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1 Introduction

Cardiac imaging is central to the diagnosis and risk stratification of coronary artery 

disease (CAD) beyond symptoms and clinical risk factors, by providing objective evidence 

of myocardial ischaemia and characterisation of coronary artery plaque. Literature has 

demonstrated the strong predictive power of non-invasive imaging modalities for CAD. 

Several studies have indicated that imaging adds significant prognostic value in predicting 

outcomes for patients with known or suspected CAD. This includes imaging focused on 

function and ischaemia assessment with cardiac magnetic resonance (CMR) [1], dobutamine 
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stress echo-cardiography (DSE) [2], myocardial perfusion scanning (MPS) [3], or coronary 

anatomy imaging with coronary computed tomography angiography (CCTA) [4].

Stress perfusion CMR is a guideline-backed non-invasive imaging test for CAD assessment. 

The interpretation and clinical evaluation of CMR findings rely on visual assessment 

by expert readers. However, reported findings may exhibit a high level of inter-observer 

variability due to factors such as the level of training, the extent of ischaemia, and image 

quality, which could impact diagnostic accuracy [5].

On a separate note, the revolution of artificial intelligence (AI) and neural network 

development has entered the medical domain over the last decade. Emerging studies indicate 

that AI can detect traditionally challenging-to-identify or diagnose conditions and empower 

image classification. It has various applications in treatment, safety, patient adherence, 

administration, predictive analytics to explore patient datasets, predict the likelihood of 

certain diseases or outcomes, and precision medicine [6].

2 Literature review

There have been several studies examining the use of AI-based image classification 

techniques for stress perfusion cardiac imaging. One example used a fully automated deep 

learning approach to detect myocardial ischaemia from stress/rest myocardial perfusion 

single-photon emission computed tomography (SPECT) images, and it showed promising 

results in accurately identifying regions of ischaemia compared to manual interpretation by 

experts [7]. Another example used deep learning techniques to convert stress perfusion CMR 

images into coronary artery territory maps, which can aid in diagnosing CAD [8].

Earlier studies relied on popular basic machine learning approaches to classify stress 

perfusion imaging, such as multi-layer perceptron (MLP) and support vector machine 

(SVM), and MPS was the most popular imaging modality used. However, more recent 

studies showed the superior performance of convolutional neural network (CNN) achieving 

superior performance in stress perfusion image classification, and the application of AI-

based classification extended to other imaging modalities, such as CMR [9].

The qualitative assessment of stress perfusion CMR images based on AHA segmentation 

still relies on expert readers and has not been automated. One important solution relies 

on stress perfusion quantification [10], which is aimed to standardise the assessment of 

ischaemia using CMR and make it more objective and less prone to observers’ bias, 

however, this promising technology is still on the horizon and the current clinical practice 

still relies primarily on qualitative assessment of stress perfusion images.

We aim in this study to use AI approach to: 1) automate the AHA-based qualitative stress 

perfusion plot and using CMR expert readers as a gold standard. 2) predict outcome using 

image data and clinical health records.
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3 Methodology

3.1 Study design and population

This retrospective observational study focused on a large cohort of patients. Ethical approval 

for the study was obtained from the Research Ethics Committee under reference number 

20/ES/0005, and the research adhered to the principles of the Declaration of Helsinki. 

Patients who underwent stress perfusion CMR at a single centre (St Thomas’ Hospital, 

King’s College London) were screened between April 2011 and March 2021. Only 

completed studies with comprehensive reports and available images were included.

The total number of all-cause mortality events was recorded for the entire population. The 

end of follow-up period was considered equivalent to the data collection date, which was the 

August 20, 2021, when all events were counted.

3.2 Inclusion and exclusion criteria

We included only patients with a complete adenosine stress perfusion study, good quality 

images, and comprehensive reports. Exclusion criteria comprised reports that were blinded 

for research purposes, discrepancies between main body text and summary findings, 

stress studies terminated due to complications, contraindications to stress agent use, mass 

perfusion studies, dobutamine stress studies, lung perfusion studies, poor responses to stress 

agents, and mis-labelled reports originally highlighted as perfusion studies but later found to 

be otherwise.

3.3 Data extraction

3.3.1 Clinical data—Data extraction was primarily conducted using CogStack [11], a 

healthcare application framework that facilitates information extraction from unstructured 

data sources, such as electronic health records (EHRs). CogStack can process information 

locked in various unstructured formats (e.g., Word docs, PDFs, images, text fields) through 

natural language processing (NLP). This enables the retrieval of specific data by searching 

clinical text for terms using simple or complex syntax.

In this study, Cogstack was employed to extract baseline characteristics, including age and 

gender, as well as all-cause mortality using standard Elasticsearch query from structured 

dataset. Clinical risk factors were extracted using trained NLP models, as detailed in a prior 

publication [12].

Clinical variables encompassed age, gender, chronic kidney disease (CKD), hypertension 

(HTN), heart failure, smoking history, dyslipidaemia, diabetes mellitus (DM) and 

cerebrovascular accident (CVA). Age was expressed as a continuous variable, while other 

clinical variables were considered categorical and presented as binary variables.

3.3.2 Image data—For image data extraction, stress perfusion CMR images comprised 

three series of frames representing three levels of slices: basal, mid and apical left 

ventricular (LV) slices. Legacy stress perfusion data included a mix of sequences, such 

as single bolus dual sequence with arterial input function (AIF), dual bolus single sequence, 

and single bolus single sequence. Two different vasodilators were used: Adenosine as 
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a continuous infusion with the dose titrated to both patient heart rate and response 

(140/175/210 μg/kg/min), with imaging acquired at 3–6 min after commencement of the 

infusion, and Regadenoson as a 400 μg bolus with 10 ml saline flush, with imaging 

conducted at 2 min after administration.

The standard contrast agent used in the majority of studies was a bolus of 0.075 mmol/kg 

gadobutrol (Gadovist, Bayer AG, Leverkusen, Germany) administered at 4 ml/s with 20 

ml saline flush during image acquisition. Scanners from Siemens Healthineers or Philips 

scanners, with both 3T and 1.5T field strengths, were utilised.

Image extraction occurred in two stages and underwent review by a level 3 CMR reader. 

Stage 1 involved selecting the peak LV cavity signal intensity frame using an automated 

pipeline based on sum and peak pixels per frame. Stage 2 included cropping the image to 

encompass only the LV myocardium and cavity using centre crop function. Unique IDs for 

each case were used to link image series with corresponding clinical data.

3.4 Neural networks building

3.4.1 Defining labels—Positive ischaemia was identified in the CMR reports using the 

AHA 16-segment model, categorising each segment as either positive or negative without 

ordinal or transmuralilty quantification. Binary labels were employed to annotate images for 

training AHA plot classifiers. Similarly, binary values were used for all-cause mortality in 

training the outcome prediction model.

3.4.2 AHA plot classifier—A CNN architecture was employed for training AHA plot 

classifiers. Different experiments were conducted with different CNN architectures, utilising 

two approaches: a multi-label classifier training one CNN for all 16 labels, and a cluster 

of binary classifiers with individual CNNs for each AHA segment. The choice of data 

extraction and neural network configurations is depicted in Fig. 1.

To determine the optimal architecture, an experiment was conducted on AHA segment 1 

(basal anterior) using five networks: LeNet [13], AlexNet [14], VGG19 [15], ResNet50 

[16] and GoogleNet [17]. The best-performing design was then used for the remaining 

binary classifiers and the multi-label classifier. Training progress was monitored with early 

stopping based on the validation precision/recall curve or F1 score. Two optimisers, Adam 

and Stochastic Gradient Descent (SGD), were tested with various learning rates. Data were 

split into 70 % for training, 15 % for validation and 15 % for testing.

All images were resized to a uniform height and width of 224 pixels, and frames were 

stacked for each case with an input shape of (224, 224, 12). As each AHA segment had 

binary classes (0 or 1), binary cross-entropy loss function was used, and the number.

of classes was set to 1. A batch size of 64 was employed with a maximum of 500 training 

epochs and early stopping after achieving the best F1 score in the validation set with a 

patience of 50 epochs. Adam optimiser with a learning rate of 0.001 was ultimately chosen.
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3.4.3 Hybrid neural network—Hybrid neural network (HNN) was developed to 

incorporate mixed input data from images and clinical data for predicting mortality 

outcomes. CNN architecture was used to extract features from stress perfusion images, 

removing the top prediction layer and flattening the output to a Dense shape of 4. A 

Multi-Layer Perceptron (MLP) with 2 Dense layers was employed to extract features from 

continuous and categorical clinical variables, also removing the top prediction layer and 

flattening the output to a Dense shape of 4, ensuring compatibility with the CNN output. 

Clinical variables used for feature extraction included age, gender, CKD, HTN, heart failure, 

smoking history, dyslipidaemia, DM, and CVA.

Both outputs were concatenated and passed to 2 Dense layers for binary mortality prediction 

in the final layer. Various CNN architectures were tested, following the AHA classifiers 

approach.

3.5 Statistical analysis

Categorical variables were presented as numbers and percentages, while continuous 

variables were expressed as means and standard deviations. Follow-up duration was 

calculated as the mean time to the all-cause mortality events, with cases without events 

and those with a shorter duration from the CMR date to the collection date being excluded. 

The population was stratified into three age subgroups (<65 years, 65–75 years, >75 years) 

due to variations in cardiovascular disease risks among different adult age categories [18] 

Baseline characteristics, clinical risk factors and CMR data differences among subgroups 

were assessed using the Chi-Square test for categorical variables and One Way ANOVA for 

continuous variables. P value of <0.05 was considered statistically significant.

For binary classifiers, class weight was used during training and calculated as:

1/n ∗ N/2

where n is number of examples per class, and N is the sample size. Class weights were 

incorporated during model training to address class imbalance.

Performance metrics for models included accuracy, recall, precision, area under the curve 

(AUC); and F1 score. The total AUC for AHA classifiers was calculated as the micro-

average value. Models’ performance was compared using McNemar’s test, and agreement 

between results and ground truth reports findings was assessed using the Cohen Kappa score 

for binary classification.

All analysis were conducted using the Python programming language, version 3.10, with the 

Tensorflow library employed for model building and training.

4 Results

4.1 Baseline characteristics

Table (1) provides an overview of all baseline characteristics, CMR data, and clinical risk 

factors.
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The study included a total of 2862 cases, with 223 patients (8 %) experiencing positive 

mortality events. The mean follow-up period was 1090 days. Males constituted 65 % of the 

study population, and 3 T field strength CMR scanners were more commonly used (62 % vs 

38 % for 1.5 T). Adenosine was the predominant vasodilator agent used in stress studies (89 

% vs 11 % for Regadenoson).

Of the total cases, 810 (28 %) had at least one AHA segment positive for ischaemia, with 

96 (12 %) experiencing mortality events. When stratified into three age subgroups, the older 

population (>75 years) exhibited a higher percentage of positive stress perfusion (see Fig. 2).

Variation in positive perfusion cases were observed across individual AHA segments, with 

segment 10 (mid inferior) being the most commonly positive (446 cases) and segment 1 

(basal anterior) being the least commonly positive (263 cases). Combining all segments, 

normal studies (all AHA segments with a score of 0) were the most prevalent (2194 cases, 

76.67 %), while studies with 15/16 positive segments were the least common (only 2 cases). 

Further details are presented in Fig. 3.

4.2 Neural networks training

The ResNet50 neural network emerged as the best-performing for AHA plot classification. 

Due to significant class imbalance with normal segments, the cluster classifier showed 

an AUC of 61 %, while the multi-label classifier exhibited superior performance with a 

micro-average AUC of 78 % (McNemar test P value < 0.001), as illustrated in Fig. 4.

For image feature extraction in HNN, GoogleNet proved to be the most effective, achieving 

an AUC of 78 %. Logistic regression highlighted predictors information in descending order 

of information gain: age, LV ejection fraction, CKD, HTN, gender, heart failure, smoking 

and dyslipidaemia (Fig. 5). Table (2) provides a comprehensive over-view of performance 

metrics for all neural networks.

Comparing the classifiers with level 3 CMR readers from the reported ground truth binary 

values, the Cohen Kappa score indicated fair agreement (0.29) for multilabel classifier 

and no agreement for cluster classifier (0.06). An example of a prediction case involving 

RCA ischaemia with a mortality event is depicted in graphical abstract, where 5/16 positive 

ischaemic segments were correctly predicted.

5 Discussion

Image classification plays a crucial role in interpreting stress perfusion images, providing 

clinicians with valuable insights into myocardial function and identifying patients at risk 

of cardiac disease. Advances in machine learning and deep learning continue to drive 

improvements in accuracy and efficiency in this field, and medical literature has shown 

promising applications and techniques in various imaging modalities [9].

Stress perfusion CMR offers a rapid and robust assessment of myocardial ischaemia, 

proving highly accurate for CAD detection. However, its visual interpretation is complex 

and time-consuming, dependent on factors such as operator experience, stress perfusion 

sequence type, vendor, and image quality. These challenges limit widespread adoption, 
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particularly in less-experienced centres [5]. This study demonstrates the feasibility of AI-

based image classification for stress perfusion images using AHA segmentation, achieving 

an average AUC of 78 %.

The reported AUC of 78 % suggests that AI-based classification of stress perfusion CMR 

images is promising. The use of challenging legacy image data, often replaced by high-

resolution sequences in modern practice, underscores the robustness of the model. While 

the Cohen-Kappa score indicates only fair agreement with human readers, the heavy class 

imbalance towards normal AHA segments (76.67 %) poses a significant challenge. Despite 

this, the CNN classifiers successfully learned features and classified images, hinting at the 

potential with improved data quality.

Advancements in imaging technology, including higher resolution, improved acceleration 

techniques, and enhanced computational power, have made non-invasive imaging more 

accessible. High-resolution modern stress perfusion sequences improve workflow efficiency 

and diagnostic accuracy. Training AHA classifiers on high quality images could enhance 

automated reporting functions. Balancing the dataset with more positive cases reporting 

ischaemia could further improve results. As performance improves, automated AI pipelines 

may replace repetitive tasks in the diagnostic process.

Prediction of mortality in CAD is crucial for treatment decisions. This study demonstrates 

the feasibility of incorporating image pixel data for outcome prediction using deep 

learning with feature extraction. Integrating image data with clinical data achieved a good 

performance level with an AUC of 78 %. This suggests the potential for mixed data types to 

enhance predictive capabilities in clinical practice.

6 Conclusion

This study demonstrates the feasibility of AI-based image classification using AHA 

segmentation, even with legacy images and imbalanced datasets. The potential for improved 

performance with modern sequences suggests that AI could automate and enhance the 

efficiency of CMR image reporting in daily clinical workflows.

The introduction of mortality prediction from mixed data types using hybrid neural networks 

is a novel and promising approach. The combination of qualitative AHA plot and mortality 

prediction offers a fully automated classification and prediction pipeline with potential 

clinical applications.

7 Practical and social implications

By leveraging the potential of AI-assisted stress perfusion CMR image classification, this 

can provide valuable tools for diagnosing and managing patients and lead to more timely 

interventions, improved patient outcomes, and potentially reduced healthcare costs. It can 

reduce the burden on radiologists and cardiologists, allowing for improved work-flow 

efficiency and reduce waiting times for diagnostic tests reporting.
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Automated analysis of stress perfusion can facilitate remote diagnosis and consultation, and 

expand access to timely and high-quality cardiovascular care for patients in remote or rural 

communities.

As with any technology in healthcare, there are ethical considerations associated with 

stress perfusion image classification, including patient privacy, data security, and algorithm 

transparency. This requires thoughtful consideration of these ethical issues, as well as 

ongoing collaboration between healthcare stakeholders, policymakers, and technology 

developers to address potential biases and mitigate unintended consequences.

8 Limitations and future research

The primary limitation lies in the utilisation of legacy stress perfusion images with limited 

quality, impacting model performance during testing. The presence of non-diagnostic 

images led to a considerable exclusion of cases from baseline sample. The replacement 

of most legacy sequences with high-resolution ones in current practice may limit the 

applicability of the models to modern datasets.

The heavy class imbalance, with the majority of cases having normal segments, poses 

challenges for the model in predicting positive abnormal segments in external validation 

datasets. This imbalance may influence the model’s generalisability and sensitivity to 

abnormal findings. Future research would benefit from more balanced and high quality 

datasets.

The dataset predominantly includes images acquired using 3T field strength from Siemens 

and Philips scanners. Generalising of the model to different field strengths or vendors should 

be approached with caution, as variations in acquisition parameters and hardware could 

impact the model’s performance.

The variable follow-up periods introduce complexity to the analysis, potentially affecting 

predictive binary models. Future research should consider using data from randomised 

controlled trials (RCTs) to enhance the reliability of outcome predictions.
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Fig. 1. A diagram showing data extraction process for AHA classifiers.
AHA; American Heart Association, CNN; convolutional neural networks.
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Fig. 2. Barplot showing different age groups with gender categories and comparison based on 
positive stress perfusion.
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Fig. 3. 
Categorical barplots showing different AHA segments with the number of positive cases in 

each category (top) and the number of cases with combined positive segments (bottom).

Alskaf et al. Page 12

Inform Med Unlocked. Author manuscript; available in PMC 2024 July 16.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 4. 
AUC with 95 % confidence interval comparing between cluster classifier and multilabel 

classifier (left). Confusion matrices are shown (right): multilabel classifier (top) and cluster 

classifier (bottom).

AHA; American Heart Association, AUC; area under the curve.
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Fig. 5. 
Information gain for mortality predictors using multivariate regression (left), and AUC with 

95 % confidence interval for mortality HNN (right). AUC; area under the curve, CKD; 

chronic kidney disease, CVA; cerebrovascular accident, DM; diabetes mellitus, HNN; hybrid 

neural network, HTN; hypertension.
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Table 1
Baseline characteristics by age subgroups.

Values are presented as number (%) for categorical variables, mean ± standard deviation for continuous 

variables.

AF = atrial fibrillation; CKD = chronic kidney disease; CVA = cerebrovascular accident; DM = diabetes 

mellitus; HB = heart block; HTN = hypertension; LGE = late gadolinium enhancement; LVEF = left 

ventricular ejection fraction; MI = myocardial infarction; RVEF = right ventricular ejection fraction; T = tesla; 

VF = ventricular fibrillation; VT = ventricular tachycardia.

Total 
(n 
= 2862)

<65 
years 
(n = 
1414)

65–75 
years (n 
= 
853)

>75 
years 
(n 
= 595)

P value

Death 223 (8) 32 (2) 66 (8) 125 (21) <0.001*

Sex

    Male 1859 
(65)

919 (65) 540 (63) 400 (67) 0.306

    Female 1003 
(35)

495 (35) 313 (37) 195 (33)

Clinical risk factors

    Smoking 362 (13) 140 (10) 138 (16) 84 (14) <0.001*

    DM 125 (4) 54 (4) 40 (5) 31 (5) 0.326

    HTN 1108 
(39)

462 (33) 390 (46) 256 (43) <0.001*

    Dyslipidaemia 590 (21) 245 (17) 224 (26) 121 (20) <0.001*

    CVA 239 (8) 92 (7) 90 (11) 57 (10) 0.002*

    CKD 147 (5) 36 (3) 55 (6) 56 (9) <0.001*

    Previous MI 725 (25) 346 (24) 232 (27) 147 (25) 0.325

    Heart failure 476 (17) 183 (13) 169 (20) 124 (21) <0.001*

Arrhythmia

    AF 427 (15) 136 (10) 149 (17) 142 (24) <0.001*

    Atrial flutter 112 (4) 42 (3) 46 (5) 24 (4) 0.016*

    VT 209 (7) 85 (6) 66 (8) 58 (10) 0.011

    VF 30 (1) 16 (1) 10 (1) 4 (1) 0.597

Field strength

    1.5T 1076 
(38)

549 (39) 307 (36) 220 (37) 0.643

    3T 1788 
(62)

864 (61) 546 (64) 378 (64)

Stress agent

    Adenosine 2554 
(89)

1272 (90) 767 (90) 515 (86) 0.017*

    Regadenoson 308 (11) 142 (10) 86 (10) 80 (14)

LVEF 55 ± 13 57 ± 11 54 ± 14 51 ± 15 <0.001*

RVEF 58 ± 10 58 ± 09 59 ± 10 57 ± 11 0.008*

+ve ischaemia 810 (28) 302 (21) 281 (33) 227 (38) <0.001*

+ve LGE 893 (31) 307 (22) 301 (35) 285 (48) <0.001*
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Table 2
Comparison of performance metrics for all CNN models.

AUC; area under curve, CNN; convolutional neural network, CK; Cohen Kappa, HNN; hybrid neural network.

Accuracy Precision Recall AUC F1 
Score

CK 
score

Cluster Classifier 0.48 0.17 0.60 0.61 0.18 0.06

Multilabel Classifier 0.76 0.26 0.75 0.78 0.40 0.29

HNN 0.68 0.16 0.77 0.78 0.26 na

Inform Med Unlocked. Author manuscript; available in PMC 2024 July 16.


	Introduction
	Literature review
	Methodology
	Study design and population
	Inclusion and exclusion criteria
	Data extraction
	Clinical data
	Image data

	Neural networks building
	Defining labels
	AHA plot classifier
	Hybrid neural network

	Statistical analysis

	Results
	Baseline characteristics
	Neural networks training

	Discussion
	Conclusion
	Practical and social implications
	Limitations and future research
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Table 1
	Table 2

