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Abstract

Radiomics describes the extraction of multiple features from medical images, including molecular 

imaging modalities, that with bioinformatic approaches, provide additional clinically relevant 

information that may be invisible to the human eye. This information may complement standard 

radiological interpretation with data that may better characterize a disease or that may provide 

predictive or prognostic information. Progressing from predefined image features, often describing 

heterogeneity of voxel intensities within a volume of interest, there is increasing use of machine 

learning to classify disease characteristics and deep learning methods based on artificial neural 

networks that can learn features without a priori definition and without the need for preprocessing 

of images. There have been advances in standardization and harmonization of methods to a level 

that should support multi-center studies. However, in this relatively early phase of research in the 

field, there are limited aspects that have been adopted into routine practice. Most of the reports in 

the molecular imaging field describe radiomic approaches in cancer using 18F-fluorodeoxyglucose 

positron emission tomography (18F-FDG-PET). In this review, we will describe radiomics in 

molecular imaging and summarize the pertinent literature in lung cancer where reports are most 

prevalent and mature.

Introduction

Nuclear medicine imaging, and especially positron emission tomography (PET), already 

provides additional functional and molecular information on disease processes compared to 

predominantly morphological imaging methods such as radiographs, ultrasound, computed 

tomography (CT), and magnetic resonance imaging (MRI). However, it is likely that only a 

fraction of the information available in an image may be visible to the human eye and that 

further clinically useful information may be mined using radiomic analysis, whereby image 

features can be extracted using computational approaches.1–5
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Radiomics is evolving, and the natural extension of radiomics into the fields of 

artificial intelligence (AI) and machine learning (ML) with the availability of increased 

and affordable computing power and improved access to large imaging datasets, is 

generating enormous interest from clinicians, radiologists, computer scientists, academics 

and industry.6,7 It cannot have escaped attention that imaging journals and conferences 

almost all include increasing amounts of work in the fields of radiomics and AI.

There is hope, in addition to the standard metrics a radiologist or nuclear medicine physician 

reports on a macroscopic scale (eg, length, volume, standardized uptake value (SUV)), 

that access to data held within an image that is not visible with the naked eye, will 

allow an ability to extract valuable additional clinically relevant data. These data may 

improve characterization and phenotyping, segmentation, prediction of treatment response, 

and prognostication. Radiomic features may be used alone, in a model to provide a radiomic 

signature, or with other clinical or -omics data to provide better characterization, prediction 

or prognostication, particularly in the field of oncologic imaging.

Early reports have hinted at the potential power of radiomics to personalize patients’ 

management and improve clinical outcomes. However, there are few if any applications that 

have been adopted into the day to day workflow of most clinical departments. Nevertheless, 

intense research is being carried out by academics and industry to optimize workflows and 

use of imaging data for nuclear medicine physicians and radiologists for patient benefit.

In this review, we describe how radiomics, ML, deep learning (DL), and AI relate. We 

summarize the literature that is available for the application of radiomics in PET imaging 

with a focus on oncologic aspects and give examples of where it may be applied in non-

small cell lung cancer (NSCLC), this being the most frequently reported tumor type in this 

field.

Definitions

Radiomics involves the extraction of multiple features from medical images that can be 

used to provide additional information, often using bioinformatic approaches. Most of the 

features may be invisible to the human eye but are generally derived by mathematical 

formulae that provide data on the intensity, position, and relationship of voxels to other 

voxels in the image. Categories of radiomic features include parameters that describe 

texture, heterogeneity or shape within an image.8

The underlying hypothesis of radiomics is that intensity values from individual voxels in an 

image and their spatial distribution may reflect underlying genetic, molecular, and cellular 

processes on a relatively macroscopic scale. Heterogeneity in an image of a malignant tumor 

may be influenced by a number of underlying biological processes including angiogenesis, 

fibrosis, cellularity, hypoxia, and receptor expression. Variability in these factors is known to 

be associated with more aggressive behavior, worse prognosis, and resistance to treatment9 

and may reflect the underlying genetic heterogeneity derived from clonal variation within 

and between tumors in the same patient. Intratumoral genetic heterogeneity is associated 

with morphologic heterogeneity of nuclei within tumor cells and is associated with a 
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poor prognosis.10–12 Genetically heterogeneous tumors are more likely to form treatment-

resistant clones and have greater metastatic potential.13

There are a number of potential advantages of using imaging to determine tumor 

heterogeneity or other biological characteristics. Whole tumors, their metastases, and their 

microenvironment can be sampled, something that is not possible with biopsy specimens. 

Imaging can also be performed noninvasively and serially during treatment. A disadvantage 

is that imaging heterogeneity or other parameters is on a macroscopic scale and it 

remains unclear exactly what underlying biological or genetic features the various imaging 

modalities and their extracted radiomic features may reflect.

The most common type of radiomic features that have been described are statistical 

parameters that can be derived from the voxel intensity histogram and describe global 

characteristics within a volume of interest (VOI), so-called first-order features. Examples 

include SUVmean, kurtosis (the “peakedness” of the histogram compared to a normal 

distribution), skewness (the asymmetry or deviation from a normal distribution), and first-

order entropy (a measure of the randomness of voxel intensities within a VOI). First-order 

features describe global characteristics but do not describe the spatial relationships between 

voxels.8

Second-order statistical features describe the relationship between intensity and position of 

pairs of voxels. Examples include features calculated from gray level co-occurrence matrices 

such as second-order entropy (randomness), second-order energy (uniformity), homogeneity 

and contrast (local intensity variation), all defined by specific mathematical formulae.14

High-order features describe relationships between 3 or more voxels in different planes. 

These are calculated from neighborhood gray tone difference matrices and include 

parameters such as coarseness (large basic patterns making up a texture), contrast (large 

differences between neighboring regions), and busyness (rapid changes in intensity between 

neighboring voxels).15 Other types of high-order features include those that can be 

calculated to give information on similarity of voxel intensities in runs (gray level run length 

matrices)16 or similar zones of intensity (gray level size zone matrices).17

The nomenclature of statistical features can be confusing as some first-, second- or high-

order features have the same name but different formulae, for example entropy can be first 

or second-order, or some features have different names, for example, energy, uniformity 

and angular second moment, but have the same formula. Statistical features are often called 

texture or heterogeneity parameters as they describe the distribution of tracer within a VOI. 

Types of the more commonly used statistical radiomic features are described in Table 1.

Fractal analysis is an example of model-based features. Fractals are self-similar structures of 

repeating patterns at different scales whereby fractal parameters such as fractal dimension 

and lacunarity describe the spatial complexity and heterogeneity of voxels within an 

image.18,19 Transform-based methods analyze voxel intensities in a different space and 

may be used to measure heterogeneity but have not been used as frequently for PET data 

analysis as the statistical methods which predominate in the literature. Other features related 

to the shape of a lesion VOI, for example, a tumor, can also be calculated that describe 
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the geometry or how much the geometry deviates from a regular spheroid or ellipsoid 

shape.8,20,21

The use of radiomics is evolving. Early research has concentrated on the selection of 

predefined image features (often texture features that describe voxel intensity heterogeneity) 

that can be used alone in a relatively simple way to classify pathology in images or as 

predictive or prognostic markers. In a more complex form, the radiomic features can be used 

in combination as inputs into ML classifiers. AI broadly describes the use of computers to 

perform tasks that would normally require human-level intelligence and ML is a branch of 

AI that involves algorithms that are programmed to learn from observations. ML algorithms, 

including methods such as support vector machines (SVM), random forest (RF), artificial 

neural networks (ANN) that reflect biological neuronal systems, and principle component 

analysis (PCA), are trained to learn features and patterns from data. Details are beyond the 

scope of this review but are well described elsewhere.6,7,22 Supervised learning refers to 

ML algorithms that are trained with data that has known outputs (SVM, ANN, RF) whereas 

unsupervised learning describes algorithms in which the outcomes are not known (PCA). 

Deep learning (DL) is a type of ML that utilizes neural networks with several layers and 

convolutional neural networks (CNN) are most frequently used in imaging.

Radiomic features may be obtained without a priori definition using DL data-driven methods 

(representation learning). These methods use several layers that are applied to ANNs to form 

deep neural networks (DNN) that require less human input on training. CNNs are a type of 

DNN particularly suited for image analysis, operating directly on the unprocessed images to 

extract imaging features that are relevant to the specific task (Fig 1).23 They consist of an 

input layer (the image voxel values), intermediate “hidden” layers (computed representations 

feeding the process), and the output layer (outcome classification, eg, tumor vs nontumor). 

The latter DL methods have the advantage of not requiring preprocessing of image data or 

predefinition of image features, offering the ability to overcome some of the confines and 

problems associated with the current radiomics workflow.

Challenges to Radiomic Analysis

One of the greatest challenges in the introduction of radiomics is the harmonization of scan 

acquisition, image processing, and software for analysis, so that results may be reproduced 

across centers and become practical and reliable for multicenter studies.

It has been shown that radiomic features vary in their dependency on technical acquisition 

and postprocessing factors with some features being more robust to these variations than 

others. Factors that can affect radiomic feature measurement include voxel size, VOI size, 

reconstruction algorithm, postreconstruction smoothing, scan acquisition time postinjection 

and quantization or binning and segmentation method, amongst others.24–27

Some features, for example, first-order entropy, are relatively robust with little 

variation between different reconstruction parameters, remaining relatively independent 

of segmentation method25 and showing good reproducibility, equivalent to or better than 

that of SUVs.28 However, other features have been reported to show >30% variation 
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when calculated after the use of 5 different reconstruction parameters.24 Van Velden et 

al. investigated the repeatability of 105 intensity, shape and texture radiomic features 

from 18F-FDG-PET in patients with NSCLC scanned on 2 occasions and determined the 

effects of segmentation (manual vs threshold) and reconstruction (point spread function 

vs European Association of Nuclear Medicine guideline) methods29. Sixty-three features 

showed an intraclass correlation coefficient > 90%. Twenty-five features were sensitive to 

segmentation method and only 3 were sensitive to reconstruction method. A further study 

also repeated 18F-FDG-PET scans in patients with NSCLC and of 91 radiomic features 

test-retest repeatability was high in 71% and inter-observer variation was 91%.30

To some extent differences in scan acquisitions can be harmonized retrospectively to 

overcome multicenter effects. A method that was derived from a previously described 

genomic harmonization method has been reported to be an efficient method of doing this.31

PET is associated with relatively large voxel sizes compared to CT and MRI leading to 

greater challenges in measurement of radiomic features without bias or dependence on 

volume. Using probability theory, Brooks et al. estimated a volume of at least 45cm3 would 

be required to avoid dependence on volume when calculating second-order entropy derived 

from 18F-FDG-PET scans in patients with cervical cancer.32 However, another study of 
18F-FDG-PET in patients with NSCLC showed dependence of second-order entropy at 

volumes less than 10cm3, suggesting lower tumor volumes may be applicable for radiomic 

analysis on modern scanners.33

Several groups have recognized the risks of variation of radiomic methods in the 

literature and have published recommendations on radiomic analysis in PET and other 

imaging modalities in attempts to harmonize efforts in this field.34,35 An international 

image biomarker standardization initiative has successfully standardized 164 PET radiomic 

features across 25 research teams using different software and is a successful initiative to 

enhance reproducibility in multiple centers.36

Some publications have noted the weaknesses in some of the early radiomic literature, 

particularly with regards to statistical analysis37,38 with the potential for false discovery. 

Other issues that have been raised include the potential for publication bias with 

studies showing positive correlations between radiomics and nonimaging characteristics 

predominating,39 although negative reports do exist.40 Recent guidance on minimum 

requirements for radiomic and AI-related imaging research has been published to ensure 

more robust data and confidence in this area of research.41 Notable inclusions are the 

requirement for independent training (against a reference standard), validation (fine tuning), 

and test (diagnostic performance) sets of data with a preference for data from another 

institution to be used for final testing of AI algorithms. One of the challenges with 

developing ML algorithms in PET is that large sets of image data with relevant information 

on tumor type and relevant clinical outcome data are uncommon and more difficult to 

acquire than in higher volume imaging modalities such as CT and MRI. Methods that may 

mitigate this challenge include transfer learning where DL models that have been developed 

and validated for another application can be used in a separate task to build the first layers 

of a CNN, saving time on training and building neural networks.42 Ethical issues and 
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data protection are further challenges to obtaining large enough datasets for ML algorithm 

development.

Determining Biological and Molecular Phenotype With Radiomics

Underlying biological and molecular mechanisms of cancer (and other diseases) provide 

insight on tumor phenotype and how it may behave with regards aggressiveness and 

response or resistance to therapy. Depending on the specific tracer, PET can give 

macroscopic information on a particular aspect, for example, glucose metabolism with 18F-

FDG or cellular proliferation with 18F-fluorothymidine. While global measures of molecular 

tumor characteristics provide information that is of clinical utility in every-day practice, data 

are emerging that the radiomic signature of 18F-FDG (and some other tracers) distribution 

within a tumor may reflect other hallmarks of tumor molecular phenotype, biology or 

genetics.

In preclinical models of head and neck cancer, the spatial distribution of 18F-FDG has been 

shown to be associated with tumor cellular density, stromal tissue, and necrosis43 and in 

pancreatic and hepatoma models, the heterogeneity of 18F-FDG reflects glucose transporter 

and hexokinase distribution.44,45 Similarly, in orthotopic breast cancer models the spatial 

distribution and density of cells on histology correlates with radiomic features derived from 

autoradiographic images of 18F-FDG distribution.46 Heterogeneity of a therapeutic target, 

such as carcinoembryonic antigen (CEA) to 131I-anti-CEA antibody, can affect response to 

therapy as shown in colorectal tumor models of differing CEA expression heterogeneity 

as measured by multifluorescence.47 This microscopic heterogeneity was also possible to 

determine in the same tumor models on a macroscopic scale by using 125I-A5B7 anti-

CEA nanoSPECT imaging and second-order texture features, including entropy, energy, 

contrast, and homogeneity.48 Using the same colorectal tumor model, it has been shown 

that change in radiomic features describing the variation in size of isometabolic patches of 
18F-FDG activity are better predictors of response to antiangiogenic therapy (bevacizumab) 

than conventional size or global activity parameters.49 In man, there have been reports of 

associations between radiomic features and mutational status in colorectal cancer including 

KRAS, TP53 and APC mutations.50

Examples of the Use of Radiomics in NSCLC

A number of radiomic features have been shown to correlate with histopathological 

characteristics in NSCLC. Histopathological measurement of cell density has been shown 

to correlate positively with SUVmean and total lesion glycolysis (TLG) and inversely with 

skewness and kurtosis, and a correlation reported between fractal lacunarity (gaps between 

clusters of 18F-FDG activity) measured by both texture analysis and histopathologically, 

despite the difference in scales (Fig 2).51 Another small feasibility study showed that 

areas of relatively low 18F-FDG uptake in NSCLC showed larger areas of fibrosis.52 A 

study of multiple radiomic features in NSCLC showed an ability to predict tumor stage 

better than standard SUV, metabolic tumor volume and TLG metrics and that there was 

a correlation between some texture features and tumor proliferation measured by Ki67 

immunohistochemistry.53
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Attempts have also been made to differentiate NSCLC histological subtypes by 18F-FDG 

PET/CT radiomic characteristics. Studies have shown the ability to differentiate squamous 

cell carcinomas from adenocarcinomas with squamous cell tumors tending to show higher 

heterogeneity.54,55

Additional radiomic data has been extracted from mediastinal lymph nodes in 18F-FDG 

PET scans of patients with NSCLC. A comparison of a CNN and 4 ML methods that 

used 13 standard (eg, SUV, size) and 82 texture features, showed similar overall accuracy 

in differentiating benign from malignant nodes between the CNN and best ML methods 

that used a combination of standard and texture features56. The CNN method was more 

sensitive than radiologists’ interpretation (84% vs 73%) with similar specificity (88% vs 

90%) with an additional advantage that the CNN method did not require segmentation for 

feature definition.

There is an increasing clinical need for imaging methods to stratify patients for checkpoint 

inhibitor blockade immunotherapy given the recognized limitations of immunohistochemical 

analysis of target positivity by biopsy and the high level of immune-related toxicities 

associated with this class of drugs. Imaging has advantages of being able to assess a 

whole primary tumor as well as its metastases. Specific SPECT and PET tracers are 

being developed to report directly on relevant targets such as PD1/PDL157, 58 but radiomic 

methods from more ubiquitous 18F-FDG PET scans have been reported that may give 

relevant predictive information.

First-order entropy of 18F-FDG distribution has been shown to correlate with high a 

density of CD8 tumor-infiltrating lymphocytes in surgical specimens of NSCLC.59 By using 

radiomic features extracted from 18F-FDG PET/CT in patients with NSCLC scheduled 

for checkpoint blockade immunotherapy, Mu et al. used a multiparametric radiomic 

signature derived by the least absolute shrinkage and selection operator (LASSO) method 

to predict those who would have a durable clinical benefit as well as progression-free and 

overall survival.60 The same group also used a radiomic score from pretherapy 18F-FDG 

PET/CT scans to predict immunotherapy toxicity with an area under the receiver operating 

characteristic (AUROC) of 0.88 in a prospective validation cohort.61

Other studies have evaluated the ability of 18F-FDG PET radiomics to predict the molecular 

profile and genetic mutational state of NSCLC. This is of potential clinical utility as, for 

example, EGFR mutations are associated with an improved response to certain tyrosine 

kinase inhibitor (TKI) drugs. Radiomic signatures from 18F-FDG PET in NSCLC have been 

shown to be associated with mutation status62–64 that could potentially be used to stratify 

patients for treatment. If imaging methods could predict mutational status in the primary 

tumor and metastases, they could complement tissue molecular profiling, particularly if 

serial measurements are required that would guide decisions during therapy.

A radiogenomic study between 18F-FDG PET and NSCLC in 25 patients reported a 

prognostic metagene signature (involved in cell cycle, proliferation, death, self-cognition 

pathways) that was associated with a multivariate 18F-FDG uptake feature, including 

SUVmax, SUV(variance) and SUV (principle components, including skewness and 

Cook and Goh Page 7

Semin Nucl Med. Author manuscript; available in PMC 2024 July 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



kurtosis). Both the metagene and radiomic signature were highly correlated with survival 

in external and validation cohorts tested.65 Advanced tumor stage, grade, and invasion were 

associated with NF-κB protein expression that was in turn specifically associated with high 
18F-FDG activity in a further report from the same group.66

Radiomics of 18F-FDG PET/CT has also been investigated to determine the predictive 

ability with regards to treatment response and likelihood of tumor recurrence. Two studies 

have evaluated texture parameters in predicting response to TKIs in EGFR-mutated patients. 

The first showed that pretreatment heterogeneity predicted earlier progression and treatment 

failure67 and another showed that a reduction in 18F-FDG PET first-order entropy at 6 weeks 

predicted CT response at 12 weeks and OS better than standard SUV metrics.68 A further 

study of 18F-FDG PET scans from 93 patients who underwent curative resection for NSCLC 

used ML methods to develop a radiomic model that predicted recurrent disease (AUROC 

0.956).69 In patients with early-stage NSCLC treated with stereotactic radiotherapy, a 

radiomic model was developed that predicted local recurrence with high accuracy (91%).70 

A further study of 100 patients who had received stereotactic radiotherapy used a ML 

method with 722 radiomic features from 18F-FDG PET scans with the ability to predict 

nodal failure and survival better than clinical variables.71

Several other studies have used radiomic methods to predict disease- or progression-free 

and overall survival. Some studies used individual predefined texture features72 (Fig 3) 

and others developed radiomic models.73 In a study of 201 datasets and 43 textural 

features using the LASSO method, it was possible to identify a single textural feature 

(SumMean) as an independent predictor of overall survival in large tumors treated with 

chemoradiotherapy74.

Combining radiomic features derived from tumor, tumor penumbra, and bone marrow 

was found to predict disease-free survival better than clinical factors in a further study.75 

However, not all investigators were able to find a successful prognostic model using 

preselected radiomic features or ML methods.76,77

Conclusion

The science of radiomic analysis of medical images is progressing rapidly. From the origins 

of predefined texture features being used to complement standard image metrics, there 

is now much work using AI methods including DL that recognize and learn features 

within an image without a priori feature definition. There is increasing standardization 

and harmonization within the field that will allow multicentre studies to progress. With 

better access to large curated datasets and increasing computing power, there is hope that 

AI methods may complement radiological interpretation and provide additional information 

that will better characterize a disease process and increase predictive and prognostic ability. 

This has been shown across different cancer types, but research is most mature in NSCLC. 

However, despite the large amount of radiomic literature, the reported methodologies remain 

diverse and while as yet there is little impact in the clinic, there is hope and effort within 

academia and industry to translate radiomic tools into clinical use.
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Figure 1. From [23].
Convolutional neural network architecture for esophageal cancer 18F-FDG PET data in 

a vector composed from 4 convolutional (U) and 4 max pooling (V) layers. Different 

colour arrows in the first convolutional layer represent different learnable weight matrices. 

Coloured squares in the feature maps represent elements that include local spatial 

information from the previous layer. h – hidden layer, yi – responder, yk – nonresponder.
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Figure 2. 18F-FDG PET/CT of a highly metabolically active NSCLC (adenocarcinoma).
Specific values of several relevant variables are shown in the inset (top). The Hematoxylin 

slide (bottom left) shows a dense tumor cell population corresponding to the high SUVmean 

and negative skew of the 18F-FDG PET image. Binary image (bottom right) thresholded 

to differentiate high and low mean cell density (MCD) regions shows low pathological 

lacunarity (path-lac) as smaller sized black regions of low cellularity between white regions 

of high cellularity.
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Figure 3. From [72].
ROC curves for baseline 18F-FDG PET primary tumor coarseness, contrast, busyness, 

and complexity for identification of responders vs nonresponders in patients treated with 

chemoradiotherapy for NSCLC. [This research was originally published in JNM. Cook GJ, 

Yip C, Siddique M et al. Are Pretreatment 18F-FDG PET Tumor Textural Features in Non–

Small Cell Lung Cancer Associated with Response and Survival After Chemoradiotherapy? 

J Nucl Med. 2013;54:19-26. © by the Society of Nuclear Medicine and Molecular Imaging, 

Inc.]
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Table 1
Statistical Texture Features

Order Description Examples

First-order Gray level frequency distribution 
from histogram analysis

SUV, minimum, mean, maximum, standard deviation, skewness, kurtosis, entropy, 
energy

Second-order Gray level co-occurrence matrices entropy, energy, contrast, homogeneity, dissimilarity, correlation

High-order Neighborhood gray tone difference coarseness, busyness, contrast, complexity

matrices Voxel alignment matrices run length nonuniformity, run percentage, short run emphasis, long run emphasis, 
gray level nonuniformity

Gray level size zone matrices size zone nonuniformity, zone percentage, zone variance, zone entropy, low gray level 
zone emphasis, high gray level zone emphasis, low gray level short zone emphasis, 
high gray level short zone emphasis, low gray large zone emphasis, high gray level 
large zone emphasis
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