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Abstract

Real-world visual input consists of rich scenes that are meaningfully composed of multiple objects 

which interact in complex, but predictable, ways. Despite this complexity, we recognize scenes, 

and objects within these scenes, from a brief glance at an image. In this review, we synthesize 

recent behavioral and neural findings that elucidate the mechanisms underlying this impressive 

ability. First, we review evidence that visual object and scene processing is partly implemented 

in parallel, allowing for a rapid initial gist of both objects and scenes concurrently. Next, we 

discuss recent evidence for bidirectional interactions between object and scene processing, with 

scene information modulating the visual processing of objects, and object information modulating 

the visual processing of scenes. Finally, we review evidence that objects also combine with each 

other to form object constellations, modulating the processing of individual objects within the 

object pathway. Altogether, these findings can be understood by conceptualizing object and scene 

perception as the outcome of a joint probabilistic inference, in which “best guesses” about objects 

act as priors for scene perception and vice versa, in order to concurrently optimize visual inference 

of objects and scenes.

The apparent ease with which we recognize visual scenes and the objects within them is 

one of the most remarkable feats of human cognition. This ability is supported by a wealth 

of low- and high-level regularities embedded in natural scenes1–6. Examples of high-level 

regularities include the natural dependencies of how objects tend to co-occur with other 

objects (e.g., cars with traffic signs) and scenes (e.g., cars on roads). Furthermore, objects 

usually appear in specific positions relative to other objects and relative to the scene (e.g., a 

car on the ground rather than in the sky). Finally, the retinal image of an object changes in 

predictable ways as a function of the object’s position in a scene. Here, we review evidence 

showing that such object-object and scene-object regularities impact the visual processing of 

scenes and objects. We propose that these influences can be understood within the common 

framework of predictive processing.

In this review, we will adopt the frequently made distinction between objects and scenes. 

Although this distinction is intuitive, defining what counts as a scene or an object is not 

trivial. One possible definition distinguishes them based on their visual properties: scenes 

typically consist of larger-scale and global surfaces or environments (e.g., office, forest), 
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while objects are smaller-scale, local entities that are arranged in a lawful manner within 

scenes (e.g., computer on a desk, bird on a tree branch)6,7. A second distinction stems 

from how we interact with objects vs. scenes – we act upon objects, and interact within 
scenes8. While we will focus on work examining how scenes and objects are processed 

when presented as two-dimensional images, this marks an important distinction between 

objects and scenes in daily life. Additionally, what is considered a scene or an object partly 

depends on the spatial scale; for instance, an office can be considered a scene with a desk 

as an object within the ‘office scene’. However, when zooming in, the desk can become a 

scene itself, with a computer as one of the objects within that ‘desk scene’. Even further, the 

computer could be the scene within which the text on the monitor is the object of interest 

for a reader. While the definition of scenes and objects is thus dependent on the perspective 

and goal of the observer, distinguishing between the two has nevertheless proven useful for 

understanding visual perception.

For example, human cognitive neuroscience has revealed that objects and scenes are 

processed in distinct regions of the visual cortex. This distinction between object and scene 

processing has in fact been described as one of the main organizing principles of the human 

high-level visual cortex8,9. Within the ventral visual cortex, scenes are processed in a medial 

pathway, while objects are processed in a lateral pathway (Fig 1b). This follows a center-

periphery organization, with the medial (scene) pathway most responsive to input from the 

peripheral visual field, and the lateral (object) pathway most responsive to input from the 

central visual field9,10. This organization reflects the relevance of peripheral (large-scale and 

coarse) versus foveated (small-scale and detailed) visual information for scene and object 

recognition, respectively11,12. Furthermore, neuroimaging studies have discovered several 

focal regions within the visual cortex that respond selectively to either scenes or objects 

(Fig 1a)13–15. Scene-selective regions include the parahippocampal place area (PPA14), the 

medial place area (MPA; also labeled the retrosplenial complex16), and the occipital place 

area (OPA; near the transverse occipital sulcus17). These regions respond more strongly to 

pictures of scenes than to a wide range of control pictures, including objects, faces, and 

scrambled scenes14,15. Scene-selective regions also respond strongly to “empty” scenes, 

such as an empty room or an open field, showing that object content is not required 

to activate these regions. Object-selective regions are found in the lateral occipital (LO) 

cortex and the posterior fusiform gyrus (pFs)13. These regions respond more strongly to 

intact objects than scrambled objects or textures, and are thought to encode object-specific 

properties, such as shape and category13. Functional magnetic resonance imaging (fMRI) 

studies using multivariate pattern analysis have shown that object-and scene-selective 

regions represent distinct aspects of visual scenes, with object-selective cortex representing 

the identity or category of objects in a scene (e.g., whether the objects are natural or 

man-made), and scene-selective cortex representing scene layout (e.g., open or closed scene 

boundaries)18–20 and scene category21. Finally, the distinction between object- and scene-

selective regions has been confirmed with transcranial magnetic stimulation (TMS): TMS 

over scene-selective OPA impairs the recognition of scenes (e.g., recognizing whether a 

scene is a beach or a forest), but not the recognition of objects (e.g., recognizing that an 

object is a shoe or a car)22–24. Conversely, TMS over object-selective LO selectively impairs 

the recognition of objects but not of scenes 22,23,25. Taken together, there is convincing 
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evidence that objects and scenes are processed separately in the visual cortex. However, 

as we will discuss in this review, there are strong interactions between object and scene 

processing, such that responses in scene-selective cortex are modulated by the objects 

present in a scene26,27 and responses in object-selective cortex are modulated by the scene 

surrounding an object28.

Object and scene processing pathways are hierarchically organized, combining low-level 

visual features into mid-level and high-level representations. At a global level, the large-

scale organization of the visual cortex can thus be described by two main orthogonal axes: 

a posterior-to-anterior hierarchy and a center-periphery organization13, even though the 

fine-grained connectivity of the visual cortex is more complex31. Object- and scene-selective 

responses emerge at higher stages of the center- and periphery-biased pathways, respectively 

(Fig 1b). Note, however, that while representations in object- and scene-selective regions are 

tuned to relatively high-level categorical information, responses in these regions still also 

reflect low- or mid-level visual features32–34.

Both object and scene processing pathways also contain extensive feedback connections, 

allowing higher-level representations to modulate lower-level representations. Importantly, 

however, while scenes and objects are processed in parallel in the visual cortex, behavioral 

studies have shown that scenes can influence the recognition of objects, and objects can 

influence the recognition of scenes. The mechanisms of such object-scene interactions have 

long been debated35. This debate is centered around the question of whether scene context 

influences the visual perception of objects36,37 or whether it only influences post-perceptual 

processes at the level of decision making and responding38.

In this Review, we will revisit object-scene interactions through the lens of predictive 

processing, arguing that perceptual modulations follow naturally from this framework. 

Predictive processing is a neurocomputational framework of information processing, which 

proposes that the brain contains internal, generative models, which send “downward” signals 

embodying predictions about sensory input. These signals are compared with incoming 

signals. The mismatch between the two, i.e. the prediction errors, are communicated 

“upward” to update predictions. This leads to an efficient encoding and transmission 

strategy, and allows the organism to infer the distal causes behind the proximal sensory 

input in a probabilistically optimal manner. Predictive processing thus casts perception as a 

process of probabilistic, knowledge-driven inference39. It is a process theory of information 

processing that can be realized at the algorithmic level in several different ways40 and for 

which specific neural implementations have been proposed (Box 1). Predictions can be 

formed based on regularities in the input that exist both in time and space. While it may be 

more intuitive to think of predictions in time (e.g., predicting future locations of a moving 

object), predictions in space are particularly relevant for object and scene perception. Indeed, 

object-scene and object-object interactions can all be thought of as special cases of the 

general principle that computations at all levels of the processing hierarchy may generate 

predictions that inform and constrain computations at other levels of the hierarchy.

We first review evidence for the influence that scene processing exerts on object perception 

(Fig 2a), emphasizing the perceptual consequences of such influences. Thereafter, we 
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examine the reverse influence, that is, the influence that objects exert on the perception 

of scenes (Fig 2b). Comparing these two influences points to several commonalities and 

shared principles. Next, we review research on co-occurrences between objects in scenes, 

and how orderly groups of objects can be integrated to form scene-like object constellations. 

We discuss these findings in the context of the predictive processing framework, arguing 

that perception of both scenes and objects can mutually influence each other, depending on 

the observer’s goals and the reliability of the visual signals. Last, we outline challenges and 

opportunities for future research, including how research on human scene perception can 

steer the growing line of computer vision research (Box 2) to develop computational models 

that could robustly recognize scenes and objects in the way humans do.

Scenes influence object perception

In one of the first studies to demonstrate the influence of scene context on object 

recognition, participants were asked to identify objects in briefly presented photographs, 

where the background was either intact or jumbled41. Observers were strongly impaired 

in selecting the shown object from a set of alternatives when the background was 

jumbled. These results were interpreted as evidence that the presence of scene background 

influenced object recognition. Since this pioneering work, many studies have replicated and 

extended these findings, conclusively showing that meaningful scene context facilitates the 

recognition of objects that are frequently found within those scenes2,3. These findings raise 

the question of how scene context interacts with object processing. Specifically, does scene 

context influence the perceptual processing of objects3,35?

Recent studies have provided evidence that scene context can influence the perceptual 
experience of within-scene objects (Fig 2a). One study examined the influence of scene 

context on the perceived sharpness of objects in a perceptual matching task42 (Fig 3ab). 

Participants were presented with two blurred images of an object, side-by-side, and 

had to adjust one until it perceptually matched the blurriness of the other image. The 

authors manipulated contextual expectations afforded by the background; one of the images 

contained predictable information (upright intact scenes) whereas the other did not (phase-

scrambled or inverted scenes). Interestingly, participants added more blur to objects in 

predictable scenes to match them to objects in unpredictable backgrounds, indicating that 

they perceived those objects as subjectively sharper. This serves as an elegant demonstration 

of how expectations derived from scenes influence not only semantic judgements, but also 

how sharply we perceive objects.

Further evidence for perceptual effects of scene context comes from neuroimaging studies 

showing that scene context modulates the representation of objects in the visual cortex. In an 

fMRI study28, degraded objects were either presented alone or within congruent scenes (e.g., 

a helicopter presented in the sky). Activity patterns in the object-selective visual cortex (LO 

and pFs; Fig 1a) in response to degraded objects became more similar to activity patterns 

evoked by intact (i.e., non-degraded) objects when objects were presented within scenes 

(Fig 4a). These results are in line with the perceptual sharpening observed in the behavioral 

study reviewed above42. Furthermore, this effect was correlated with the amount of activity 

concurrently observed in scene-selective areas, suggesting that these areas could be the 
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origin of prediction signals facilitating object processing. This was further corroborated by a 

TMS study that disrupted processing in object- and scene-selective brain regions at specific 

time points43. The recognition of degraded objects in scenes was impaired when TMS was 

applied over scene-selective OPA 160-200 ms after scene onset. Object recognition was also 

impaired when applying TMS over object-selective LO at 260-300 ms after scene onset, 

suggesting that feedback to LO causally supports context-based object recognition. Together, 

these results show that scene-based expectations modulate visual object processing.

Another influence that scenes exert on object perception is by guiding our attention. This 

has facilitatory consequences for visual search - observers find specific objects more quickly 

if they are embedded in scenes that are either semantically or spatially congruent2,44–47. 

As an example, a toaster is found more easily if placed in a kitchen than in a bathroom 

(semantic congruence), and if it is positioned on a kitchen counter rather than the floor 

(spatial congruence). In the absence of a specific search task, however, attention and eye 

movements have been shown to be directed earlier to (and dwell longer on) semantically 

incongruent objects in a scene48–54. One reason for this increase in attention may be the 

increased difficulty of recognizing incongruent objects51. Together, these findings lead to 

the somewhat counterintuitive prediction that objects congruent with the scene may be 

processed less well than objects incongruent with the scene. Indeed, it has been shown 

that participants detect visual changes slower in scene-congruent than in scene-incongruent 

objects52,53,55, unless the scene-congruent objects are central to understanding the scene56.

Building on this notion, a recent study tested whether scene context can influence 

even more basic aspects of object perception – discriminating between visually similar 

exemplars57 (Fig 3cd). Participants were shown photographs containing objects that were 

either congruent or incongruent with the scene context (e.g., a cup/toilet roll in a dishwasher/

toilet-paper holder58). Afterwards, they were presented with two images of an exemplar 

from the same category (e.g., two images of a toilet roll) and asked to determine which of 

the two items had appeared in the scene. Participants’ judgements were less accurate for 

objects congruent with the scene (e.g., toilet roll in a toilet-roll holder) than for incongruent 

objects (e.g., toilet roll in a dishwasher), indicating that scene-derived expectations impaired 

the report of expected items.

Altogether, this body of work demonstrates that scene context not only primes semantic 

representations of objects, but also influences how objects are perceptually experienced and 

represented in the visual cortex.

Objects influence scene perception

While many studies have focused on the effects of scene context on object recognition, 

there is also evidence for the reverse influence, with objects affecting scene recognition59. 

In one study60, participants viewed scenes with objects that were semantically congruent or 

incongruent. Objects were named more accurately when they were semantically congruent 

with the background scene, providing another demonstration of scene context influencing 

object recognition. Interestingly, an equally strong congruency effect was found when 

participants had to name the background scene, such that scenes (e.g., a church) were 

recognized better when shown together with a semantically congruent object (priest) than 
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a semantically incongruent object (baseball player). Subsequent studies replicated61 and 

extended these findings, showing that object-to-scene congruency effects persist when the 

object and the scene are presented simultaneously but in different images62. Furthermore, 

the semantic congruency of objects also influenced rapid categorization judgements of 

very briefly presented and backward masked images of scenes63,64, suggesting interactions 

at relatively early stages of processing. These results indicate bidirectional interactions 

between object and scene processing, with semantic congruency facilitating the recognition 

of both objects and scenes.

In addition to influencing scene recognition, objects have also been shown to affect the 

representation of visuo-spatial scene properties. In one study65, participants judged the 

spaciousness of indoor scenes after adapting participants to other, either more or less 

spacious, scenes from the same category (e.g., bathrooms). Results revealed a negative 

aftereffect, with test scenes judged as more spacious after viewing of less spacious scenes. 

Importantly, this effect was modulated by the visibility of scene-informative objects in the 

adapting scenes: when informative objects (e.g., a bathtub in a bathroom) were visible 

in the adapting scenes, the aftereffect was reduced. This suggests that the objects in the 

scene biased the perceived spaciousness of the scene towards the average spaciousness of 

the object-associated scene category. This interpretation was further supported by an fMRI 

study investigating the representation of scenes in the scene-selective parahippocampal place 

area (PPA). Activity patterns in the PPA differentiated between low- and high-spaciousness 

scenes, replicating previous findings showing PPA’s sensitivity to spatial layout18–20. In 

line with the behavioral findings, the response patterns to these low- and high-spaciousness 

scenes became more similar to the category average when scene-associated objects were 

visible. Together, these results show that scene-informative objects trigger expectations 

about the scene that affect not only the encoding of scene identity, but also of spatial scene 

properties.

Similar to the influence of scenes on object recognition, these expectation effects are 

particularly powerful when information is ambiguous. Indeed, object information allows 

to disambiguate poorly visible scenes (Fig 2b), just like scene information allows to 

disambiguate poorly visible objects (Fig 2a). A recent fMRI study66 (Fig 4b) showed 

that this object-to-scene disambiguation affects the visual representation of scenes in the 

PPA. When ambiguous scenes (e.g., a foggy road) contained a scene-congruent object (a 

car), activity patterns in the left PPA more closely resembled activity patterns evoked by 

clearly visible scenes of the same category. These results suggest that objects perceptually 

disambiguate scenes, leading to a sharper representation of these scenes in the scene-

selective visual cortex. Interestingly, the object presented alone also evoked a weak scene 

representation (Fig 4b), suggesting that even a grey background can be interpreted as a 

scene66. Such a top-down explanation may also account for other findings of isolated 

object responses in scene-selective PPA. For example, PPA has been shown to respond to 

objects that prime a sense of space67 and to objects that are strongly associated with a 

specific context16. Moreover, it was recently shown that voxelwise PPA responses reflect the 

statistical associations between objects and their visual contexts68. Altogether, these findings 

provide further evidence for interactions between object and scene processing, showing that 

expectations derived from objects can modulate activity in the scene-selective cortex.
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Object-scene interactions

The previous sections indicate that scenes can influence object perception and objects can 

influence scene perception. This bidirectional exchange of information prompts the question 

of how exactly these two types of information processing interact and whether there is an 

asymmetrical relationship between these levels of processing.

A prominent hypothesis put forward in the past two decades has been the “scene first” 

hypothesis. Under this view, perception operates in a global-to-local, or coarse-to-fine69–

71, manner. Scenes typically encompass the whole visual field, and contain information 

at low spatial frequencies72. This low spatial frequency information may be rapidly 

processed by a magnocellular pathway, extracting the “scene gist” information (the general 

meaning of a scene), which can subsequently bias object computations in the slower 

parvocellular ventral visual pathway73,74. This view contrasts with an “object first” view, 

which conceptualizes scene comprehension as a rapid serial cascade from low-level sensory 

information combining into object features, and further into objects75–77, which can then be 

combined to inform scene understanding78.

On balance, neither of these views may be correct. For instance, when observers were 

asked to describe what they saw in briefly presented and masked pictures of scenes, 

they were equally likely to list semantic descriptions of objects and scenes at a given 

exposure time79,80. Rather than a temporal advantage for scene-level over object-level 

recognition, reports of sensory- and low-level information of scenes and objects (such as 

shading and shape) consistently preceded reports of high-level semantic information of 

either category. This finding aligns well with neuroscientific evidence that both object 

and scene processing comprise multiple stages, ranging from the analysis of low-level 

sensory to high-level semantic attributes13. Therefore, processing of low-level aspects of 

both objects and scenes precede the higher-level semantic categorization of these categories. 

Indeed, electrophysiological work showed that high-level representations of both objects and 

scenes emerge approximately 200 ms after stimulus onset81–83. Interestingly, scene-based 

sharpening of object representations in visual cortex has been observed significantly later, 

from around 300 ms after stimulus onset28, reflecting feedback signals after the initial 

perceptual analysis of scenes and objects. Importantly, the reverse influence - with objects 

sharpening scene representations - was found at the same latency84, in line with a common 

predictive processing mechanism for bidirectional object-scene interactions.

The evidence reviewed in the previous paragraphs argues for parallel processing pathways 

subserving object and scene perception. Each of these pathways is hierarchically organized, 

with specific combinations of simple features like edges and colors forming increasingly 

complex structures like objects and scenes. This hierarchical organization is an important 

element of predictive processing theories (Box 1), in which hierarchically ‘higher’ neural 

regions generate hypotheses about the expected input at hierarchically ‘lower’ regions. 

Mismatch between those expectations and the input is then sent forward from lower to 

higher regions to update expectations85,86. These models can provide a natural explanation 

for the interactions between processing stages – between stages dedicated to low-level 

features, like edges and contours in early visual cortex, and later processing stages dedicated 

to visual and semantic representations of objects and scenes9. High-level representations can 
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help to disambiguate processing of low-level elements. For example, when simple Gabor 

patches are aligned such that they form a global shape, this not only leads to increased 

activity in higher-order shape-related area LO87, but also to activity modulations in the early 

visual cortical areas dedicated to the processing of the local elements. This modulation of 

activity can be understood as resulting from feedback from LO, providing a disambiguation 

that helps perceptual inference at earlier levels88. Similar to the hierarchical structure of 

object processing, scene processing is also hierarchical in nature, and also here processing at 

hierarchically higher levels can influence processing at hierarchically lower levels89,90.

If objects and scenes are processed in parallel in the visual cortex, how, then, do these 

processing streams interact to affect visual perception? We suggest that the bidirectional 

interaction between object and scene processing can be understood as a form of non-

hierarchical Bayesian inference91,92. An intuitive example of such an inference process 

is provided by multisensory integration, where perceptual inference is achieved by 

combining cues from different modalities. Human observes can integrate signals from 

multiple modalities in a near-optimal reliability-weighted fashion, adhering to the normative 

principles of Bayesian inference93. Likewise, auditory information that carries information 

about visual content (e.g., barking) can facilitate the neural and perceptual representation of 

ambiguous visual information (e.g., a dog)94,95. Analogous to the example of multisensory 

facilitation, object and scene perception, while processed in parallel, can still engage 

in mutual and facilitatory interactions. These interactions may then shape the feedback 

signals propagated within each pathway, modulating activity in hierarchically lower levels 

of the visual system, thereby resulting in overall reduced uncertainty and improved visual 

perception.

The reliability-weighted nature of the integration of signals also provides an intuitive 

explanation for the direction and magnitude of object-scene interactions. As illustrated 

in Figure 2, scenes influence object perception particularly when scene information is 

clear while object information is uncertain. This is because the relatively low uncertainty 

information provided by the scene is able to “move” the relatively broad probability 

distribution elicited by the object perception. Thereby, the scene-first vs object-first conflict 

disappears when viewed through the lens of Bayesian inference: the influence of each source 

of information is weighted as a function of its reliability. Usually, scene information is 

more stable over time and therefore has a larger influence on object perception than vice 

versa. But under situations where object information is reliable and scene information is 

unreliable (Fig 2b, top row), this predominant scene-to-object influence can reverse. When 

there is no ambiguity (both object and scene cues are highly reliable), the influence of 

predictive processes on shaping perceptual object and scene representations will be reduced. 

Nevertheless, impaired or slower recognition (e.g., naming) of contextually inconsistent 

objects may still be observed due to post-perceptual influences35.

Bayesian models can also account for other apparent discrepancies in the literature, with 

respect to how scene context influences object perception. For example, Rossel et al.42 (Fig 

3ab) observed that contextual scene-related information disambiguated object information 

and rendered it perceptually “sharper”. In seeming contradiction, Spaak et al.57 (Fig 

3cd) found a perceptual disadvantage for objects that were congruent with scene context. 
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Importantly, the stimuli in the study by Rossel et al. were marked by large uncertainty 

(the objects were strongly blurred), allowing for contextual information to influence the 

perceptual interpretation of the input. The stimuli used by Spaak et al., on the contrary, 

were unambiguous, and the perceptual interpretation of the individual objects may not have 

been altered by the scene context. Rather, objects that were unexpected in scenes may have 

elicited surprise, leading to prolonged attentional processing of these objects and subsequent 

superior perceptual performance. A similar effect was recently reported using the perceptual 

matching paradigm (Fig 3a), with a perceptual benefit for expected objects when they were 

ambiguous but a benefit for unexpected objects when they were unambiguous96. These 

findings are in line with a two-process model of how contextual expectations can both bias 

towards expected, but also enhance unexpected information97, leading us to broadly perceive 

what we expect, unless unexpected signals are both very reliable and surprising. In this case, 

perceptual inference will be dominated by the evidence (in view of its high precision), rather 

than the prior, and indeed may call for an update of one’s prior beliefs.

Object-object interactions

The evidence discussed so far points to the interactive processing of objects and scenes, 

with expectations derived from scenes modulating object processing and vice versa. On 

the definition of objects and scenes we have adopted so far, representations of objects and 

scenes are not hierarchically related: object and scene processing rely on different visual 

cues (e.g., foveal vs peripheral input) and are processed in distinct (parallel) pathways.

However, objects do not only systematically occur relative to the global scene, but also 

relative to other objects. As a result, objects in scenes are not processed independently, 

but mutually inform and constrain each other. Unlike the parallel scene-object processing 

reviewed above, objects can be combined in a hierarchical manner, where multiple objects 

build an “object constellation” (Fig 5a). Recent studies have shown that the brain capitalizes 

on regularities between objects, both in terms of objects’ co-occurrences as well as their 

relative spatial positions.

First, objects predict the presence of frequently co-occurring objects: an eraser is likely 

found in the vicinity of a pencil, and a marked crosswalk is likely found together with a 

traffic light. These co-occurrence probabilities can be used to guide visual search98, which is 

particularly useful when large “anchor” objects (e.g., a sink) predict the position of smaller 

objects (e.g., a toothbrush)99. Object co-occurrences also facilitate recognition: seeing a 

pencil helps to disambiguate the blocky object next to it and recognize it as an eraser. 

Indeed, behavioral experiments have shown that objects that are typically found in the 

same context (e.g., sofa and lamp) were named more accurately than objects from different 

contexts (e.g., sofa and tractor)61. Similarly, objects were identified more easily when 

the previously fixated object was contextually related100,101, and an object surrounded by 

contextually related objects was identified more accurately than the same object surrounded 

by unrelated objects in a forced-choice recognition task102. Finally, there is also neural 

evidence that contextual associations between objects can be learned, with objects priming 

representations of associated objects in the visual cortex103,104.
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Second, many co-occurring objects in everyday scenes appear in regular configurations: 

lamps appear above tables and mirrors above bathroom sinks (Fig 5a). Such spatial 

regularities between objects have been shown to facilitate perception6. For example, 

recognition is faster and more accurate for two objects shown in a regular (e.g., chair 

facing table) than an irregular configuration105,106. Furthermore, studies in patients with 

parietal lesions have demonstrated that extinction of an object (e.g., a bottle) presented on 

the contralesional side is reduced when shown together with a correctly positioned partner 

object (e.g., a bottle opener) on the ipsilesional side107.

Other studies have provided evidence that regularly positioned objects are perceptually 

grouped, potentially reflecting an integrated representation. For example, objects in highly 

familiar configurations break into awareness more quickly than the same objects in 

unfamiliar configurations108 (Fig 5b). similar to effects of Gestalt grouping109. However, 

unlike Gestalt grouping, these effects did not reflect low-or mid-level visual cues, as 

they were specific to upright (vs inverted) displays. Regularly positioned objects are also 

easier to reject as distractors in visual search tasks110,111, suggesting a grouping-based 

reduction in distractor numerosity. Finally, neuroimaging studies have provided evidence for 

conjoint representations of identity-based and positional associations between objects112–

117. For example, activity patterns in the high-level visual cortex elicited by a visual display 

containing multiple unrelated objects can be accurately modeled as a linear combination 

of the individual object response patterns118, but this approximation is much less accurate 

when the objects are positioned to form meaningful constellations115,116. These results 

suggest that the whole is different from the sum of its parts: object constellations may 

activate neural populations that are sensitive to the object group, shifting the response 

pattern away from the combination of individual object response patterns.

These results raise the intriguing possibility that object constellations – objects that 

are frequently seen together in specific spatial configurations – could be a relevant 

representational stage in visual perception115,116. This representational stage would differ 

from the representation of whole scenes, in that it would constitute a combination of 

individual objects in a specific spatial arrangement (e.g., monitor and keyboard) rather than 

a more global “ensemble” representation of a whole scene. As such, it may be similar to 

how object parts are combined to form whole-object representations (cf. a laptop, for which 

monitor and keyboard are parts). Similar to the effects of scene-object associations, object 

constellations allow for perceptual facilitation: recognizing a constellation (e.g., monitor 

+ keyboard) facilitates the processing of objects within the constellation (e.g., keyboard). 

However, unlike scene-object associations, object constellations are hierarchically related to 

individual objects, with constellations (but not scenes) built from objects. The facilitatory 

effects of object constellations can thus be understood within a hierarchical predictive 

processing framework, in which hierarchically higher levels provide a “prior” that aids the 

processing of the evidence at hierarchically lower levels. In general, Bayesian inference 

models formalize how an agent can make optimal perceptual inferences by combining 

different sources of information, weighted by their uncertainty. Given that low-level 

perception is marked by more ambiguity than high-level perception, expectations derived 

from hierarchically higher levels (e.g., “this input is consistent with a living room set”) can 
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act as a prior for disambiguating and facilitating the perceptual analysis at lower levels (e.g., 

“the object in the periphery may correspond to a chair”).

Interestingly, similar grouping mechanisms have been described for written language, where 

letter stimuli are combined to form n-grams and words. Similar to objects, letter stimuli 

are perceived more accurately when they are embedded in words than when viewed in 

isolation119, and word context can lead to a perceptually sharper experience of individual 

letters within words120. Concomitant with this behavioral improvement, a recent fMRI 

study observed a sharpened neural representation of letters in early visual areas when 

embedded within real words, compared to non-words121. We propose that such hierarchical 

interactions similarly take place between objects and object constellations. This provides a 

natural explanation for why the neural response pattern in high-level visual cortex evoked 

by meaningful constellations of objects are no longer accurately approximated as a linear 

combination of the individual object response patterns115,116.

Summary and future directions

The ability to rapidly recognize scenes and objects is essential for navigation and decision-

making. When we synthesize the findings reviewed in the previous sections, a scheme with 

both integrated parallel and hierarchical relations emerges (Fig 6). Initially, there is rapid 

parallel processing of visual input in the object processing (operating on foveal input) and 

scene processing (operating on peripheral input) pathways. A key advantage of these parallel 

and modular pathways is that the visual recognition process is compartmentalized into 

modules, allowing for quick and efficient inference122. Within each processing pathway, 

there is a hierarchy of processing stages, from low-level simple sensory features to 

high-level complex semantic features. This initial rapid feedforward process sets up a 

hypothesis landscape of objects, constellations of objects, and scenes. Following this first 

pass of processing, interactions can emerge between different levels of processing. First, 

interactions arise within a pathway, either within a specific level of processing (e.g., one 

object may activate other congruent objects), or between levels of processing (e.g., the 

high-level representation of a chair may sharpen the perceived sensory attributes of the 

chair). These interactions can be implemented by horizontal connections between neurons 

within one level of processing and feedback modulations between hierarchically related 

processing regions within one pathway. Second, direct interactions may emerge between 

pathways (e.g., a kitchen scene may enhance the representations of a dinner table and 

chairs). Finally, both object and scene processing can interact by activating a conceptual 

schema (e.g., a kitchen scene may activate the “kitchen schema”, which in turn enhances 

activation of schema-congruent objects). In terms of neural implementation, several studies 

have pointed at hippocampus, the medial prefrontal cortex, and the orbitofrontal cortex as 

having an important role in integrating new information within a pre-existing schema3,74,123. 

Predictions derived from this activated schema could then be sent back to the separate 

pathways74, to facilitate processing in both pathways, in line with predictive processing.

Our review raises several questions that can be addressed in future work. First, it is unknown 

which scene or object cues are most important for the perceptual effects reviewed here. 

For example, when considering the disambiguation example of Fig 2a, the object may be 
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perceived as a car because of the scene’s overall meaning (a road scene), because of the 

position of the object within the scene (on the road), because of the size implied by the 

distance within the scene, or because of all these factors combined. Future studies could 

systematically manipulate these factors to test which are needed for the perceptual effects 

described here. Another question concerns the automaticity of these effects. For example, 

studies could test whether attention124 or conscious recognition125,126 is required for the 

perceptual disambiguation of objects and scenes (Fig 2a). Relatedly, by comparing responses 

across tasks, future studies could test whether feedback signaling within each pathway is 

automatic or whether it depends on task demands. Finally, studies could train participants on 

new scene-object associations and test how much exposure is required for scene and object 

priors to become effective.

At the neural level, it is still largely unknown how object and scene pathways are 

connected. For example, while both PPA and pFs/LO are anatomically connected to 

earlier retinotopic areas, there is currently no evidence for direct connections between 

PPA and pFs/LO20,31,127. One possibility is that the interactive effects we have reviewed 

here are the result of interactions between pathways within the visual cortex at multiple 

levels. Alternatively, the main connection could travel through non-visual areas such 

as the hippocampus, orbitofrontal or medial prefrontal cortex3,123. Much is also still 

unknown about the representation of object constellations. For example, are there holistic 

representations of familiar constellations, or does grouping merely link individual object 

representations (similar questions have been addressed for the representation of letters and 

words128)? And what is the role of recently described regions that are tuned to reachable-

scale environments129, and that are sensitive to the presence of multiple objects, in the inter-

object effects described here? Another open question is whether the role of different layers 

in conveying prediction and error signals (Box 1) can be extended to explain the interactions 

between object- and scene-selective cortical regions. Finally, an important avenue for future 

research is to improve modeling of contextual effects in neural networks, which will help to 

increase our understanding of these effects at the computational level, improve performance 

of these networks, and make them behave more similar to humans (Box 2).

Moving forward, we will need to consider how we process scenes and objects in daily 

life, where the environment is typically stable and where we actively explore scenes in 

the context of goal-directed behavior (e.g., visual search). Recent advances in virtual and 

augmented reality, in combination with mobile imaging130, may serve to approach more 

naturalistic conditions in experimental research131. In daily life, the spatial and temporal 

context within which we perceive objects is much richer than when we are viewing 

briefly flashed images132–134. As a consequence, the contribution of predictive processes 

in perception is likely even stronger than revealed in the studies reviewed here.
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Box 1

Neurobiology of predictive processing

The neurobiological implementation of predictive processing is still an active topic of 

investigation135, and it is plausible that a multitude of implementation schemes exist, 

depending on the exact properties of the inference process. Nevertheless, a general neural 

motif has emerged, suggesting that feedback prediction signals are encapsulated from 

incoming and error signals by virtue of residing in distinct layers of each cortical module. 

Namely, bottom-up connections originate from superficial layers of a “lower” area and 

terminate in the middle layer of a “higher” area, while top-down connections from a 

higher to lower area originate from deep layers and avoid the middle layer. This neuro-

anatomical organization, together with recent advances in neuroimaging technology, 

now allows researchers to isolate bottom-up and top-down processing136. Within the 

context of predictive processing, top-down processing embodies the generative model, 

which can internally generate patterns of activity that specific external stimuli would 

elicit “from the bottom up”. Indeed, it has been found that internally generated stimulus 

representations (i.e., visual imagery) leads to stimulus-specific activity in the deep and 

superficial, but not middle, layers of the primary visual cortex137,138. Interestingly, the 

mere anticipation of the occurrence of a specific oriented grating stimulus leads to 

stimulus-specific activity selectively in the deep layers of the primary visual cortex139. 

Similar stimulus-specific activity in the deep layers of the visual system is observed 

when an expectation of stimulus input is generated by a visual illusion140. It is an open 

question whether object expectations generated by scene information, or vice versa, 

results in similar layer-specific activity modulations. Therefore, layer-resolved fMRI may 

hold great promise for elucidating the interactions between object- and scene-selective 

processing.
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Box 2

Incorporating context into neural network models

Deep learning has dramatically advanced the field of computer vision in the last 

decade141. This success is largely due to the new computational architectures of visual 

processing, specifically convolutional deep neural networks (DNNs), which are trained 

to perform object categorization using large-scale datasets with labeled examples. The 

achieved object classification of these trained networks is impressive, achieving human-

level performance142. Interestingly, the representations that emerge in deeper network 

layers exhibit similarities to how objects are represented in the human ventral visual 

cortex143–145. Nonetheless, there are many outstanding differences between DNNs and 

human visual processing, especially in the processing of scenes.

While humans have separate pathways for processing objects and scenes, this distinction 

is usually not present in DNNs. As a result, the networks do not systematically exploit 

scene information for object processing the way humans do. For instance, humans use 

scene information to form expectations about the size of objects146,147, facilitating the 

detection of congruently sized objects. In contrast, DNNs are typically insensitive to such 

information: they are as likely to identify objects correctly when they are of an expected, 

i.e. real-world, size, as when they are sized abnormally146.

Recent work has explored various approaches to incorporate context into DNNs and has 

shown that this can benefit the performance of DNNs. One approach is to augment 

DNNs with human-derived expectations about the position, scale and likelihood of 

specific objects in scenes. Such expectations are image-computable and can facilitate 

object classification148. It has also been shown that training DNNs separately on the 

foreground vs. background of image contents (i.e., scenes with and without objects in 

place) improves object recognition149. Yet another approach is by adopting the local vs. 

global processing of object- vs. scene-processing: we typically fixate our gaze on objects, 

resulting in high-frequency information, while the periphery (scene background) is more 

blurred. Studies have used this information to increase the efficiency of visual search 

models150,151. Furthermore, training DNNs on such “foveated” images, mimicking 

human vision, has been shown to improve their object classification compared to when 

they are trained on full resolution images152.

While all of the aforementioned examples rely on either altering the input or the 

training procedure of DNNs, some recent developments have focused on changing the 

architecture of DNNs so as to incorporate context-processing modules, analogous to 

how humans have separate pathways for object and scene processing. These context 

modules rely on receptive fields of varying spatial scales which are later fused to create 

global context. These approaches appear promising, leading to superior object detection 

accuracy, with improvement most pronounced for small objects153,154. Yet another route 

to model representations of scenes may be through the use of language; multimodal 

models such as CLIP (Contrastive Language-Image Pre-training) appear promising at 

capturing higher-level visual representations155. Thus, language may be a pathway to 

access rich semantic, or schema-like, representations of scenes (Fig 6).
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Altogether these examples serve to illustrate how taking insights from human cognitive 

neuroscience into account may lead to both improved and more human-like object 

identification in DNNs. Building-in context sensitivity would also make machine vision 

more human-like. This is relevant for the usefulness of these networks as scientific 

models of human visual processing, but potentially also for applications in which their 

output is used by human operators.
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Fig. 1. Scene- and object-selective regions in human visual cortex and their relation to the 
center-periphery organization.
a) Medial (left) and lateral (right) views of scene- and object-selective regions in the human 

visual cortex. Scene-selective regions include MPA (medial place area), OPA (occipital 

place area), and PPA (parahippocampal place area). Object-selective regions include pFs 

(posterior fusiform gyrus) and LO (lateral occipital cortex). EVC: early visual cortex 

(adapted from29). b) Ventral view of scene- and object-selective regions and their relation 

to the center-periphery organization. The scene-selective PPA is biased towards peripheral 

visual input, while the object-selective pFs and LO are biased towards central visual input 

(adapted from10,30).
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Fig. 2. Bidirectional interactions between objects and scenes.
a) Scene context can shape object perception, particularly when an object is ambiguous 

(“object blurry”, top row). In this example, the ambiguous object is perceived either as a car 

or as a printer depending on the scene context. However, when the object is sharp (bottom 

row), it can be recognized based on local features alone, reducing the influence of context. 

In that scenario, an incongruent object (a printer on a road) is surprising and receives more 

attention. b) Objects can also shape scene perception, following similar principles. Here, 

the ambiguous scene (top row) is perceived as an outdoor (open) or indoor (closed) space 

depending on the objects. When the scene is sharp, the object influence is reduced (bottom 

row).
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Fig. 3. Scene context can both facilitate and impair object perception.
a) Paradigm to investigate the perceived sharpness of objects in scenes. Participants adjusted 

the blur level of a sample object (the car) to match that of a target object42. b) More blur 

was added to objects when they were viewed within a coherent scene context, indicating that 

those objects were initially perceived as sharper. Congruent scene context thus facilitates 

object perception. c) Paradigm used to investigate the perception of unambiguous objects 

as a function of semantic congruency57. After viewing a scene for 2.5 s, participants had 

to indicate which of the two exemplars had been presented in the scene. Key objects could 

be congruent or incongruent with the scene (top row). To control for general effects of 

congruence, control objects (Other) were also tested (bottom row). Other objects were 

always congruent with the scene but were presented in scenes that also contained congruent 

or incongruent Key object. d) Results showed a congruency cost, such that participants were 

more accurate at recognizing objects that were incongruent with the scene. No effect of 

congruency was found for the control objects. In this case, congruent scene context impaired 

object perception. Error bars show 95% confidence intervals.
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Fig. 4. Neural evidence for bidirectional interactions between object and scene processing in the 
visual cortex.
a) To test whether scene context modulates representations in the visual cortex, participants 

viewed ambiguous objects with (“Scene-disambiguated object”) and without (“Ambiguous 

object”) scene context while brain activity was measured using fMRI. Multivariate activity 

patterns in the object-selective visual cortex in response to the ambiguous objects were 

classified as animate vs inanimate categories based on activity patterns evoked by clearly 

visible objects (illustrated by the picture in inset), presented in a separate experimental run. 

Results showed that the presence of scene context increased decoding accuracy (i.e., third 

bar higher than second bar)28. These results may reflect a neural correlate of the perceptual 

sharpening illustrated in Fig. 3ab. b) Similar effects were observed for the reverse influence, 

with objects modulating scene representations in the scene-selective cortex. In this case, an 

object disambiguated the scene, such that response patterns evoked by ambiguous scenes 

became more similar to clearly visible scenes presented in a separate experimental run66. 

Error bars indicate standard error of the mean.
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Fig. 5. Object constellations.
a) Objects are often seen together with other objects in familiar spatial arrangements, as 

illustrated here for a living room set. Neuroimaging studies have provided evidence for 

integrative representations of regular object arrangements in the ventral visual cortex115,116. 

b) Example stimuli used to test whether regular object arrangements are detected more 

quickly than irregular object arrangements in a breaking continuous flash suppression 

experiment108. Inverting the objects serves as a control for possible low-level stimulus 

differences. c) Results showing that regular object displays broke suppression (i.e., were 

detected more quickly) than irregular displays. No such effect was found for inverted 

controls. Error bars show 95% confidence intervals of the mean difference between regular 

and irregular conditions.
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Fig. 6. An integrated model of object-scene and object-object interactions.
a) General overview of visual processing, from initial perceptual processing (bottom) 

to semantic-level representations of scene schemas (top). Object processing is primarily 

informed by foveal (local) input, while scene processing is primarily informed by peripheral 

(global) input. Each processing pathway is hierarchically organized, with feedforward and 

feedback connections, indicated by red and blue arrows, respectively. Both pathways project 

to, and receive information from, higher-order regions containing semantic information 

of object-scene schemas (mental models in long-term memory). b) Schematic illustration 

of proposed interactions within and between object and scene processing pathways. 

Hierarchical organization of each pathway is indicated with circles, which contain low-, 

mid-, and high-level features of object and scene processing. Cross-pathway interactions 

may be most effective at higher levels of the hierarchy, but may also exist at lower levels 

(not illustrated). Subsequent feedback within each pathway can result in modulations at 

lower levels of the processing hierarchy and result in perceptual sharpening.
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