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Abstract

Background—The effects of inhaled corticosteroids (ICS) on healthy airways are poorly
defined.

Objectives—To delineate the effects of ICS on gene expression in healthy airways, without
confounding caused by changes in disease-related genes and disease-related alterations in ICS-
responsiveness.

Methods—Randomised open-label bronchoscopy study of high dose ICS therapy in 30 healthy
adult volunteers randomised 2:1 to i) fluticasone propionate 500 mcg bd daily or, ii) no treatment,
for 4 weeks. Laboratory staff were blinded to allocation. Biopsies and brushings were analysed by
immunohistochemistry, bulk RNA sequencing, DNA methylation array and metagenomics.

Results—ICS induced small between-group differences in blood and lamina propria eosinophil
numbers, but not in other immunopathological features, blood neutrophils, FeNO, FEV1,
microbiome or DNA methylation. ICS treatment upregulated 72 genes in brushings and 53 genes
in biopsies, and downregulated 82 genes in brushings and 416 genes in biopsies. The most
downregulated genes in both tissues were canonical markers of type-2 inflammation (FCER1A,
CPA3, I1L33, CLEC10A, SERPINB10 and CCR5), T cell-mediated adaptive immunity (TARP,
TRBC1, TRBC2, PTPN22, TRAC, CD2, CD8A, HLA-DQB2, CD96, PTPN7), B cell immunity
(CD20, immunoglobulin heavy and light chains), and innate immunity, including CD48, Hobit,
RANTES, Langerin and GFI1. An IL-17-dependent gene signature was not upregulated by ICS.

Conclusions—In healthy airways, 4-week ICS exposure reduces gene expression related to both
innate and adaptive immunity, and reduces markers of type-2 inflammation. This implies that
homeostasis in health involves tonic type-2 signalling in the airway mucosa, which is exquisitely
sensitive to ICS.

Registered at ClincialTrials.gov: NCT02476825
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Introduction

Inhaled corticosteroids (ICS) are the cornerstone of asthma treatment. They attenuate

airway smooth muscle
fraction of exhaled nitric oxide
forced expiratory volume
inhaled corticosteroid
interquartile range

major basic protein

tryptase only mast cell
tryptase and chymase mast cell
prostaglandin

reticular basement membrane
ready-to-use

standard deviation

Type-2 cytokines (IL-4, IL-5, IL-13)
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eosinophilic airway inflammation®-2, improve lung function, and reduce asthma symptoms,
exacerbations, and mortality3. However, their use is also associated with an increased risk
of pneumonia®. Corticosteroids modulate the expression of many molecular pathways at
the level of gene transcription, through direct upregulation of anti-inflammatory molecules
and B-adrenoceptors (transactivation), and suppression of pro-inflammatory genes, either

through direct DNA-binding or via inhibition of pro-inflammatory transcription factor
binding (transrepression). In people with severe asthma, ICS are relatively ineffective

even at high doses, but the mechanisms behind this corticosteroid insensitivity are poorly
understood and likely multi-factorial®’.

When considering the underlying molecular pathways driving both severe asthma and

relative corticosteroid insensitivity, it is unclear to what extent this is driven by pathways

that are not responsive to corticosteroids, as opposed to inhibition of corticosteroid
signalling. Gene expression profiling in asthmatic epithelial bronchial brushings and
bronchial biopsies has identified several molecular pathways present in subgroups of

patients with mild, moderate and severe asthma®. Approximately 50-80% of people with
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steroid-naive “mild” asthma demonstrate evidence of blood or airway eosinophilia, with a
concomitant increase in the fraction of exhaled nitric oxide (FeNO)1911, This phenotype is
characterised by increased expression of an airway gene expression signature driven by IL-4
and 1L-1389.12.13: tissye eosinophilia is also dependent on IL-54. Together these cytokines
are described as Th2 or type-2 cytokines (T2). T2 expression and the accompanying
eosinophilia are suppressed by ICS in mild asthmal®. In severe asthma, a persistent T2

gene signature is evident in about 25% of patients, suggesting corticosteroid insensitivity8:°.
In addition, in severe asthma, about 25% of patients have evidence of an IL-17-dependent
gene signature, which is seen only in people on ICS®2, and mutually exclusive with the

T2 signature. It is therefore not clear whether this IL-17 activity represents an independent
corticosteroid-insensitive pathway driving severe asthma or a consequence of ICS therapy.
Approximately 50% of people with severe asthma have neither a T2- or IL-17-dependent
airway gene signature, and the mechanisms driving their persistent disordered airway
physiology remains unknown. So, while gene expression profiling provides insight into

the abnormalities present in severe asthmatic airways, the multiple effects of ICS on airway
gene expression make it difficult to disentangle the changes due to the disease as opposed to
the treatment, and whether corticosteroid activity is inhibited or not.

The effects of ICS on healthy airways are poorly defined. We hypothesise that gene
expression data in severe asthma will be more interpretable if we can delineate and thus
allow for the effects of high dose ICS therapy. We have therefore performed a randomised
open label bronchoscopy study of high dose ICS therapy in healthy adult volunteers,

with the aim of understanding transcriptional consequences of ICS therapy without the
confounding effects due to disease-related processes.

Detailed methods are provided in the online data supplement.

Ethics and consent

This prospective study was approved by the East Midlands-Leicester Central
Research Ethics Committee (reference:15/EM/0313) and registered at clinicaltrials.gov
(NCT02476825). Participants gave written informed consent.

Participant population

Healthy volunteers aged 18-65 were eligible, were current non-smokers with <10 pack year
smoking history, and had no prior history or clinical evidence of lower respiratory disease
with normal spirometry. Participants with a history of rhinitis were required to have a PCyq
methacholine >16 mg/ml.

Study design

This was a randomised, open-labelled, bronchoscopy study designed to assess the effects
of 4 weeks treatment with fluticasone propionate on airway gene expression and cellularity
in healthy adult volunteers. The primary endpoint was the corticosteroid-inducible gene

Allergy. Author manuscript; available in PMC 2024 July 10.
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expression pattern in healthy airways. Secondary endpoints included the relative change
from baseline in airway cellularity.

30 participants were randomised by a blinded investigator (MR) in a 2:1 ratio to one of
two study groups: i) fluticasone propionate 500 mcg b.i.d. via Accuhaler (Diskus) daily for
4 weeks (n=20), or ii) no treatment (observation) for 4 weeks (n=10). Bronchoscopy was
performed at baseline prior to the start of treatment/observation, and at the end of week 4.
Genentech and Leicester laboratory support staff were blinded to treatment allocation.

To ensure there were sufficient data for analysis, if a subject withdrew before completion of
the study, a further subject(s) was randomised after the first 30 randomisations until a total
of 30 subjects had completed the study.

Bronchoscopy

Subjects underwent bronchoscopy conducted according to British Thoracic Society
guidelines!®. Mucosal biopsies and brushes were collected from 2Md-5t" generation bronchi
under direct vision as per study procedure manual.

Tissue processing, immunohistochemistry and assessment of immunopathology

Please see the online supplement.

All pathological data were assessed by an observer blinded to the identity and treatment
allocations of the participants.

RNA sequencing

Please see the online supplement.

Bisulphite conversion and DNA methylation arrays, DNA methylation data quality control
and normalization, Differential DNA methylation analysis, Expression quantitative trait
methylation (eQTM) analysis

Please see the online supplement.

Microbiota Sequence Data Generation, Processing, and Analysis

Please see the online supplement.

Transcriptomic analysis

Sequences in fastq files (in single and pair ends) were aligned using STAR aligner (version
2.7.1a) to the human reference genome GRCh38; R package 1/ Rsubread was employed for
quantification of reads assigned to genes.

Raw count pre-processing, normalisation and differential gene expression analysis was
performed using R, packaged edgeR (for pre-processing and gene expression filtering) and
gene expression analysis with DESeqZ2, and /imma. Gene lists of differentially expressed
genes and over-representation analysis of gene pathways/categories were produced from
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DESeq2and /imma results; volcano plots were generated with log2 fold changes and
adjusted p values resulting from moderated t tests in /immat718,

Statistical analysis

Basic summary statistical analysis was performed using GraphPad Prism version 7.03
(GraphPad Software, San Diego). Parametric and non-parametric data are presented as
mean (standard deviation [SD]) and median (interquartile range [IQR]) respectively unless
otherwise stated.

Results

Clinical characteristics

We recruited 44 healthy participants. 32 proceeded to bronchoscopy but one patient
withdrew from the study after the first bronchoscopy. 31 completed 2 bronchoscopies,

but one was subsequently withdrawn due to both <80% medication adherence and an
intercurrent asymptomatic bronchitis evident at the 2"d bronchoscopy (with bronchial wash
samples positive for a non-Covid coronavirus and Staphylococcus aureus). The clinical
characteristics of the 30 participants completing the study are shown in table 1.

Effects of ICS on biomarker and physiological measurements

There was a significant increase in blood eosinophil numbers after 4 weeks in the
observation group compared to people using ICS, but this was not related to atopic status
(Supplementary figure E1A). There were no significant between-group differences for
changes in blood neutrophils, FeNO or FEV; (Supplementary figure E1B-D).

Effects of ICS on airway inflammatory and structural cells

Suitable paired samples for immunohistochemical analysis of the lamina propria were
available from 17 participants receiving ICS and 8 undergoing observation (Figure 1 and
Supplementary Figure E2). Although there was no significant change in lamina propria
eosinophil counts within either group from the 15t to 2"d bronchoscopy, there was a
significant between-group difference in the changes (p=0.01), due to a non-significant
increase in the observation group (Figure 1A). There was no correlation between the
change in blood eosinophils versus tissue eosinophils in the observation group (rs= -0.024,
p=0.97). Comparing the changes in measurements from the 15t to 2" bronchoscopy

for the ICS versus the observation group, there were no significant differences between
treatment groups for lamina propria neutrophil, tryptase+ or chymase+ mast cell counts,
airway smooth muscle (ASM) and epithelial area expressed as a percentage of biopsy

area, or reticular basement membrane depth (Figure 1B-G)(Supplementary Figure E2).

We performed additional cell deconvolution analysis on bronchial brushings and bronchial
biopsy transcriptomic data to infer changes in cellular composition (supplementary
methods). There was an increase in club cells (FDR p=0.02) and we confirmed a suppression
of the innate and adaptive immune responses by a marked decrease in type 2 dendritic

cells (FDR p=0.02) and plasma cells (FDR p=3x10-9) after 4 weeks of ICS (Supplementary
Figure E3 and E4) and by GSEA an associated decrease in transcriptional activity of T, B,
NK, and dendritic cell genesets and a basophil/mast cell geneset (Supplementary Table ES8).

Allergy. Author manuscript; available in PMC 2024 July 10.
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Effects of ICS on airway gene expression

Suitable paired brush and biopsy samples were available for 15 and 20 participants
respectively receiving ICS. We observed significant differential expression of genes
amongst participants at week 4 compared with baseline in the ICS-treatment group, with
upregulation of 72 genes in brushings and 53 genes in biopsies, and downregulation of

82 genes in brushings and 416 genes in biopsies (Figure 2, Supplementary Tables E1-E4,
Supplementary Figures E5, E6). Amongst participants in the observation-only group there
were no significant changes in gene expression observed between baseline and week 4
(Supplementary Figure E7). There was a close correlation between epithelial brush and
bronchial biopsy gene expression, with 20 genes common to the top 24 most significantly
differentially upregulated genes in both airway compartments (Table 2) and 20 genes
common to the top 41 most significantly downregulated genes in both compartments (Table
3).

The most significantly upregulated genes were predominantly those involved in steroid
metabolism (HSD11B2, FKBP5, SULT2B1, SYT8, and SLCO1B3), cellular proliferation
(PSCA, TFCP2L1, IFITM10, ANPEP), cellular metabolism (GRAMD2A, PRODH, GNMT)
and cytoskeletal changes (PHACTR3, FAM107A). By contrast genes which were most
significantly downregulated in both brushings and biopsies were key components of T2-
driven inflammation (FCER1A, CPA3, IL33, CLEC10A, SERPINB10 and CCR5)and T
cell-mediated adaptive immunity (TARP, TRBC1, TRBC2, PTPN22, TRAC, CD2, CD8A,
HLA-DQB2, CD96, PTPN7) and (Table 3). All other top 20 common downregulated genes
were involved with innate or adaptive immunity, including the transcription factor Hobit
(ZNF683) which promotes lymphocyte tissue residency, the chemokine RANTES (CCL5),
the antigen presentation-associated molecule Langerin (CD207), and the growth factor
GFI1 which is involved in haematopoiesis, especially of neutrophils. In addition, there was
downregulation of genes associated with B cell function and immumunoglobulin production
(CD20/79, most heavy and variable light chains for IgA, 1gG and IgM, JCHAIN), protective
innate immunity (e.g. CD48, CD163), mast cell proteases (TPSB1, TPSAB1, CPA3), the
beta chain of the high affinity IgE receptor (MS4A2), and prostaglandin D2 synthase
(PTGDS1).

Consistent with these findings, pathway analysis of bronchial brushings with Reactome
showed strong ICS-related downregulation of innate and adaptive pathways, including
‘Immunoregulatory interactions between a lymphoid and non-lymphoid cell , five pathways
related to TCR signaling, the immunological synapse or co-stimulation, with weaker
signals for “ Generation of second messenger molecules’, ‘PD-1 signaling’, and ‘Chemokine
receptors bind chemokines’, showing the potent ability of ICS to suppress local adaptive

T cell immunity (Supplementary Figures E8, Supplementary Table E5). Parallel analysis

of the bronchial biopsies again showed effects on lymphoid — non-lymphoid interactions
and TCR signaling, but also strong suppression of * Extracellular matrix organization’, ‘Cell
surface interactions at the vascular wall’ and ‘Integrin cell surface interactions’, suggesting
the potential for suppression of inflammatory cell recruitment to the mucosa (Supplementary
Figure E9, Supplementary Table E6). ICS did not upregulate the IL-17-dependent gene

Allergy. Author manuscript; available in PMC 2024 July 10.
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signature identified previously in people with moderate-severe asthma (Supplementary
Figure E10).

Next we compared our set of differentially upregulated genes with a set of 26 genes
previously reported as induced by 10 weeks of inhaled fluticasone in bronchial brushings
from participants with mild asthmal®. Geneset enrichment analysis profiles showed very
close agreement between genesets (Supplementary Figure E11), particularly for brushings,
which were directly comparable between studies, showing very similar ICS-induced gene
induction in health and mild asthma. Similar downregulation of type 2 immune-related
genes was observed both irrespective of atopic status (Supplementary Table E7).

To analyse the effects of corticosteroid treatment on specific structural cells we used
geneset enrichment analysis to compare our findings with publicly available data obtained
from fibroblast cell lines, primary smooth muscle cells and primary respiratory epithelium
treated /n7 vitro with corticosteroids. We found no enrichment for a signature obtained

from a cortisol-treated human lung fibroblast cell line, but observed strong enrichment

for signatures obtained from primary human airway smooth muscle cells treated with
fluticasone propionate, and primary human airway epithelial cells treated /in vitro with
budesonide (details in Supplementary Results, Supplementary Table E8 and Supplementary
Figure E12). Together these suggest 4 weeks of ICS have direct effects on airway epithelial
cells and airway smooth muscle cells. Although there were minimal direct effects on
fibroblasts, it is possible ICS /n vivo might modulate other cells to alter the function of
fibroblasts indirectly.

To determine whether ICS have differential effects on specific epithelial cell types we used
the proportions of 5 different epithelial and structural cell types (multiciliated, basal resting,
peribronchial fibroblasts, club and suprabasal), estimated using MuSiC deconvolution, to
estimate differential gene expression between treatment conditions according to cell type,
using TOAST20 in R. Results are presented in Supplementary table E9.

Effects of ICS on the airway microbiome

Minimal effects of ICS treatment were observed on the airway microbiome (details in
Supplementary Results and Supplementary Figure E13).

Effects of ICS on airway DNA methylation

There were minimal effects of ICS treatment on DNA methylation (details in Supplementary
Results and Supplementary Figure E14).

Discussion

In this open label, randomised study in healthy adult volunteers, we have defined genes
that are altered directly by medium-term (4 weeks), twice daily high-dose ICS therapy
independent of the confounding effect of asthma pathophysiology. Changes in airway
cellularity were minimal between ICS treatment and no treatment, and there were no
measurable biologically significant effects on the airway microbiome or DNA methylation.

Allergy. Author manuscript; available in PMC 2024 July 10.
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By contrast, we observed widespread changes in gene expression following ICS use in
these healthy individuals, which predominantly comprised downregulated genes. A striking
finding was that the most significantly downregulated genes statistically were canonical
markers of T2-driven inflammation. Notably the most highly downregulated gene, in both
airway brushes, which predominantly sample the airway epithelium, and mucosal biopsies,
was FCER1A which encodes the a chain of the high affinity IgE receptor, a key effector
component of mast cell activation by allergens and of T2 immunity, which is highly
upregulated in asthma 2122, In addition, there was downregulation of genes encoding mast
cell tryptases (TPSB1, TPSAB1) and carboxypeptidase A3 (CPA3), the beta chain of the
high affinity IgE receptor (MS4A2), and prostaglandin D2 synthase (PTGDS1). We did not
see a reduction in mast cell numbers in the airway mucosa of these healthy individuals,

so the predominant effect of ICS appears to be on gene transcription, rather than mast cell
survival, but nevertheless suggests that ICS have a potentially important dampening effect
on mast cell function. In biopsies, there was also downregulation of the important mast cell
chemoattractants CXCL10 and CXCL11 which promote mast cell migration to the ASM in
mild steroid-naive asthma through the airway mast cell chemokine receptor CXCR323, In
people with severe asthma using high dose ICS +/- oral corticosteroids, mast cells are not
increased within the ASM 2425 suggesting suppression of mast cell chemoattractants from
ASM may remain corticosteroid-sensitive in severe disease. This is in contrast to the release
of mast cell-derived proteases and autacoids which demonstrate ongoing release in severe
disease2425,

Other highly downregulated T2-related genes included IL33, an airway epithelial cell
alarmin which acts to promote initiation of T2 responses?’, CLEC10A which is a marker for
alternatively activated macrophages28, SERPINB10 which is highly upregulated on airway
epithelium by I1L-13 and inhibits Th2 cell apoptosis, and CCR5 whose ligands include CCL5
(RANTES), a chemoattractant for eosinophils and mast cells. Moreover PTGS1, which
encodes cyclooxygenase-1 was the 7! most downregulated gene in brushings. This enzyme
converts arachidonate to prostaglandins and its dysregulation or inhibition is implicated

in salicylate-sensitive asthma and sino-nasal eosinophilic inflammation2®. Similarly in
biopsies, periostin (POSTN), an IL-13-induced epithelial gene associated with T2 high
asthmas39, was also downregulated.

Taken together, the ability of ICS to downregulate this extensive set of T2-related genes
implies that homeostasis in health involves a low level of tonic T2 signalling in the
airway mucosa that is very sensitive to ICS. This would be consistent with the observation
that IL-4- and 1L-5-positive cells are present in healthy airways31, as are mast cells and
dendritic cells expressing FceRla.32, Constitutive T2 signalling is also evident in primary
epithelial cell cultures grown at air-liquid interface, where we previously observed that
STAT6-dependent genes including POSTN, CLCAL and SERPINB2 were repressed by
NFxB-dependent cytokine stimulation or dexamethasone33. Thus differentiated bronchial
epithelial cells have a low level of tonic STAT6 dependent signalling in the absence

of exogenous IL-4 or 1L-13. However, FeNO was not reduced by ICS in these healthy
volunteers, and NOS2, which regulates FeNO production, was not altered by ICS therapy,
suggesting tonic T2 signalling is below the threshold required for pathological FeNO
generation.

Allergy. Author manuscript; available in PMC 2024 July 10.
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The role of low-level, tonic, constitutive T2 signalling in the airways is uncertain but likely
beneficial for tissue homeostasis. T2 immunity exhibits many host-protective functions,
including maintaining metabolic homeostasis, suppressing excessive T1 inflammation,
maintenance of barrier defence and regulation of tissue regeneration34-37. For example,
IL-33 is pleiotropic and can promote type 2 inflammation but in other contexts it can

be immunoregulatory?’, and preserves epithelial integrity during influenza infection in

a mouse model38:3%, Thus the effects of type 2 immunity may be context specific and
affected by the cellular source and concomitant inflammatory milieu, and at steady state
may promote airway epithelial barrier function. Inhibition of homeostatic tonic T2 signalling
might therefore have deleterious effects which may have an impact clinically, and might
explain an enhanced propensity to proteobacterial colonisation or infection, as was observed
in the MEX40 and RASP-UK*! studies amongst participants with very low T2 biomarkers.

In addition to the inhibition of T2-driven genes, there was marked suppression of

molecules involved in both protective innate immunity (e.g. CD48, CEACAMS5) and
adaptive immunity, with suppression of genes related to dendritic cells (CD207), T cells
(e.g. CD2/3/6/8/96, TRBC1/2, TRAC), and B cell function (e,g, CD20/79, most heavy

and variable light chains for IgA, 1gG and IgM, JCHAIN). This potential impairment of
innate, cell-mediated and antibody-dependent immunity likely explains the reproducible
dose-dependent increased pneumonia risk in people with asthma and COPD who are using
ICS?. A subgroup of people with asthma also become colonised with certain fungi“2, and it
is possible that this is also a consequence of the mucosal immunosuppression observed here.

An important aim of this study was to provide information on the activity of ICS in

healthy airways, to remove the confounding that might occur due to disease-related changes
in gene expression or inherent ICS responsiveness, which should facilitate analyses of

gene expression changes in asthma. Studies of severe asthma to-date*3 have attempted to
account for the effects of ICS based on gene expression changes derived from in vitro cell
cultures, from an interventional study of gene expression changes in people administered
ICS for chronic obstructive pulmonary disease, and from one previous intervention study
which used microarrays to assess acute airway transcriptional consequences 6 hours after

a single inhaled dose of budesonide (1600 pg) in 12 healthy, steroid-naive men#. Our
findings are complementary to the previous budesonide study in that some differentially
regulated genes are common to our two studies (including upregulation of FKBP5, ZBTB16,
PHACTR3, TSC22D3 and downregulation of CD207, FCER1A, 1L33), but there is a
striking difference in the overall consequences of a single dose versus 4 weeks twice daily
ICS use. The predominant effect of a single large acute dose of ICS was upregulation of
genes (transactivation), with 68 genes upregulated and only 28 downregulated. Many of the
upregulated genes were proinflammatory including growth factors, chemokines, chemokine
receptors, cytokines, growth factors, and coagulation factors. By comparison in our chronic
high dose exposure study only 53 genes were upregulated in biopsies, whilst 416 genes
were downregulated (transrepression). This highlights the critical and often overlooked
importance of the complex temporal dynamics of corticosteroid effects*®.

Early during an acute infectious or traumatic challenge a surge in endogenous
corticosteroids will tend to enhance protective inflammatory and procoagulant responses,

Allergy. Author manuscript; available in PMC 2024 July 10.
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but as time passes these responses will attenuate and slower but potent transrepressive
effects will dominate to curtail uncontrolled inflammatory cell recruitment and activation,

to prevent bystander tissue damage, and to direct resolution of tissue homeostasis. It is this
latter situation which is of greatest clinical relevance to long term asthma management.

Of note, comparing our data to the study by Woodruff'2, where people with mild asthma
received inhaled placebo or fluticasone propionate (500 pg) twice daily for 8 weeks, there
was a strong correlation between the studies for ICS-inducible genes, suggesting that in mild
asthma at least, ICS-dependent transactivation is preserved.

When considering previous studies of gene expression in severe asthma, an IL-17-dependent
gene signature is expressed in a subset of people, and mutually exclusive with a T2 gene
signature8°. This IL-17-dependent signature was only seen in people using ICS, but it has
been unclear whether this is disease- or treatment-related, and whether it is harmful or
potentially protective. We did not see upregulation of this IL-17 signature after 4 weeks of
ICS treatment in this study, thus it seems most likely a feature of disease. Similarly, there is
upregulation of CEACAM family members in severe asthma, notably the 1L-13-dependent
gene CEACAMS54647 ‘and CEACAMS6 which was increased on both the epithelium and
neutrophils in bronchial biopsies*6. Here we found that CEACAMSG expression did not
change with ICS treatment, while CEACAMS expression was reduced (tables E2, E4), in
keeping with the inhibition of other T2-related genes. Therefore the upregulation of these
CEACAMs in severe asthma appears to be a feature of the disease rather than treatment. In
the recent U-BIOPRED bronchoscopy study2>, ICS-inducible genes such as FKBP5 were
upregulated in severe asthma, suggesting that their participants were adherent to treatment,
and importantly, that ICS transactivation appears to be preserved in severe asthma, but
many pathological pathways that should be sensitive to transrepression by ICS such as T2
signalling are not responsive in a subset of patients®:9:24,

There are some limitations to our work. Firstly the effects of ICS in healthy airways at

4 weeks, while likely representative of the steady state in long term therapy, might not

be fully representative of longer term therapy. However it is not reasonable to ask healthy
volunteers to take ICS for a year, and adherence would likely wane. Secondly our analyses
use bulk sequencing of airway brushes and biopsies, and ICS effects are likely to be
highly cell-specific, so future studies using spatial sequencing, from central and peripheral
airways as well as nasal tissues and peripheral blood would be informative. For example,
as we did not enumerate all of the cell types implicated in the transcriptomic analyses, we
cannot conclude whether the changes in T- and B-lymphocyte related gene expression are
due to transcriptional changes within lymphocytes, changes in the relative proportions of
lymphocytes in the samples, or a combination of the two.

In summary, we defined genes altered directly by ICS therapy without confounding

by disease. We provide evidence that IL-17-dependent signalling in asthma is disease-
dependent rather than 1CS-dependent, and demonstrate downregulation of canonical markers
of T2 inflammation, implying that homeostasis in health involves tonic T2 signalling in the
airway mucosa, which is exquisitely sensitive to ICS. There was also broad suppression

of innate and adaptive immunity, in keeping with known immunosuppressive effects of
corticosteroids.

Allergy. Author manuscript; available in PMC 2024 July 10.
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Figure 1.

Immunohistochemical analysis of the lamina propria biopsies showing cell counts and
remodelling features on participants with available paired data, before and after 4 weeks
treatment with inhaled fluticasone or without treatment. The change in numbers of A)
eosinophils, with atopic participants shown in red, B) tryptase-positive mast cells, C)
chymase-positive mast cells, or D) neutrophils, expressed in absolute counts/mm?2. Changes
in area of E) epithelium or F) airway smooth muscle (ASM), expressed as a percentage

of biopsy area or of G) reticular basement membrane (RBM) thickness. Horizontal bars
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represent mean (SD)(mast cells, neutrophils, ASM, epithelium, RBM) or median (IQR)
(eosinophils), analysed by unpaired t test or Mann Whitney U respectively. Obs represents
the observation group.
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Figure 2.
Changes in gene expression measured by RNAseq in response to 4 weeks treatment with

inhaled fluticasone. Log2 fold changes and statistical tests calculated using moderated t tests
on vsnnormalized log2(count per million) values in Limma. A) Bronchial brush volcano
plot. B) Bronchial biopsy volcano plot.
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Table 1
Demographics of the study participants

Healthy - ICS  Healthy - obs)ervation p valuet

m

= (n=20) (n=10

o

'8 Age - years 38 (22-52) 24 (22-33) 0.2
g Sex - M/F 8/12 713 0.2
@) BMI (kg/m2) 24737 244+27 0.8
EI Ethnicity Caucasian

> (%) 80 70 0.7
o

g Atopic (%) 25 50 0.2
> Ex smoker (%) 20 10 0.6
(e

= Smoking

2 (pack years) 0.0 (0.0-0.0) 0.0 (0.0-0.0) 0.4
Z FEV, Pre BD (L) 3.32£0.79 4.0+0.93 0.047
[<Y)

g FEV; Pre BD (%

(8 predicted) 103+ 11 100+ 8 0.5
%' FEV1/FVC (%) 82.1+4.6 824+33 0.9
[ond

<2 FeNO (ppb) 16 (11-25) 18 (15-29) 0.4

Blood eosinophils at
screening (x10%/L) 0.11 (0.06-0.15) 0.11 (0.08-0.15) 0.8

Continuous variables are presented as mean + SD or median (interquartile range). BD, bronchodilator; BMI, body mass index; FVC, forced vital
capacity; FeNO, fractional exhaled nitric oxide; FEV1, forced expiratory volume in 1 second; ICS, inhaled corticosteroids.

fAII tests for continuous variables are t-test or Mann Whitney U. For categorical variables, a Fischer’s exact test was used.

*P<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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