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Abstract

We present a novel multimodal deep learning framework for cardiac resynchronisation therapy 

(CRT) response prediction from 2D echocardiography and cardiac magnetic resonance (CMR) 

data. The proposed method first uses the ‘nnU-Net’ segmentation model to extract segmentations 

of the heart over the full cardiac cycle from the two modalities. Next, a multimodal deep 

learning classifier is used for CRT response prediction, which combines the latent spaces of the 

segmentation models of the two modalities. At test time, this framework can be used with 2D 

echocardiography data only, whilst taking advantage of the implicit relationship between CMR 

and echocardiography features learnt from the model. We evaluate our pipeline on a cohort of 50 

CRT patients for whom paired echocardiography/CMR data were available, and results show that 

the proposed multimodal classifier results in a statistically significant improvement in accuracy 

compared to the baseline approach that uses only 2D echocardiography data. The combination of 

multimodal data enables CRT response to be predicted with 77.38% accuracy (83.33% sensitivity 

and 71.43% specificity), which is comparable with the current state-of-the-art in machine learning-

based CRT response prediction. Our work represents the first multimodal deep learning approach 

for CRT response prediction.
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1 Introduction

Cardiac imaging techniques play a pivotal role in heart failure (HF) diagnosis, assessment 

of aetiology and treatment planning. Several modalities are available that are of relevance 
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in patients with HF. Echocardiography is the first-choice imaging technique in the daily 

practice of cardiology as it is non-invasive, low-cost, easily available and provides most of 

the information required for the management and follow up of HF patients (Kirkpatrick et 

al., 2007). However, echocardiography has a number of limitations. First, image quality is 

heavily dependent on operator experience and expertise. Second, in normal clinical practice 

the images are two-dimensional (2D) meaning that geometrical assumptions are made in 

order to compute three-dimensional (3D) clinical metrics such as volumes and ejection 

fraction. Finally, echocardiography has limited spatial resolution with a relatively narrow 

field of view which can lead to poor endocardial definition.

Cardiac magnetic resonance (CMR) imaging is considered to be the gold standard in the 

evaluation of left ventricular (LV) function and is increasingly used in the assessment 

of HF due to its excellent temporal and spatial resolution and lack of ionizing radiation 

(Hundley et al., 2010). However, CMR is a time-consuming and expensive modality which 

requires significant technical expertise to operate, and hence has limited availability in some 

geographical areas.

Recently, machine learning (ML), and more specifically deep learning (DL) techniques have 

shown promising performance in a range of medical image analysis tasks (Litjens et al., 

2017). In cardiac image analysis, most ML/DL techniques have considered the modalities 

of CMR and echocardiography in isolation. However, some works (Puyol-Antón et al., 

2018; Puyol-Anton et al., 2017; Bruge et al., 2018) have shown that they can contain 

complementary information and so considering them in combination could have benefits 

in terms of performance. To date, these methods have been based upon traditional ML 

approaches such as multiview learning (Puyol-Antón et al., 2018).

However, recently, inspired by the success of DL methods in other applications, multimodal 

deep learning (MMDL) (Ramachandram and Taylor, 2017) has attracted significant research 

attention due to its ability to learn common features from multiple modalities, with the 

potential to exploit their natural strengths and reduce redundancies. In this paper we aim 

to use MMDL methods for prediction of response to Cardiac Resynchronisation Therapy 

(CRT), which is a common treatment for HF. Our aim is to use MMDL to produce an 

automated tool for CRT response prediction that utilises only echocardiography data as input 

at test time whilst also exploiting multimodal (CMR and echocardiography) data at training 

time.

1.1 Cardiac resynchronisation therapy

HF is a complex clinical syndrome associated with a significant morbidity and mortality 

burden. Cardiac remodeling is a pivotal process in the progression of HF, and it is defined 

as a change in the size, shape, or structure of one or more of the cardiac chambers. This 

remodelling can result in the development of dyssynchronous ventricular activation, which 

is often induced by electrical conduction delay in some regions of the LV and can lead to a 

decline in cardiac efficiency.

CRT is a common treatment for patients with heart failure with reduced ejection fraction 

(HFrEF) as it can restore LV electrical and mechanical synchrony. It has been shown 
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to increase quality of life, improve functional status, reduce hospitalisation, improve LV 

systolic function and reduce mortality in properly selected patients (Bristow et al., 2004; 

Cleland, 2005). While CRT is an effective therapy, approximately 30–40% of patients 

treated with CRT gain little or no symptomatic benefit from the treatment (Yancy et al., 

2017; Ponikowski et al., 2016; McAlister et al., 2007; Parsai et al., 2009). The phenomenon 

of non-response to CRT is likely multi-factorial and related to patient selection criteria, CRT 

lead positioning and post-implant factors.

Current consensus guidelines (Authors/Task Force Members et al., 2013; Ponikowski et 

al., 2016) regarding selection for CRT focus on a limited set of patient characteristics 

including NYHA functional class, left ventricular ejection fraction (LVEF), QRS duration, 

type of bundle branch block, aetiology of cardiomyopathy and atrial rhythm (sinus, atrial 

fibrillation). The clinical research literature reveals a number of important insights into 

improving selection criteria, ranging from a lack of consensus regarding the definition of 

non-responders to technological limitations in the delivery of therapy.

Mullens et al. (2009) have previously described a post-implantation CRT optimisation 

clinic to investigate the causes of CRT non-response. They show that there were multiple 

common factors such as anemia, sub-optimal medical therapy, underlying narrow QRS 

duration and primary right ventricular dysfunction that could be identified pre-implantation 

and might help to improve outcomes and avoid implantation in unsuitable patients. Other 

factors that have been shown to be associated with increased response to CRT are strict 

left bundle branch block (LBBB) with type II contraction pattern (Jackson et al., 2014) 

and presence of septal flash (SF)1 and apical rocking (Stankovic et al., 2016; Marechaux 

et al., 2016). Other predictors of non-response to CRT that have been identified include 

ischemic cardiomyopathy, extensive scar, presence of right bundle branch block, absence 

of mechanical dyssynchrony, and poor LV lead placement (i.e. in a sub-optimal location) 

(Linde et al., 2012). Despite more than 20 years of clinical development, a consensus 

definition of response and non-response to CRT has not been reached and it is necessary to 

better identify its causes for improving its results.

1.2 Related work

In this section, we provide an overview of the relevant literature on multimodal machine 

learning (Section 1.2.1) and the use of machine learning for CRT response prediction 

(Section 1.2.2).

1.2.1 Multimodal machine learning—Multimodal machine learning aims to build 

models that can process and relate information from multiple modalities. Compared to 

single modality machine learning techniques, learning from multimodal sources offers 

the possibility of capturing correspondences between modalities, reducing redundancies, 

and improving generalisation. Traditional multimodal machine learning approaches have 

included co-training algorithms (Brefeld and Scheffer, 2004; Muslea et al., 2000; Yang et 

al., 2012), co-regularisation algorithms (Kan et al., 2015; Sun, 2011), margin consistency 

1An early inward motion of the ventricular septum.
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algorithms (Sun and Chao, 2013; Chao and Sun, 2016) and multiple kernel learning (MKL) 

(Gönen and Alpaydın, 2011).

Several different DL algorithms have been proposed for multi-modal learning. The most 

common are: (1) variants of the deep Boltzmann machine, which have been proposed to 

model the joint distribution from different modalities’ data (Srivastava et al., 2012; Hu 

et al., 2013); (2) extensions of classical autoencoders to discover correlations between 

hidden representations of two modalities (Wang et al., 2015; Feng et al., 2014); and (3) non-

linear extension of the Canonical Correlation Analysis (CCA) algorithm using deep neural 

networks (Andrew et al., 2013). However, in their originally proposed forms these models 

are not scalable to the number of features (pixels/voxels) typically present in medical images 

as they were based on fully-connected neural networks. Recently, some convolutional neural 

network (CNN)-based architectures that combine information from multiple sources for 

image and shape recognition have been proposed (Su et al., 2015; Yao et al., 2017; Wang 

et al., 2017). With the aim of directly utilising the CMR and echocardiography data, in this 

paper we employ a CNN-based architecture for deep multimodal classification.

1.2.2 CRT response prediction—A limited number of papers have investigated the 

use of ML to predict response to CRT. The literature can be mainly divided into approaches 

that use data from electronic health records (EHR) (Hu et al., 2019; Feeny et al., 2019; 

Kalscheur et al., 2018; Nejadeh et al., 2021; Ahmad et al., 2018; Bernard et al., 2015), 

approaches that use biomarkers derived from imaging data (Cikes et al., 2019; Bernard et 

al., 2015; Donal et al., 2019; Galli et al., 2021; Chao et al., 2012; Lei et al., 2019) and 

atlas-based approaches (Peressutti et al., 2017; Duchateau et al., 2010; Sinclair et al., 2018).

In the first category, the most common parameters used from the EHR are demographic 

information (e.g. sex, age, race), diagnosis codes (i.e. ICD9 and ICD10 codes), encounter 

information (i.e. visit type, length of stay), laboratory reports (e.g. lipids, glucose, 

creatinine), medication lists and cardiology reports (e.g. QRS duration, presence of LBBB, 

sinus rhythm). Hu et al. (2019) predicted CRT response in a cohort of 990 subjects using 

both structured and unstructured data from the EHR. The authors evaluated a variety of ML 

algorithms and showed that the gradient boosting classifier obtained the highest performance 

with a positive predictive value of 79%. Feeny et al. (2019) used a naive Bayes classifier 

with only 9 variables derived from the EHR and showed in a cohort of 455 subjects 

better CRT response prediction than current guidelines (area under the curve (AUC) = 0.7). 

Later, the same authors used Principal Components Analysis (PCA) followed by K-means 

clustering to predict CRT response using pre-and post-CRT 12-lead QRS waveforms (Feeny 

et al., 2020). Kalscheur et al. (2018) developed a random forest (RF) model for CRT 

patient survival prediction using 45 EHR features. Their model differentiated outcomes 

(AUC = 0.74) better than only current clinical discriminator features such as LBBB and 

QRS duration. Lei et al. (2019) showed that the three features of QRS duration, LBBB, and 

non-ischemic cardiomyopathy achieved the highest accuracy (84.81%) in identifying CRT 

responders when using a support vector machine (SVM) classifier. Finally, Ahmad et al. 

(2018) used a RF model to predict outcomes in 44,886 HF patients from the Swedish Heart 

Failure Registry. They also performed a cluster analysis to identify 4 distinct subgroups that 

differed significantly in outcomes and in response to therapeutics.
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In the second category, the most common CMR and echocardiography-derived parameters 

used for CRT response prediction have been longitudinal, radial and circumferential strain 

(Cikes et al., 2019; Bernard et al., 2015; Donal et al., 2019; Chao et al., 2012) and right 

ventricular (RV) free wall strain and tricuspid annular plane systolic excursion (TAPSE) 

(Galli et al., 2021). For example, Cikes et al. (2019) used unsupervised MKL to combine 

EHR features with LV longitudinal strain derived from 2D echocar-diography data to 

phenogroup patients with HF with respect to both outcomes and response to CRT. Chao 

et al. (2012) computed radial peak strain from 2D echocardiography data on a cohort of 26 

CRT patients, and used it with a SVM classifier to identify CRT responders with 95.4% 

accuracy. Galli et al. (2021) used a k-medoid algorithm with Gower distance to identify 

16 features with good prediction of CRT response (AUC = 0.81) and outcomes (AUC = 

0.84) in a cohort of 193 CRT patients. Donal et al. (2019) combined EHR data with 2D 

echocardiography-derived parameters in a RF algorithm for predicting response to CRT in a 

cohort of 54 HF patients.

The works mentioned above focused on simple features derived from imaging data, and 

did not incorporate spatio-temporal information, which allows for a richer characterisation 

of cardiac function. Cardiac motion atlases have been previously used to exploit cardiac 

motion information from a cohort of subjects in a range of applications. Some works have 

used these atlases for CRT response prediction and to identify motion patterns that can be 

unique to CRT responders. Duchateau et al. (2010) built a cardiac motion atlas from 2D 

echocardiography data, and used it to detect septal flash and LV motion abnormalities in 

a cohort of CRT patients. Peressutti et al. (2017) built a cardiac motion atlas from CMR 

imaging data and used supervised MKL to combine motion and non-motion features to 

predict CRT response, achieving approximately 90% accuracy on a cohort of 34 patients. 

Sinclair et al. (2018) built a cardiac motion atlas based on a novel approach to compute 

strain at different spatial scales in the LV from CMR imaging. A combination of PCA and 

linear discriminant analysis was used for identifying the spatial scales at which myocardial 

strain was most strongly predictive of CRT response. An accuracy of 86.7% was achieved in 

identifying CRT responders in a cohort of 43 patients.

Until recently, DL had not been applied to predict CRT response. We have recently proposed 

such an approach in Puyol-Antón et al. (2020), which described a CMR-based pipeline 

based on a variational autoencoder (VAE) that allows CRT response prediction as well as the 

prediction of explanatory concepts to aid interpretability.

1.3 Contributions

In this paper we propose the first MMDL method for CRT response prediction. The method 

builds upon our recent work (Puyol-Antón et al., 2020) in which we proposed a DL 

framework for CRT response prediction based on CMR images, and extends it to exploit 

2D CMR and 2D echocardiography data at training time. At test time the CRT response 

prediction is made using only the echocardiography data whilst taking advantage of the 

implicit relationship between CMR and echocardiography features learnt from the model. 

This is the first ML model to learn features from multimodal imaging data for CRT response 

prediction. In addition, with the exception of our preliminary work (Puyol-Antón et al., 
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2020) it is the first DL model for CRT response prediction. The remainder of this paper 

is organised as follows. In Section 2, we describe details of the clinical data sets used 

for evaluation. In Section 3 we describe the novel MMDL framework developed for CRT 

response prediction. In Section 4 we present a thorough evaluation of the MMDL method, 

and Section 5 discusses the findings of this paper in the context of the literature and 

proposes potential improvements for future work.

2 Materials

Four data sets were used for the training and validation of the MMDL model, and these are 

described below:

1. UK Biobank (UKBB): This database contains only CMR data and is used for 

pre-training the CMR segmentation model (see Section 3.1). In this work, we 

use a cohort of 700 healthy subjects, where the LV endocardial and epicardial 

borders and the RV endocardial border were manually traced at end diastole 

(ED) and end systole (ES) frames using the cvi42 software (version 5.1.1, 

Circle Cardiovascular Imaging Inc., Calgary, Alberta, Canada). CMR imaging 

was performed using a 1.5 T Siemens MAGNETOM Aera (see Petersen et al. 

(2015) for further details of the image acquisition protocol).

2. EchoNet-Dynamic (Ouyang et al., 2020): This database contains only 

echocardiography data and is used for pre-training the echocardiography 

segmentation model (see Section 3.1). Apical-4-chamber echocardiography 

images were acquired by skilled sonographers using iE33, Sonos, Acuson 

SC2000, Epiq 5G, or Epiq 7C ultrasound machines in a cohort of 10,030 

patients. For all subjects, the endocardial borders was manually traced at ED 

and ES frames. For further details of the image acquisition protocol see Ouyang 

et al. (2020).

3. Guys and St Thomas NHS Foundation Trust (GSTFT): This database 

contains paired CMR and echocardiography data for a cohort of 50 HF patients 

and a cohort of 50 CRT patients. The GSTFT HF database was used to train and 

validate the CMR and echocardiography segmentation models (see Section 3.1). 

The GSTFT CRT database was used to train and validate the MMDL algorithm. 

Both studies were approved by the London Research Ethics Committee (11/LO/

1232), all patients provided written informed consent for participation in this 

study and the research was conducted to the Helsinki Declaration guidelines on 

human research. CMR imaging for the GSTFT HF and GSTFT CRT database 

was carried out on multiple scanners: Siemens Aera 1.5T, Siemens Biograph 

mMR 3T, Philips 1.5T Ingenia and Philips 1.5T and 3T Achieva. In this 

study, the cine CMR 4 chamber single-slice long-axis (la4Ch) data were used, 

which had a slice thickness between 6 and 10 mm and an in-plane resolution 

between 0.92 × 0.92mm2 and 2.4 × 2.4mm2. For the GSTFT CRT cohort, 2D 

echocardiography imaging was acquired prior to CRT and at 6-months follow-

up. For both cohorts (i.e. GSTFT HF and GSTFT CRT), the ultrasound machines 

used were Philips IE33 and EPIQ 7C (Phillips Medical Systems, Andover, MA, 
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USA) and the General Electric Vivid E9 (GE Health Medical, Horten, Norway), 

each equipped with a matrix array transducer. In this study, the apical 4Ch 

view was used for the development and evaluation of the MMDL model, and 

the apical 2Ch and 4Ch views were employed to estimate the left ventricular 

end-diastolic volume (EDV), end-systolic volume (ESV) and LVEF at 6-months 

follow-up for the GSTFT CRT cohort. The echocardiography images had an 

in-plane resolution between 0.26x0.26mm2 and 0.62 × 0.62mm2.

4. GSTFT CRT echocardiography database: This database contains only 

echocardiography data for a cohort of 12 CRT patients who underwent upgrade 

of their device. These data are used to further test the proposed MMDL method 

in the intended clinical application of using only echocardiography data at test 

time. This cohort has similar 2D echocardiography image parameters to the 

GSTFT CRT cohort described above.

CRT volumetric response

For the GSTFT CRT database, all patients fulfilled the conventional criteria for CRT 

(see Section 1.1) and underwent CMR and 2D echocardiography imaging and clinical 

evaluation prior to CRT and at 6-months follow-up. For the GSTFT CRT echocardiography 

database, subjects only underwent 2D echocardiography imaging rather than both CMR and 

echocardiography. All patients were classified as responders or non-responders based on 

volumetric measures derived from 2D echocardiography acquired at the 6-months follow-up 

evaluation (Authors/Task Force Members et al., 2013). Patients were classified as responders 

if they had a reduction of ≥15% in LV ESV after CRT, and were classed as non-responders 

otherwise. From the GSTFT CRT cohort, there were 32/50 patients who were classified 

as responders to CRT and for the CRT echocardiography cohort, 7/12 patients who were 

classified as responders to CRT in this way. This information was used as the primary output 

label in training our proposed model.

3 Methods

An overview of the proposed MMDL framework is shown in Fig. 1. First, for each modality 

(i.e. CMR and echocardiography) a DL-based segmentation model is trained. Second, the 

latent spaces of these segmentation models are combined by the MMDL model and used for 

classification.

In the following, Section 3.1 briefly reviews the main steps involved in the automated 

segmentation of CMR and echocardiography images, Section 3.2 describes how the latent 

spaces of the segmentation models are extracted and combined and Section 3.3 introduces 

our MMDL classifier.

3.1 Automatic segmentation network

We used the ‘nnU-Net’ architecture (Isensee et al., 2021) for automatic segmentation of 

CMR and echocardiography images in all frames through the cardiac cycle. In comparison 

to the standard U-net, the ‘nnU-Net’ framework is a deep learning-based segmentation 

method that automatically configures itself based on the training database. This automatic 
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configuration can be grouped into three categories: 1) fixed, which corresponds to all 

design choices that do not require adaptation between datasets (i.e. architecture template) 

and are optimised for robust generalization on the datasets from the Medical Decathlon 

Segmentation Challenge; 2) rule-based, which contains a set of heuristic rules to infer 

data-dependent hyper-parameters of the pipeline; and (3) empirical parameters that help to 

select the best configuration based on the ensemble of different network configuration(s) and 

post-processing. Fig. 2 shows an overview of the ‘nnU-Net’ networks used for CMR and 

echocardiography data.

CMR cine la4Ch segmentation—The CMR segmentation model performed automated 

segmentation of the left ventricle blood pool (LVBP), left ventricular myocardium (LVMyo) 

and right ventricle blood pool (RVBP) from CMR la4Ch images. The network was trained 

with 1400 images from the UK Biobank database (ED and ES frames) and 200 images (ED 

and ES frames) from the GSTFT HF cohort.

Echocardiography apical 4Ch segmentation—The echocardiography segmentation 

model performed automated segmentation of the left ventricle blood pool (LVBP) from 

echocardiography apical 4Ch images. The model was pre-trained using the EchoNet-

Dynamic database (Ouyang et al., 2020), which includes 20,060 echocardiography images 

with annotations (ED and ES frames). To take into account the inter-vendor differences 

in intensity distributions, the segmentation model was then fine-tuned using 300 images 

(multiple time points from 50 echocardiography scans) from the GSTFT HF cohort.

Implementation Details—Both segmentation models were trained and evaluated using a 

five-fold cross-validation on the training set. As in Isensee et al. (2021), the networks were 

trained for 1000 epochs, where one epoch is defined as an iteration over 250 mini-batches. 

The batch sizes were 33 and 10 respectively for the CMR cine la4Ch and echocardiography 

apical 4Ch segmentation models. Stochastic gradient descent with Nesterov momentum 

(μ=0.99) and an initial learning rate of 0.01 was used for learning network weights. The loss 

function used to train the ‘nnU-Net’ model was the sum of cross-entropy and Dice loss. Data 

augmentation was performed on the fly and included techniques such as rotations, scaling, 

Gaussian noise, Gaussian blur, brightness, contrast, simulation of low resolution, gamma 

correction and mirroring. Please refer to Isensee et al. (2021) for more details of the network 

training.

3.2 Generation of the latent space

The two segmentation models were used to segment the CMR and echocardiography images 

from the GSTFT CRT cohort in all frames through the cardiac cycle. To correct for variation 

in acquisition protocols between vendors, all images were first temporally resampled to T 
= 25 frames per cardiac cycle using piecewise linear warping based on cardiac timings 

(Puyol-Antón et al., 2018). For each frame, the latent space of the segmentation network was 

stored and these were concatenated to generate a 2D matrix, in which rows correspond to 

the latent variables and columns to the different temporal frames - see Fig. 2 for an example 

case.
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3.3 Multimodal deep learning (MMDL)

We used the 2D Deep Canonical Correlation Analysis (DCCA) algorithm (Andrew et al., 

2013; Wang et al., 2017) followed by a SVM classifier to develop our MMDL model for 

CRT response prediction. DCCA extends the linear CCA model by projecting multiple 

views of the data to a common latent space using a deep model with multiple branches, 

each corresponding to one view (see Fig. 3). Here we consider CMR and echocardiography 

images as two views of the same object, i.e. the heart.

The 2D DCCA framework we employ is similar in concept to the configuration provided in 

Wang et al. (2017) and contains three parts:

1. Nonlinear feature transformation: The first three layers are convolutional 

layers (i.e. CNNs): two 8-dims, two 16-dims and two 32-dims followed by 

a ReLU activation function. The size of all the receptive fields is 3 × 3 and 

the stride in all the layers is 1. A max pooling layer is inserted between each 

pair of sequences. The last layer is a global pooling layer, which enforces 

correspondences between feature maps and categories. The outputs of the last 

layer are defined as L1 and L2 in Fig. 3, and are the inputs of the CCA layer.

2. CCA layer: This layer has the goal to jointly learn parameters for both views X1 

and X2 to maximise corr(f1(X1), f2 (X2)), where f1 () and f2 () are the nonlinear 

functions learnt by the networks from the previous step. We denote by θ1 the 

vector of all parameters from the nonlinear feature transformation of the first 

view, and similarly for θ2. These are determined according to the following 

objective:

(θ1
∗, θ2

∗) = argmax
(θ1, θ2)

corr(f1(X1; θ1), f2(X2; θ2))

(1)

The parameters θ1 and θ2 of DCCA are trained to optimise this quantity using 

gradient-based optimisation. For the full derivation of the gradients we refer to 

the original DCCA paper by Andrew et al. (2013). The outputs of the CCA layer 

are V1 and V2.

3. Feature fusion The fusion layer combines the outputs of the CCA layer (V1 and 

V2) as follows: Ffusion = α · V1 + β · V2, where α and β are the fusion weights. 

In our experiments, in order to balance the composition of features, we set α = β 
= 0.5.

The final part of the MMDL architecture is a binary SVM model with a radial basis function 

(RBF) kernel classifier, where the input is the output of the feature fusion layer and the 

output is a binary variable (i.e. CRT responders vs CRT non-responders). At test time, we 

can use either the output of the CMR or echocardiography layer (V1 or V2) to simulate the 

scenarios in which only one of the modalities is available.

Compared to the standard DCCA framework, where the nonlinear feature transformations 

are extracted using fully connected layers, we have replaced these layers by CNNs to take 
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into account that our input data are 2D and to exploit the power of feature learning using 

CNNs.

Implementation Details—The segmentation models and the MDDL model were trained 

independently, to maximise the anatomical accuracy (and hence interpretability) of the 

segmentation models. The different parameters of the MMDL model were optimised using 

a grid search strategy. The 2D CCA model was trained for 500 epochs, with a batch-size 

of 10 images (generated from the latent space of the segmentation networks, see Section 

3.2). We used the Adam optimiser with a momentum set to 0.9. For the 2D CCA model 

the parameters that were optimised were the size of the output layer kDCCA (range ∈ 
[5,10,15,20,25,30,35] and the learning rate, lr (range ∈ [0.01,0.001,0.0001]). The SVM 

hyperparameters that we optimised were γ (range ∈ [0.1,0.01,0.001,0.0001]) and the cost 

parameter C (range ∈ [1, 10, 100, 1000]). All hyperparameters were optimised using a 

5-fold nested cross-validation using the GSTFT CRT database (see Section 4.1 for more 

details).

4 Experiments and results

Two sets of experiments were performed. The first set of experiments (see Section 4.2) 

aimed to validate the two segmentation models described in Section 3.1, while the second 

set of experiments (see Section 4.3) aimed to validate the proposed MMDL approach 

detailed in Section 3.3.

All experiments were carried out using the Python programming language with standard 

Python libraries Pytorch (Paszke et al., 2019) and scikit-learn. Before describing the 

experiments in detail, we first describe the evaluation measures and comparative approaches 

used.

4.1 Evaluation metrics and comparative approaches

For the segmentation networks, performance was evaluated using the Dice metric. For 

the MDDL model, a 5-fold nested cross-validation was used to validate its performance. 

In each nested fold, the predicted classes were stored and we then computed the overall 

classification balanced accuracy (i.e. the average of the accuracies obtained for each 

class individually), as well as the sensitivity (the proportion of CRT responders correctly 

classified) and the specificity (the proportion of CRT non-responders correctly classified). 

The balanced accuracy (BACC), sensitivity (SEN) and specificity (SPE) metrics are defined 

as:

• Balanced accuracy (BACC): 1
2

TP
TP + FN + TN

TN + FP

• Sensitivity (SEN): TP
TP + FN

• Specificity (SPE): TN
TN + FP

where TP represents true positives, FP is false positives, FN is false negatives and TN is true 

negatives.
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With the aim of evaluating the impact of using multimodal data for CRT response 

prediction, we compared the MMDL model with single modality classifiers. Due to the 

lack of prior work on image-based CRT response prediction, we chose to train and evaluate 

a number of different state-of-the-art CNN-based classifiers using the latent space matrices 

(see Fig. 2) of either the echocar-diography or CMR segmentation models. We evaluated 

six different classifiers (AlexNet, DenseNet, MobileNet, ShuffleNet, SqueezeNet and VGG) 

for CRT response prediction using the two different modalities’ latent space matrices. Each 

network was trained for 200 epochs with binary cross entropy loss, to classify between 

CRT responders and non-responders. During training, data augmentation was performed 

on-the-fly using random translations (±30 pixels), rotations (±90°), flips (50% probability) 

and scalings (up to 20%) to each mini-batch of images before feeding them to the network. 

The probability of augmentation for each of the parameters was 50%. A nested cross 

validation was used to select the optimal learning rate, lr (range ∈ [0.01,0.001,0.0001]) 

and the optimal CNN classification network. We consider as a baseline the best such CNN 

trained using echocardiography data only, as it represents the current state-of-the-art in the 

use of echocardiography data alone for CRT response prediction. Since CMR is considered 

to be the gold standard for analysis of cardiac function, we consider the best CNN technique 

trained using only CMR data as a reference technique. shows the BACC, SEN and SPE for 

the 6 classifiers for the CMR and echocardiography data.

In addition, we also compared the proposed approach with the DL-based baseline approach 

of our previous work (Puyol-Antón et al., 2020). Using the GSTFT CRT cohort, we first 

tested the baseline VAE model implemented in Puyol-Antón et al. (2020) using the short-

axis (SAX) CMR data (as was the case in the original paper). Then, we trained the same 

model using the la4Ch CMR data. The first approach enabled a direct comparison with our 

previous framework, but using the GSTFT CRT cohort employed in this paper. Comparing 

the first and second approaches enabled us to assess the impact of using la4Ch data 

rather than SAX data for CRT response prediction. Finally, the second approach allowed 

a comparison of the technique described in Puyol-Antón et al. (2020) to the MMDL model 

proposed in this paper (using la4Ch CMR data).

4.2 Automated segmentation

For the CMR cine la4Ch segmentation model, the Dice metrics between automated and 

manual segmentations (only ED and ES frames, for which ground truths were available) 

were 0.97 for the LV blood pool, 0.92 for the LV myocardium and 0.96 for the RV blood 

pool, which is in line with previous published methods (Leng et al., 2018; Ruijsink et al., 

2020). For the echocardiography apical 4Ch segmentation network, similar to Ouyang et 

al. (2020), the Dice metric between automated and manual segmentations was 0.96 for the 

LV blood pool (again, only ED and ES frames). The segmentations for other frames, where 

manual annotations were not available, were visually inspected by an expert cardiologist.

4.3 Evaluation of the multimodal deep learning framework

Table 1 shows the results of our experiments using the GSTFT CRT database and the 

GSTFT CRT echocardiography database.
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As described in Section 4.1, for the MMDL model a nested cross validation was used to 

ensure unbiased validation; the optimal parameters were: size of latent space kDCCA=25, 

learning rate lr=0.01, and the SVM parameters were γ=0.01 and C=10. The results of this 

method applied using CMR or echocardiography data are shown in the top row of Table 1 

(i.e. MMDL).

As a baseline approach, we report results for the VGG network trained and applied using 

only echocardiography data. VGG obtained the best BACC and SEN values compared to 

the other CNN classification networks. The optimal learning rate for this approach was lr = 

0.001. The results of this approach are shown in the second row of Table 1 (i.e. VGGEcho).

As a reference approach (i.e. CNN trained and applied using only CMR data), VGG was 

again the best performing model, with lr = 0.001. These results are shown in the third row of 

Table 1 (i.e. VGGCMR).

Finally, we compared to our previously published method (Puyol-Antón et al., 2020) which 

is trained and applied on CMR data only. In the original paper, the VAE model was trained 

using CMR SAX data. As discussed above, we evaluated this model using both SAX and 

la4Ch CMR data. These results are shown in the fourth and fifth rows of Table 1 (i.e. 

VAESAX and VAELAX).

Students t-tests (99% confidence) were used to compare the performance of the baseline 

approach with the other approaches.

The results show that the MMDL framework is capable of performing CRT response 

prediction using data from either view with similar accuracy, sensitivity and specificity. We 

assessed the statistical significance of the BACC using the proposed method compared to 

the performance of the baseline approach of VGGEcho trained on echocardiography data and 

we show that our proposed method outperforms the baseline approach. Similar performance 

for the MMDL framework is achieved on the additional GSTFT CRT echocardiography 

validation set (see bottom rows of Table 1), offering additional evidence of the robustness 

of our proposed model. For the comparative approaches, we can see that the multimodal 

classifier algorithm has a higher accuracy compared to the single modality methods except 

for the VAE-based approach trained with SAX data (BACC 82.64% compared to 81.19%).

For the VAE-based approach, if we compare the models trained using SAX and la4Ch data, 

we can see that there is a slight decrease in accuracy when using la4Ch data. As mentioned 

in Section 4.1, the VAESAX results are only reported for comparison to our previous work 

(Puyol-Antón et al., 2020). However, this method cannot be directly compared to the 

proposed MMDL method as it is trained using different data, and paired echocardiography 

data would not be available for the SAX view. We hypothesize that the difference can be 

explained by the different regions covered by the two modalities: the SAX data focuses on 

the basal region of the heart where there is more motion, whilst the la4Ch images focus on a 

cross section of the heart which may not capture some motion that can be important for CRT 

response prediction.
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From Table 1 we can also see that using only la4Ch CMR data we achieve the highest 

accuracy with the MMDL model. Based on these results, we conclude that the highest 

accuracy is achieved using our proposed multimodal deep learning framework, whether 

using only echocardiography data or CMR data as input. We also conclude that including the 

CMR data into the training (as well as the echocardiography data) improves the performance 

of the MMDL classifier.

5 Discussion and conclusion

We have proposed a novel MMDL method based on DCCA that has the ability to predict 

CRT response using only echocardiography data but at the same time taking advantage of 

the implicit relationship between CMR and echocardiography. To the best of our knowledge, 

this is the first time that multimodal imaging data has been used directly for CRT response 

prediction. Previous works have mainly focused on imaging-derived parameters or atlas-

based approaches, where manual input is required. Compared to our previous work (Puyol-

Antón et al., 2020), the proposed approach allows CRT response to be predicted using 

only the widely available and cheap modality of echocardiography. Some previous work 

has proposed a multimodal ML model that exploits echocardiography alone at test time 

(Puyol-Antón et al., 2018). Compared to this work, the proposed approach makes direct 

use of 2D CMR and 2D echocardiography imaging data, rather than the results of motion 

tracking algorithms, which reduces the complexity of building the spatio-temporal model 

and eliminates the effect of potential errors in the motion tracking. In addition, the proposed 

framework is fully automated while the framework proposed in Puyol-Antón et al. (2018) 

required manual delineations of the CMR and echocardiography data.

Our results showed that the use of the MMDL algorithm resulted in a statistically significant 

increase in classification accuracy compared to the use of only echocardiography or CMR 

data, and that our technique for prediction of CRT response (i.e. 83.33%/71.43% sensitivity/

specificity) is comparable with the current state-of-the-art. For example, Peressutti et al. 

(2017) reported 100% sensitivity and 62.5% specificity for predicting CRT responders based 

on a combination of a cardiac motion atlas with non-motion data obtained from several 

sources. Sohal et al. (2014) reported 85% sensitivity and 82% specificity for predicting CRT 

responders based on volume-change systolic dyssynchrony index. Importantly, both of these 

approaches required significant manual intervention.

It is important to consider the clinical interpretation of sensitivity and specificity in the 

context of CRT response. Sensitivity refers to the proportion of CRT responders correctly 

identified and specificity refers to the proportion of CRT non-responders correctly identified. 

In our application, we are interested in achieving the highest possible sensitivity to 

ensure that there are no subjects that are denied a treatment that would have resulted in 

symptomatic benefit. Our technique achieved a sensitivity of 83.33%, meaning that only 

~17% of such cases would have been missed, and specificity was 71.43%, meaning that 

almost three quarters of non-responders would be spared the unnecessary treatment, which is 

not without risk. To foster clinical translation and promote clinical trust, it is important that 

sensitivity is as high as possible, preferably 100%, and this will be the focus of future work.
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Increasing the response rate to CRT has been the focus of many studies and the results to 

date have been conflicting. This is because CRT treatment planning is multi-factorial and 

related to patient selection criteria, CRT lead positioning and post-implant factors. Future 

work will aim to incorporate other clinical parameters such as pacing leads, presence of scar 

and septal flash to have a more complete and clinically useful pipeline.

Another area for future work is to validate the approach on a larger multi-centre database 

of CRT patients, to better evaluate the accuracy and robustness of the proposed framework. 

This would eventually involve establishing a clinical trial to validate the impact of the 

proposed model on clinical decision making in CRT patient selection.

Furthermore, we would like to test the same pipeline for predicting response to other types 

of treatment, such as pharmacology, and try to incorporate uncertainty techniques to be able 

to estimate confidences in CRT response prediction. This would move us closer to our vision 

of an interpretable tool that can be used to support the decision making of cardiologists 

when selecting HF patients for different types of treatment.

Data Statement

The datasets presented in this study can be found in online repositories. The names 

of the repository/repositories and accession number(s) can be found below: The UK 

Biobank data set is publicly available for approved research projects from https://

www.ukbiobank.ac.uk/. The EchoNet-Dynamic dataset is a publicly available dataset of 

de-identified echocardiogram videos available at https://echonet.github.io/echoNet/. The 

GSTFT data set cannot be made publicly available due to restricted access under hospital 

ethics and because informed consent from participants did not cover public deposition of 

data.
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CMR Cardiac magnetic resonance

DL Deep learning

CRT Cardiac Resynchronisation Therapy

MMDL Multimodal deep learning.
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Fig. 1. 
Overview of the proposed framework to combine 2D CMR and echocardiography data for 

CRT response prediction. First, the ‘nnU-Net’ architecture is used to extract segmentations 

of the heart over the full cardiac cycle from the two modalities. Next, a multimodal deep 

learning classifier is used for CRT response prediction, which combines the latent spaces of 

the ‘nnU-Net’ models from the two modalities. At test test time, this framework can be used 

with 2D echocardiography data only, whilst taking advantage of the implicit relationship 

between CMR and echocardiography features learnt from the model.
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Fig. 2. 
The ‘nnU-Net’ architecture. Top: the segmentation network used for CMR cine la4Ch 

images. Bottom: the segmentation network used for echocardiography apical 4Ch images. 

Below each figure, the generation of the latent space matrices is shown.
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Fig. 3. 
Overview of the proposed MMDL method, which fuses the outputs of a DL model for each 

data view and applies a SVM classifier. C(m, n, k) denotes a convolutional layer with an 

m-by-n receptive field and k channels.
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Table 1

Balanced Accuracy (BACC), Sensitivity (SEN) and Specificity (SPE) of the proposed and comparative 

methods and Students t-test (99% confidence) results. The CMR and Echocardiography column headings 

indicate which data were used to apply the model. The first group corresponds to the results of the MMDL 

method for CRT response prediction, the second group corresponds to the results of the base-line method, the 

third group corresponds to the comparative methods and the last group corresponds to the results on the 

GSTFT CRT echocardiography database. An asterisk indicates a statistically significant improvement in 

accuracy over the base-line comparative approach. Bold-italic text indicates the method with the overall best 

classification accuracy, bold indicates the indicates the method with the highest classification accuracy for the 

la4Ch data, and dash indicates that this approach cannot be applied for this modality.

CMR Echocardiography

BACC(%)) SEN(%) SPE(%) BACC(%) SEN(%) SPE(%)

1. Multimodal deep learning approach

MMDL 81.19* 86.21 76.19 77.38* 83.33 71.43

2. Baseline approach (echocardiography-trained)

VGGEcho - - - 70.26 75.00 65.52

3. Single modality (CMR-trained) approaches

VGGCMR 71.98 68.97 75.00 - - -

VAESAX 82.64 * 87.50 77.78 - - -

VAEla4Ch 78.30* 84.38 72.22 - - -

GSTFT CRT echocardiography

BACC(%)) SEN(%) SPE(%) BACC(%) SEN(%) SPE(%)

MMDL - - - 72.86 85.72 60.00

VGGEcho - - - 55.71 71.43 40.00
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