNA detection was associated 

with shorter recurrence-free survival (two-sided log-rank test). i) Observational TNBC 

recurrence cohort. Early-stage TNBC patients underwent surgical resection plus neoadjuvant 

and/or adjuvant chemotherapy. Plasma was sampled intermittently throughout clinical 

course. m) (left) Clinical characteristics and sampling timepoints for the observational 

TNBC recurrence cohort (n=18 patients). (right) Lead-time calculations for ctDNA detection 

post-therapy (green dot) versus clinical recurrence (red dot). Where available, purple dot 

shows ctDNA detection after surgery or initiation of chemotherapy.
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Figure 4. MRD-EDGE tumor-informed detection of ctDNA from screen-detected adenomas and 
pT1 lesions
a) Detection status of the cohort of stage IV colorectal (CRC, n=5), screen-detected 

pT1 lesions (n=10) and screen-detected adenoma plasma samples (n=20) according to 

MRD-EDGESNV and MRD-EDGECNV classifiers. Samples with a Z score above the 

detection threshold as prespecified in the stage III CRC cohort (Fig. 3a-b) are highlighted 

(Supplementary Table 7). b) ROC analysis for MRD-EDGESNV (top) and MRD-EDGECNV 

(bottom) classifiers in screen-detected pT1 lesions (left) and adenomas (right) compared to 

cancer-free control plasma samples. The SNV analysis excluded 5 Aarhus control samples 

(n=45 total Aarhus control plasma samples) used in SNV model training, yielding n=40 

controls as a comparator. The CNV analysis excluded 20 Aarhus control samples used in 

the panel of normal samples, yielding n=25 control samples as a comparator. c) Plasma 

TF inference using genome-wide SNV integration for stage IV CRC (n=5), stage III 

CRC (n=15), SNV detected pT1 lesions (n=5), and SNV detected adenomas (n=4) shows 

decreasing estimated TF by CRC stage. Lines indicate median estimated TF. d) (left) 

Histology image of the pT1 lesion Aden-14 (top) demonstrates invasion of the submucosa 

by dysplastic cancer cells, while an image of the adenoma Aden-17 (bottom) demonstrates 

the presence of dysplasia and absence of submucosal invasion. (right) Barplots demonstrate 

number of plasma samples with detected ctDNA in patients with pT1 lesions (top) and 

adenomas (bottom). Detections are shaded by dark blue (MRD-EDGESNV detections), light 

blue (MRD-EDGECNV detections), light purple (SNV and CNV detections), and white 

(non-detected).
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Figure 5. ctDNA detection in melanoma plasma WGS without matched tumor
a) In silico mixing of cfDNA from metastatic melanoma sample MEL-100 (TF = 6.1%) 

into control cfDNA (TF=0) at mix fractions 10-6–10-3 at 16X coverage depth (20 technical 

replicates). MRD-EDGESNV detects TF as low as TF=5*10-5 (AUC 0.77), measured by Z 

score of SNV fragment detection rates against unmixed control plasma (TF=0), without 

matched tumor tissue. AUC heatmap measures detection vs. TF=0 at different mixed 

TFs. b) Signal-to-noise enrichment analysis for MRDetectSNV and staged steps of MRD-

EDGESNV using the same in silico mixing replicates as in a). MRD-EDGESNV produces 

2,518-fold enrichment vs. 8.3-fold for MRDetectSNV. c) Adaptive dosing melanoma cohort 

(n=26 patients). All patients began treatment with combination ipilimumab and nivolumab. 

d) ROC analysis for MRD-EDGESNV detection of pretreatment melanoma for healthy 

individuals (n=30) and melanoma patients (n=25). Detection rate cutoff was selected as 

the first operational point with specificity ≥ 95%. e) Fourteen of 26 melanoma patients 
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underwent tumor-informed targeted panel7 sequencing. Barplot demonstrates pretreatment 

detection sensitivity for MRD-EDGESNV, tumor-informed panel, de novo panel (Methods) 

and ichorCNA. Error bars indicate 95% binomial confidence interval for empiric sensitivity 

within 14 trials. f) Tumor burden monitoring on ICI with MRD-EDGESNV, tumor-informed 

panel, and de novo panel for 3 melanoma patients, measured as normalized detection 

rate (nDR) to the pretreatment sample (MRD-EDGESNV) and as normalized variant allele 

fraction (nVAF) normalized to the pretreatment VAF (tumor-informed and de novo panels). 

Blue name indicates samples with ≥14 SNVs covered in the tumor-informed panel. g) Forty-

three pre- and posttreatment samples from the melanoma cohort underwent sequencing 

with MRD-EDGESNV and the tumor-informed panel. (left) Heatmap demonstrating high 

concordance (88%) between MRD-EDGESNV and the tumor-informed panel for detected 

ctDNA and undetectable ctDNA. (right) Lower detection overlap (60%) is seen between 

MRD-EDGESNV and the de novo targeted panel. h) Barplot of Cohen’s kappa agreement 

metric for Week 6 ctDNA increase or decrease compared to pretreatment baseline between 

3 mutation callers (MRD-EDGESNV, de novo panel, ichorCNA) and the tumor-informed 

panel. Box plots-median, bottom and upper quartiles; whiskers- 1.5 x interquartile range.
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Figure 6. Serial monitoring of clinical response to immunotherapy with MRD-EDGESNV

a) Two advanced melanoma cohorts. (left) conventional immunotherapy cohort received 

nivolumab monotherapy or combination ICI. Plasma was collected at pretreatment timepoint 

and weeks 3, 6, and 12. Cross sectional imaging to evaluate response to treatment was 

performed at 12 weeks. (right) adaptive dosing cohort received combination immunotherapy 

as in Fig. 5c. b) Serial plasma TF monitoring with MRD-EDGESNV corresponds to changes 

seen on imaging. TF estimates are measured as normalized detection rate (nDR) to the 

pretreatment sample for MRD-EDGESNV. (top) ctDNA nDR increases over time in a 

patient with disease refractory to ICI. The patient had progressive disease at Week 6 and 

Week 12 CT assessment. (bottom) ctDNA nDR decreased at Week 3 in a patient with 

a partial response to therapy. CT imaging demonstrates tumor shrinkage at Week 6 and 

Week 12. c) Kaplan–Meier progression-free (left) and overall (right) survival analysis 

for Week 3 ctDNA trend in patients with decreased (n=27) or increased (n=7) nDR, 

measured by MRD-EDGESNV. Patients with undetectable pretreatment ctDNA (n=3) were 
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excluded. Increased nDR at Week 3 was associated with shorter progression-free and overall 

survival (two-sided log-rank test). d) (top left) pretreatment CT imaging of a patient with 

decreased ctDNA in response to ICI at Week 3 on both MRD-EDGESNV (nDR, blue) and 

a tumor-informed panel (normalized variant allele frequency, nVAF, red). Following the 

administration of methylprednisone at Week 3, estimated TF (eTF) on both ctDNA detection 

platforms increased. At Week 6, progressive disease is seen on CT imaging (top right). 

e) Early steroids for immune-related adverse events (irAEs) within the combination ICI 

dosing period (prior to Week 8) further stratify Week 3 survival analyses. Kaplan–Meier 

progression-free survival (left) and overall survival (right) analysis for patients with primary 

refractory disease (‘Increased’, blue, n=7), defined as rising nDR seen at Week 3 following 

first dose of treatment, decreasing ctDNA who did not receive steroids (‘Decreased - no 

steroids’, red, n=18), and patients who received steroids for irAEs within the combination 

ICI dosing period (‘Decreased - steroids’, green, n=9). P value reflects multivariate logrank 

test.

Widman et al. Page 55

Nat Med. Author manuscript; available in PMC 2024 July 10.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


	Abstract
	Introduction
	Results
	Deep learning distinguishes ctDNA SNVs from sequencing error
	Multiple features enhance ctDNA detection with MRD-EDGECNV
	MRD-EDGE detects early-stage cancer and postoperative MRD
	Tracking plasma TF throughout neoadjuvant therapy in NSCLC
	MRD-EDGECNV in monitoring of high aneuploidy tumors
	Detection of ctDNA shedding in adenomas and pT1 carcinomas
	Plasma-only ctDNA monitoring in metastatic disease
	Tracking response to ICI with plasma-only MRD-EDGESNV

	Discussion
	Methods
	Human subjects and sample processing
	Germline and tumor DNA processing
	Plasma DNA processing
	Plasma cfDNA library preparation and sequencing
	Preprocessing, quality control analysis and sample identification and concordance
	Tumor / Normal somatic mutation calling
	Tumor-informed plasma cfDNA SNV identification
	Plasma and tumor recurrent artifact, germline, and regional filters
	Construction of ctDNA SNV training sets
	Construction of SNV feature space
	SNV deep learning model architecture and model training
	Comparison of MRD-EDGESNV deep learning classifier performance to other machine learning models
	Generation of in silico plasma DNA admixtures
	Generation of experimental plasma DNA admixtures
	Plasma SNV-based ctDNA detection and quantification in the tumor-informed approach
	Selection of control plasma samples for tumor-informed approaches
	Cross-patient analysis
	Plasma read depth denoising
	Evaluation of B-allele frequency in plasma
	Evaluation of tumor-informed fragment length entropy
	Aggregation of CNV scores
	Integration of MRD-EDGESNV and MRD-EDGECNV scores to form MRD-EDGE
	Evaluating SNVs for de novo mutation calling in MRD-EDGESNV
	Determination of de novo mutation calling specificity threshold
	Evaluating TF trends with MRD-EDGESNV, tumor-informed panel, and de novo panel
	Application of MRDetect support vector machine MRDetectSNV and MRDetectCNV
	ichorCNA
	Evaluation of TF through ddPCR
	Tumor-informed and de novo targeted panel
	Statistical analysis
	Data exclusions

	Extended Data
	Extended Data Fig. 1
	Extended Data Fig. 2
	Extended Data Fig. 3
	Extended Data Fig. 4
	Extended Data Fig. 5
	Extended Data Fig. 6
	Extended Data Fig. 7
	Extended Data Fig. 8
	Extended Data Fig. 9
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

