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Abstract

Manifold alignment (MA) is a technique to map many high-dimensional datasets to one shared 

low-dimensional space. Here we develop a pipeline for using MA to reconstruct high-resolution 

medical images. We present two key contributions. First, we develop a novel MA scheme 

in which each high-dimensional dataset can be differently weighted preventing noisier or less 

informative data from corrupting the aligned embedding. We find that this generalisation improves 

performance in our experiments in both supervised and unsupervised MA problems. Second, 

we use the wave kernel signature as a graph descriptor for the unsupervised MA case finding 

that it significantly outperforms the current state-of-the-art methods and provides higher quality 

reconstructed magnetic resonance volumes than existing methods.

Index Terms

Manifold alignment; graph descriptor; wave kernel signature; magnetic resonance imaging; slice 
stacking

1 Introduction

IN many machine learning applications we encounter high-dimensional datasets in which 

the data lie on a low-dimensional manifold. Manifold learning is a family of machine 

learning algorithms which aims to find this low-dimensional structure, mapping each high-

dimensional point to new coordinates in a low-dimensional space. This mapping ‘unfolds’ 
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the manifold such that, in the new coordinates, the euclidean distance between points can 

meaningfully describe their similarity. Many approaches have been proposed to solve this 

problem, including linear methods such as principal component analysis, non-linear spectral 

methods which can be solved by convex optimisation such as Locally Linear Embedding 

[19] and Laplacian Eigenmaps [7], and methods requiring non-convex optimisation such as 

Stochastic Neighbour Embedding [14].

Manifold alignment (MA) is an extension of manifold learning in which two or more 

datasets are mapped into the same low-dimensional space so that they can be compared 

directly [13]. MA requires some knowledge of inter-dataset correspondences, which 

determine which points in different datasets should lie close to each other in the low-

dimensional space. In the supervised case these correspondences are given as prior 

information. In the unsupervised case, they must be derived from the data themselves.

MA has been used in a wide variety of machine learning applications, such as Markov 

decision processes [23], topical modelling of documents [24], facial recognition [11] and 

image classification [21].

The alignment of different datasets is a common problem in medical imaging, where two 

or more datasets may capture the same underlying structure, such as the movement of the 

body under respiratory motion, but still be difficult to compare directly. These datasets 

may be different anatomical views, be derived from different imaging protocols [3], [12], 

[22], or may come from different imaging modalities entirely [2]. By using MA to align 

these different datasets into a single low-dimensional space, otherwise incomparable medical 

images can be meaningfully related using their coordinates in the new low-dimensional 

space [8].

One important application of MA in medical imaging is slice-stacking of magnetic 

resonance (MR) images, in which dynamically acquired free-breathing high resolution 2D 

MR slices are retrospectively stacked to form dynamic high-resolution 3D volumes [4]. 

Although correspondences between the original high-dimensional 2D images are unknown, 

MA allows these images to be mapped to a common low-dimensional space representing the 

respiratory motion states at which they were acquired. This allows 2D images from similar 

motion states to be stacked together into consistent high-resolution 3D images.

Another important application of MA is that of using information from one imaging 

modality to motion correct another, such as in [2] in which MR imaging was used to 

correct positron emission tomography (PET) images. In this case MA was used to establish 

inter-modality data correspondences.

When MA maps different datasets into one common space there is a balance between 

retaining the structure of each individual dataset, and placing those points with strong inter-

dataset correspondences close together, which deforms the shape of the separate datasets’ 

manifolds. In the existing literature, this deformation of the original manifolds is always 

bidirectional and uniform, in the sense that the different datasets are equally weighted in 

the alignment. However, in many cases, such as the medical imaging applications discussed 

above, the datasets may not be equally informative. Some imaging modalities are noisier 
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than others, and some anatomical views are better at capturing motion information than 

others. Consequently, it is useful to be able to incorporate this information into the MA 

scheme, and the development of this methodology is our first contribution here.

As noted above, unsupervised manifold alignment requires correspondences between points 

in different datasets to be derived from the data. In some cases the datasets are sufficiently 

similar that these correspondences can be derived by directly comparing each pair of 

points in the two datasets using, for example, the 2 norm [5]. However, there are cases 

where the data in each dataset are very different and so this type of direct comparison is 

less meaningful, for example, where the different datasets are medical images containing 

significantly different anatomy, or come from different imaging modalities entirely. How 

then should we estimate the inter-dataset similarities when the individual data points cannot 

be directly compared? One approach is by representing each dataset as a graph, and 

comparing data points, represented as nodes in the graph, using graph descriptors. If two 

nodes have similar properties in the graph representation of their respective datasets then 

they will have similar graph descriptors and so the correspondence between them will be 

strong. Our second contribution in this paper is to propose the use of the wave kernel 

signature (WKS) [1] for this purpose. WKS has not previously been used for estimating 

inter-dataset correspondences for MA, with the exception of our preliminary work in [10].

Combining these two novel contributions we propose a pipeline in which WKS descriptors 

are used as an input to weighted MA to surpass state-of-the-art performance in aligning 

medical image datasets.

We will begin with a review of the theory behind our proposed pipeline. The weighted 

MA principle is demonstrated with simple examples from the COIL-20 image dataset. We 

then demonstrate our method in three experiments on medical images including both the 

unsupervised and supervised cases.

2 Theory and Methods

Here we will first review the theory behind manifold alignment, and specifically the method 

we use here which is based on Laplacian Eigenmaps [7]. We then review the theory behind 

the use of the WKS graph descriptor for establishing the inter-dataset correspondences in the 

unsupervised case.

2.1 Manifold Alignment

Manifold learning is a tool for non-linear dimensionality reduction which aims to extract 

low dimensional manifolds from high-dimensional datasets. We denote the high-dimensional 

data by X = [x1, x2, … xT], which consists of T points in ℝD. In general, the dimensionality 

D may be very large, for example, the number of pixels in an image. Assuming that 

the points in X each lie on or close to a manifold ℳ of dimension d, manifold learning 

constructs a map from ℝT×D to ℝT×d where d ≪ D. The result is a new low-dimensional 

dataset, Y = [y1, y2, …, yT] which describes each point’s position on ℳ.
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Manifold learning techniques which work by optimising a cost function can be extended 

to perform manifold alignment by adding terms to their cost function which represent inter-

dataset alignment [13]. Here we briefly review how Laplacian Eigenmaps can be extended to 

perform manifold alignment.

The Laplacian Eigenmaps algorithm involves first forming a graph  where each datapoint 

i has an edge with its k  nearest-neighbours, the set of which is denoted by ηi. The edge 

between points i and j is weighted by:

W ij = exp − ∥ xi − xj ∥2
2σG

2 if j ∈ ηi

0 otherwise,

(1)

where σ  is a parameter which determines the strength of neighbourhood relations. Since 

the nearest-neighbour relation is not necessarily symmetric we symmetrise the adjacency 

matrix W, whose elements are given by W[i, j] = 1
2 W ij + W ji . The cost term we seek to 

minimise is given by

Φ Y = 1
2 ∑

i, j
W[i, j] yi − yj

2,

(2)

subject to the constraint that YTDY = I, where D is the diagonal degree matrix D[i,i] = Σj 

W[i,j]. Minimising Φ(Y) forces points with highly weighted connections to be close to each 

other, while the constraint prevents all coordinates collapsing onto a single point. This cost 

term can be rewritten as

Φ(Y) = tr YTLY ,

(3)

where the graph Laplacian, L is the matrix given by

L = D − W .

(4)

Note that, since the product in Equation (3) of L with the low-dimensional coordinates 

Y is equal to the cost term in Equation (2) which must be non-negative, L is positive 

semi-definite and therefore has no negative eigen-values. As shown in [7] Equation (3) is 

minimised by the eigenvectors of L corresponding to the d smallest non-zero eigenvalues, 

and so these provide the desired low-dimensional coordinates Y.

MA is achieved by extending this formulation to the case of N high-dimensional datasets. 

The joint cost term becomes
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Φtotal = ∑
ℓ

Φ(ℓ) + μ
2 ∑

n, m
n ≠ m

∑
i, j

U[i, j]
(n, m) ∥ yi

(n) − yj
(m) ∥2 ,

(5)

where Φ( ) is the cost term for each individual dataset, U(n,m) is some similarity kernel 

between datasets X(n) and X(m), and μ is the parameter that weights the intra-dataset terms 

versus the inter-dataset terms. The values of the matrices U(n,m) determine which points in 

datasets n and m should be placed close together in the aligned manifold.

We assume that the matrices U have the symmetry U[i, j]
(n, m) = U[j, i]

(m, n). The total cost Φtotal(Y) is, as 

above, minimised by

Φtotal (Y) = tr YTMY ,

(6)

where Y denotes the low-dimensional coordinates for each dataset concatenated together, 

and M is the block matrix of inter-dataset and intra-dataset terms given by

M =

L(1) + μD(1) −μU(1, 2) … −μU(1, N)

−μU(2, 1) L(2) + μD(2) … −μU(2, N)

⋮ ⋮ ⋱ ⋮

−μU(N, 1) −μU(N, 2) … L(N) + μD(N)

,

(7)

D[i, i]
(ℓ) = ∑

ℓ ≠ n
∑
j

U[i, j]
(ℓ, n) .

(8)

As before, this cost is minimised by the eigenvectors of M corresponding to the smallest 

non-zero eigenvalues.

2.2 Weighted Manifold Alignment

The joint cost function in Equation (5) balances terms that maintain the structure of each 

individual dataset’s manifold (the Φ( ) terms) and those aligning datasets to each other 

(the terms containing U). The parameter μ determines the relative strength of these two 

forces. This formulation implicitly assumes that the structure of each manifold ought to be 

maintained to the same degree. The first novel part of our pipeline is to introduce a term to 

weight each dataset and its relationship to the others as follows, generalising Equation (5) to:
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Φtotal = ∑
ℓ

cℓ
2Φ(ℓ) + μ

2 ∑
n, m

n ≠ m

∑
i, j

cncmU[i, j]
(n, m) ∥ yi

(n) − yj
(m) ∥2 ,

(9)

where {c } is the set of weights. If, as in [16], we imagine the manifolds for each dataset 

as points connected by springs with a rest length of 0, increasing c  increases the rigidity 

of manifold Y  by proportionally increasing the spring constants, and similarly forces other 

manifolds to deform to more closely fit the shape of Y . Therefore this formulation allows 

us to use information about the relative rigidities we would like to assign to the manifolds 

representing each dataset. To perform the embedding we then find the eigen-vectors of the 

weighted matrix:

Mw = CMC,

(10)

where C is the diagonal matrix of weights c . The question of how these weights ought to 

be derived is one which will depend on the application at hand and what prior information 

is available to suggest that one dataset should be prioritised over another. We return to this 

question in Section 3.2.

2.3 Graph Descriptors

In unsupervised MA the inter-dataset similarities U must be derived from the data. The 

methods assessed here use graph descriptors to compare points in each dataset. For each 

dataset, a graph  is constructed with edges weighted by parameter σ  as in Equation (1). 

Descriptors are then computed for each node in each graph and compared to determine the 

matrices U(n,m). Note that this formulation assumes that the graphs describing each dataset 

are sufficiently similar to each other to allow an unsupervised comparison but that this is a 

looser assumption than that made by methods which directly compare data from different 

datasets such as in [5].

The WKS [1] is part of a family of graph methods which use the eigenvectors of the graph’s 

Laplacian to compare vertices. The graph Laplacian, L, can be interpreted as a discrete 

version of the Laplace-Beltrami operator and so can be used to describe diffusive processes 

on the graph [7]. We denote the Laplacian’s eigenvalues as Ek and eigenvectors as vk. The 

WKS is a function ωi (z) for each node i in the graph, defined as

ωi(z) = B(z)∑
k

vk, i
2 exp − z − log Ek

2
2σω

2 ,

(11)

where B(z) is a normalisation term given by

Clough et al. Page 6

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2024 July 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



B(z) = ∑
k

exp − z − log Ek

2σω
2

−1
.

(12)

This function is a stable and highly informative descriptor [15] which corresponds to the 

diffusion of a quantum mechanical particle of energy z on the graph [1]. The parameter σω 
is a measure of the ‘smoothness’ of this descriptor which is normally constant and manually 

chosen for the task at hand.

The similarity between two nodes, i and j in the two graphs n and m can be assessed by 

measuring a distance, Δij
(n, m), between their wave kernel signatures, where

Δij
(n, m) = ∫

zmin

zmax ωi
(n)(z) − ωj

(m)(z)
ωi

(n)(z) + ωj
(m)(z)dz .

(13)

The similarity kernels are then given by

U[i, j]
(n, m) = exp − Δij

(n, m) 2

2σWKS
2 ,

(14)

which ensures that vertices with similar wave kernel signatures have a high similarity in U. 

We set σWKS = 1 for our experiments using unsupervised MA.

As in [3], once a descriptor has been used to generate a similarity kernel U(n,m), the kernel 

is then sparsified by using the Hungarian algorithm to establish one-to-one correspondences 

with maximal similarity and it is these sparsified kernels that are used for MA.

3 Experiments

We begin by illustrating the weighted MA method in the supervised case with a simple 

toy experiment using the COIL-20 dataset of images of small objects. Next we demonstrate 

our full pipeline using the WKS descriptors in three experiments using medical images. 

First, slice-stacking of highly realistic synthetic MR data for which we have a ground truth 

to quantitatively compare the quality of the reconstructed volumes. Second, slice-stacking 

of real MR data gathered from 8 healthy subjects, where we measure the self-consistency 

of the reconstructed volumes. These two experiments both demonstrate the unsupervised 

case. Third, we demonstrate semi-supervised MA on simultaneously acquired PET and 

MR images, where we measure the ability of the low-dimensional embedding to recover a 

respiratory signal from the low signal-to-noise ratio PET data using MA with higher quality 

MR images.
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3.1 Supervised MA Using a Toy Model: COIL-20 Dataset

Here we demonstrate the idea of weighted MA with some simple examples from the 

COIL-20 dataset of small objects photographed from different views [18]. Each object is 

photographed from 72 different angles which form a full rotation around the object, such as 

in the examples shown in Fig. 1. Performing dimensionality reduction on each set of images 

unsurprisingly reveals that the images lie on a topologically circular manifold, representing 

the path taken by the camera taking the images (see Fig. 1).

To demonstrate weighted MA in a simple context we find the joint embedding of three 

of these datasets in a supervised manner, where correspondences between the datasets are 

determined by the angle the images were taken from, meaning that the matrix U is the 

identity matrix (i.e., no graph descriptors are used). We perturb two sets of images with 

Gaussian noise (mean 0 and standard deviation 1 where the original images’ pixel intensities 

range from 0 to 1), as shown in Fig. 2, which in turn affects the low-dimensional embedding.

However, by weighting more heavily the set of images without noise than those with the 

noise we can fit the noisy dataset to the clean dataset, demonstrating how weighted MA 

can allow for asymmetry in the alignment step, favouring one dataset over the other. Fig. 3 

shows the standard MA and three different weighted MA embeddings. We can see that more 

heavily weighting the clean dataset produces embeddings which appear more similar to 

those in Fig. 1 than is the case when the noisy datasets are weighted more heavily, or when 

there is no weighting at all (i.e., standard MA). We quantify this improvement by counting 

the fraction of points in the noisy dataset whose nearest neighbour in the aligned embedding 

is the correct nearest neighbour from the original dataset. Fig. 4 shows these results. Here 

the weights were c  = 1 for the noisy dataset, and c  = C for the noiseless dataset. As 

expected, when the weighting on the noiseless dataset is high this fraction is close to one, 

as the original structure is recovered. When the weighting on the noisy dataset is high it is 

close to zero, as the noise in the noisy datasets dominates. Note that the standard unweighted 

case, at the highlighted point in Fig. 4 where C = 1, performs significantly worse than the 

weighted case here. This is because without any weighting the noiseless manifold and noisy 

manifold both deform so as to align in the low-dimensional space. Weighting the noiseless 

dataset’s contribution more makes that manifold more rigid, forcing the noisy manifold to 

deform to match. We will now use this idea of weighting some datasets in the MA step in 

experiments on medical image alignment.

3.2 Unsupervised Alignment of Synthetic MR Volumes

In this experiment we demonstrate that weighted MA, using the WKS to estimate the inter-

dataset correspondence, provides state-of-the-art performance on the problem of MR slice 

stacking. The MR slice stacking problem can be stated as follows: we are given a series of T 
high resolution 2D images for each of N sagittal slices with each image labelled xt

(n) where t 

∈ {1, 2, …, T } and n ∈ {1, 2, …, N}. In general, the images are taken at different times and 

so there are no prior correspondences between them. It is these correspondences which must 

be found in an unsupervised manner. Our aim is to take one of the sagittal slices, n*, and 

for each of the T images in that sequence, reconstruct a volume V t
n∗

 around it by choosing 

an image from each of the other N − 1 slices which is in the same motion state as xt
n∗  and 
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then stacking them together. This produces a dynamic sequence of 3D volumes capturing 

the motion of interest, which is clinically useful as the acquired 2D images can have much 

higher spatial resolution and better contrast than dynamically acquired 3D volumes.

This experiment uses synthetic data in which we start with synthetic high-resolution 3D 

volumes, so that the reconstructed images can be compared to this ground truth. This 

synthetic dataset is highly realistic, and is based on image registration of a real respiratory-

gated high spatial resolution 3D MR volume to a series of real dynamic 3D low spatial 

resolution MR volumes. The high resolution volume was warped using the registration 

results to create a series of realistic high spatial resolution volumes at different respiratory 

motion states. We use a sequence of T = 250 volumes each with N = 40 sagittal slices. The 

generation of this dataset is described in full detail in [9].

We use MA to generate a low-dimensional manifold containing T × N points, labelled yt
(n), 

with each point representing the image xt
(n). We then choose a slice, n*, around which to 

reconstruct a volume. For each image xt
n∗  in this slice, and each other slice m ≠ n*, we find 

the s ≠ t that minimises ∥ yt
n∗ − ys

(m) ∥2 and stack these xs
(m) together into a 3D volume in which 

each slice should be at a consistent motion state with the initial image xt
n∗ . We then compute 

an error on the reconstructed volumes, V t
n∗

 by comparing them to the original ground truth 

volumes.

Note that the restriction that s ≠ t is required for this experiment as the data used are 

synthetic 3D volumes and so slices acquired at the same time would necessarily have the 

same motion state and so give artificially accurate reconstructed volumes. Similarly, when 

sparsifiying the matrices U with the Hungarian algorithm in this experiment we do not allow 

a datapoint in one dataset to be matched with the datapoint in another dataset if it shares the 

same time index. This restriction does not need to be made in cases where the data consist of 

2D slices, as in the clinically relevant case (see Section 3.3).

The error for a reconstructed volume is given as the mean of the squared error in image 

intensities, and we report the median error over the N slices used for the reconstruction, 

since the error distribution over the slices is skewed. In our preliminary version of this 

work, [10] we found that in this experiment the WKS was more effective than other 

graph descriptor methods. Here we show that using weighted MA can provide further 

improvements.

As discussed in Section 2.2 and the toy experiment in Section 3.1, it may be possible to 

improve the MA step in our pipeline by more heavily weighting certain datasets (in this 

case, certain sagittal slices) which are more informative than others. Here, we are trying to 

align slices such that they have consistent motion states with regard to respiratory motion. 

Therefore, we choose to weight those slices in which respiratory motion is most pronounced 

so that different respiratory states may be more clearly distinguished. To do this we perform 

image registration on each slice’s set of images (using the package NiftyReg [17]) to extract 

a motion field for each time-step. For each slice we then find the variance of the magnitude 

of the motion field vectors over all timesteps, and use this value as an estimate of the extent 

of respiratory motion in that slice. Fig. 5 shows this respiratory motion magnitude for each 
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sagittal slice, illustrating that it is those slices in the centre of the lungs which have the most 

pronounced motion, which is consistent with clinical knowledge of respiratory mechanics.

We compare our proposed pipeline of WKS and weighted MA with the unweighted case, 

and with weighted MA using two other graph descriptors; the random walk (RW) feature 

vector as used for slice stacking in [6], [9] and the commonly used heat kernel signature 

(HKS) [20]. In both of these alternative methods the similarity kernel is also sparsified with 

the Hungarian algorithm.

The random walk method involves constructing a vector π for each node in which 

component πr describes the probability of a random walker on the graph being found 

within the r nearest neighbours of the node. These vectors are then compared by computing 

the euclidean difference between them, and similarities computed with a Gaussian kernel 

parametrised by a width σRW.

The heat kernel signature descriptor is similar to the WKS but differs in that the exponential 

term in (11) and (12) is replaced with exp[−Ekz], with the matrices U calculated as in 

Equation (14) with a free parameter σHKS which is analogous to σWKS. The parameters used 

here, found by grid-search, were σ  = 1.5 for the construction of the graphs used, for the 

wave kernel signature method σω = 0.8, σWKS = 1, for the heat kernel signature method 

σHKS = 1 and for the random walk method σRW = 0.02 and for the MA step k  = 15, σ  = 

10. and µ = 0.05. A sample embedding produced by MA using the WKS descriptor is shown 

in Fig. 6. The 250 error values computed as described above are plotted for each method in 

Fig. 7. Using a two-tailed Wilcoxon signed rank test we found statistical significance with 

p < 0.01 that the weighted MA method with the WKS graph descriptor outperformed the 

other assessed methods. In this experiment the manifold weights were normalised with a 

minimum of 1 and maximum of 2, although the method is robust to changes in this maximal 

value as discussed in Section 4.

3.3 Unsupervised Alignment of Real MR Slices

In this experiment we demonstrate the use of MA for slice-stacking on real MR data 

acquired from 8 healthy volunteers. Each dataset has a field of view covering the entire 

thorax, including the lungs and liver. The data consist of N sagittal slices of thickness 8 

mm, where N is typically around 35. The 2D images were acquired by taking one image 

from each slice position, iterating through the slices one by one, and then repeating this 

process until 40 images were obtained for each slice position, the same protocol as used 

in [5]. For volunteers A-D one image was acquired per heartbeat (at systole) so as to 

isolate respiratory motion, and for volunteers E-H there was no such cardiac gating. The 

acquisitions were carried out on a Philips Achieva 3T MR scanner using a T1-weighted 

gradient echo sequence with an acquired in-plane image resolution of 1.4 × 1.4 mm2, a slice 

thickness of 8 mm, repetition and echo times (TR and TE) of 3.1 and 1.9 ms, a flip angle of 

30 degrees, and a SENSE-factor of 2. The field of view covering the entire thorax was 400 × 

370 mm2, and each slice took around 180 ms to acquire.

This experiment was performed similarly to that in Section 3.2 except that it resembles 

the slice-stacking problem in a clinical setting and so there is no ground truth volume 
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to compare the reconstructed volume against. We therefore quantify the consistency of 

the reconstructed volumes by measuring the correlation of the positions of the left and 

right hemidiaphragms [3]. Volumes are reconstructed from the aligned manifolds as in the 

experiment in Section 3.2. For each volunteer, a coronal slice in which the diaphragm is 

visible is selected and within that coronal slice the diaphragm position in each 1D sagittal 

slice is automatically identified by finding the point with the greatest difference in image 

intensity within a manually delineated box on the inferior lung boundary. Fig. 8 shows such 

coronal slices from the raw data in which the sagittal slices are in different motion states, 

and from reconstructed volumes for two volunteers with the diaphragm positions marked. 

We quantify the consistency of these volumes by measuring the correlation between the 

diaphragm positions in the left and right hemidiaphragms - i.e., the left set of markers and 

right set of markers in the images in Fig. 8. If the volumes are reconstructed successfully 

then all sagittal slices will share respiratory states and so these markers will move up 

and down synchronously, giving a high measured correlation. We find that our pipeline 

reconstructs volumes with the highest such correlation of the methods we test, as shown in 

Table 1.

3.4 Semi-Supervised Alignment of MR and PET

This experiment demonstrates weighted MA in the semi-supervised case. We aim to mimic 

a realistic simultaneous PET-MR scanning scenario in which paired PET and MR data 

are acquired continuously, but with short gaps in MR data acquisition representing scan 

sequence planning [2].

The task is as follows: we have a sequence of N  3D MR volumes, each volume coming 

with an associated PET sinogram with which it was simultaneously acquired (these are the 

labelled PET sinograms). We then have a further Nu PET sinograms with no corresponding 

MR volumes (these are the unlabelled PET sinograms). Each sinogram also has an 

associated respiratory navigator which is a 1D signal, which we consider to represent 

the ground truth respiratory state. The task is to estimate the respiratory navigator for the 

unlabelled sinograms by using semi-supervised MA to align the high quality MR data with 

PET data which have a low signal-to-noise ratio. Since known correspondences exist for the 

labelled data there is no requirement for an inter-dataset correspondence step and so we can 

directly analyse the effect of changing the relative weights of each dataset’s contribution to 

the MA loss function. Our interdataset correspondence matrix U is then a (N  + Nu) × N
matrix with 1 on the diagonal and zeros in the rows corresponding to the unlabelled points as 

in [2].

Our MR volumes are the same as those described in Section 3.2. The PET data are 

synthetically generated as described in [9], and we use N  = 450 and Nu = 50 for a total of 

500 PET sinograms. Examples of the high-quality MR images and the low signal-to-noise 

ratio PET views are given in Fig. 9. Fig. 10 shows the effect of varying the weight, C of 

the MR data in this semi-supervised MA approach on the correlation of the low-dimensional 

coordinates of the unlabelled PET data, with the ground-truth respiratory signal. The weight 

of the PET data is set to 1. We see that weighting more heavily the high-quality MR images 

forces the labelled PET data to align to the MR data, and the intra-dataset relations between 
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the labelled and unlabelled PET data then fit the unlabelled PET points to this high quality 

signal. As a result, we see that the correlation with the respiratory signal increases when this 

weight is increased.

4 Discussion and Conclusions

In the preliminary version of this work [10] we found that using the WKS descriptor gave 

state-of-the-art performance for the MR slice stacking problem. Here, we have extended 

that work by developing the novel technique of weighted MA, which yields further 

improvements in the quality and consistency of reconstructed volumes.

The weighted MA scheme is a generalisation of MA techniques in the sense that in previous 

work, the parameter we call µ, which sets the relative strength of the inter-manifold and 

intra-manifold forces was constant across every pair of inter-manifold comparisons. There 

are cases where this is appropriate, and if no prior reason exists to weight one dataset more 

heavily than another then assuming uniform weights is the most reasonable option. But there 

are numerous applications where this kind of prior information is available and to not use it 

is to sacrifice performance in solving the MA problem. Here we have shown two domains in 

medical imaging in which this prior knowledge is useful. First, that sagittal MR slices with 

more significant motion can be more useful for matching images with consistent motion 

states. Second, that imaging modalities with low signal-to-noise ratio (e.g., PET) can be 

fitted to modalities with higher signal-to-noise ratio (e.g., MR).

The question of how to optimise the manifold weights remains a largely open one which 

is dependent on the application at hand. In the simple example given in Section 3.1 we see 

that arbitrarily high weights are optimal, but this is just a consequence of the experimental 

set-up in which we know with certainty that one dataset is completely noiseless. In more 

complex, realistic applications such as in Section 3.2 this is no longer the case. We used 

the magnitude of the respiratory motion fields to determine which sagittal slices were most 

informative, and in our experiment normalised the maximum weight assigned. Unlike in the 

toy experiment it is not the case though that increasing this constant will always increase 

performance. Fig. 11 shows that a range of optimal weight values exist beyond which 

performance degrades again.

In our preliminary work [10] we used a novel graph descriptor we called the adaptive 

WKS. This graph descriptor uses the difference between the sequence of eigenvalues of 

two graph Laplacians to set the parameter σω in the WKS descriptor. This method provided 

statistically significant improvements over the standard WKS descriptor in the experiments 

in that paper, which are similar to those presented in Sections 3.2 and 3.3 here. We found 

that using the weighted MA step presented here was a more effective way of incorporating 

prior knowledge about the reliability of information in different datasets, but that combining 

the two methods did not improve performance (although it does incur a computational cost). 

We explain this by noting that these changes are both motivated by the same intuition - that 

some datasets in the MA step should be considered more informative than others. In the 

adaptive WKS this takes the form of matching more informative (i.e., central lung sagittal 

slices) and less informative slices taking into account that they are dissimilar, but not in a 
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way which specifies which of the two is the informative one. In the weighted MA this takes 

the form of asymmetrically fitting the less informative dataset to the informative dataset by 

assigning different values of the manifold weights c  in Equation (9) - asymmetric in that 

the cost term for deforming the manifold structure of the highly weighted dataset is larger. 

When reliable information about which dataset should be considered more informative is 

available, the latter method accounts for this information better and thus produced dynamic 

MR volumes which more closely matched the ground truth. As presented here our method 

(in the unsupervised case) assumes that each dataset has the same number of datapoints. 

It is however possible to replace the one-to-one matching that results from the Hungarian 

algorithm with a many-to-one matching, or by leaving some points in the larger dataset 

unmatched. In informal testing we found that small differences in the sizes of datasets did 

not significantly affect the WKS method as an effective graph matching method. A more 

robust approach to unsupervised graph matching for datasets of significantly different sizes 

remains an avenue for future work.

To conclude we anticipate that this generalisation of spectral MA methods will be applicable 

in any use case for MA in which there are significant differences between the input datasets 

in their signal-to-noise ratio. In medical imaging this includes cases where the different 

datasets consist of different anatomy or imaging modalities, but also where imaging or 

motion artefacts degrade image quality. Our framework may also prove useful in alternative 

applications in computer vision where multiple views of the same objects or motion can 

be modelled with MA techniques but where, in the past, noisy views have been excluded 

from analysis, rather than simply assigned a low weighting, allowing them to be fit to higher 

quality views.
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Fig. 1. 
Top: Example images of a toy duck, cat and pig from the COIL-20 dataset. Each object is 

imaged 72 times under one full rotation and images are 128 × 128 pixels. Bottom: Laplacian 

eigenmaps embedding for these three datasets (from left to right, the duck, cat and pig), with 

k  = 4. The colour of each point corresponds to the viewing angle.
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Fig. 2. 
Top: The same example images from the COIL-20 dataset with significant Gaussian noise 

added (standard deviation of 1 where the original image pixel intensities are normalised 

between 0 and 1). EachBottom: Laplacian eigenmap embeddings for these datasets, with k
= 4. Some of the structure seen in Fig. 1 is present but much has been lost.
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Fig. 3. Joint embeddings, using weighted MA of the three sets of images, where the noiseless 
dataset is used for the images of the duck, but the noisy data used for the cat and pig images.
In all cases we show all three datasets’ embedding together. Left: Applying no weighting 

(standard MA). Centre left: Weighting the noisy cat images by a factor of 10. Centre right: 

Weighting the noisy pig images by a factor of 10. Right: Weighting the noiseless duck 

images by a factor of 10. It is clear that only in the final case, where the noiseless dataset 

is weighted, is the original manifold structure cleanly recovered. The idea behind our MA 

scheme is that it produces joint embeddings like that on the right of this figure rather than 

like those on the left.
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Fig. 4. The fraction of nearest neighbours correctly predicted by the results of the MA plotted 
against the weighting applied to the noiseless dataset.
As the weighting C increases the fraction of correct predictions goes to 1. Note that the 

unweighted case, C = 1, highlighted by the red marker performs significantly worse than the 

strongly weighted case highlighted at C =10.
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Fig. 5. Normalised motion field magnitude for each sagittal slice in the high-resolution dynamic 
synthetic MR volumes.
The two peaks correspond to the slices through the left and right lungs, and the right lung 

shows more significant motion due to the heart obscuring the left lung (as in the images in 

Fig. 9 the volunteer’s right lung corresponds to the left of the image). Using these values 

as the dataset weights cn will place more emphasis on the sagittal slices in the centre of the 

lungs, rather than those around the edge of the torso or around the spine. Here the weights 

are normalised to have a maximal value of C = 2 and a minimum of 1.
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Fig. 6. An example of the low-dimensional embedding generated from the WKS graph descriptor 
and weighted MA.
All sagittal slices are shown. Colour corresponds to a respiratory navigator generated from 

the gold standard synthetic images. The ’v’ shape of the manifold is typical, but the strong 

relation between the position in the manifold and the colour of the points illustrates that 

the embedding places close together points which share similar respiratory motion states, as 

intended.
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Fig. 7. Mean square difference between reconstructed volumes and ground truth volumes using 
the proposed wave kernel signature (WKS) graph descriptor, and the heat kernel signature 
(HKS) and random walk (RW) feature vector descriptors.
For each method 250 values are generated, one for each timestep of the synthetic 4D 

volumes. Volumes are reconstructed using every sagittal slice and the median error taken, 

which is shown here. The proposed weighted MA scheme reduces the reconstruction errors 

in each case, and the WKS + weighted MA pipeline gives the lowest error.
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Fig. 8. 
Top: Examples from volunteers A (left) and D (right) of a coronal slice through the original 

unaligned volumes. The sagittal slices are not in consistent motion states resulting in 

discontinuities in diaphragm positions. Bottom: Examples from a volume reconstructed by 

stacking sagittal slices aligned by motion state. Estimated diaphragm positions for left and 

right lungs are shown in red.
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Fig. 9. 
Top: A coronal and sagittal view of the synthetic MR volumes. Bottom: corresponding 

projections of a PET sinogram, which is visibly noisier than the MR image due to the 

stochastic nature of this imaging modality.
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Fig. 10. Correlation between low-dimensional coordinates of unlabelled PET data and ground 
truth respiratory signal as a function of manifold weighting on the MR data with which the 
labelled PET sinograms are aligned.
Heavily weighting the MR images results in an embedding which more closely corresponds 

with respiratory motion state.
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Fig. 11. The reconstruction error for the WKS method in the experiment described in Section 3.2 
as function of the maximum manifold weight.
As described in that experiment using a weight larger than 1 reduces reconstruction error, 

but setting the weight too high degrades performance.
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Table 1
Pearson’s Correlation Coefficient between Left and Right Hemidiaphragm Positions of 
Reconstructed Volumes

Volunteer Method

Hemidiaphragm
correlation

WKS HKS RW

A MA 0.957 0.400 0.794

Weighted MA 0.967 0.660 0.774

B MA 0.868 0.393 0.720

Weighted MA 0.935 0.515 0.657

C MA 0.873 0.460 0.649

Weighted MA 0.924 0.586 0.678

D MA 0.756 0.814 0.691

Weighted MA 0.897 0.833 0.695

E MA 0.640 0.455 0.426

Weighted MA 0.739 0.658 0.494

F MA 0.613 0.312 0.250

Weighted MA 0.775 0.512 0.431

G MA 0.512 0.199 0.304

Weighted MA 0.820 0.358 0.541

H MA 0.470 0.278 0.462

Weighted MA 0.698 0.380 0.505

A volume can be reconstructed from each sagittal slice, each giving its own correlation coefficient over all time points; here we report the median 
across these slices. The best result for each volunteer is shown in bold. The cardiac gating for the acquisition of data for volunteers A-D results in 
more accurately reconstructed volumes than is the case for E-H, but in both cases the weighted MA scheme is beneficial.
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