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A B S T R A C T

Objectives: The aim of this study is to develop an automated method of regional scar detection on
clinically standard computed tomography angiography (CTA) using encoder–decoder networks with latent
space classification.
Background: Localising scar in cardiac patients can assist in diagnosis and guide interventions. Magnetic
resonance imaging (MRI) with late gadolinium enhancement (LGE) is the clinical gold standard for scar
imaging; however, it is commonly contraindicated. CTA is an alternative imaging modality that has fewer
contraindications and is widely used as a first-line imaging modality of cardiac applications.
Methods: A dataset of 79 patients with both clinically indicated MRI LGE and subsequent CTA scans was used
to train and validate networks to classify septal and lateral scar presence within short axis left ventricle slices.
Two designs of encoder–decoder networks were compared, with one encoding anatomical shape in the latent
space. Ground truth was established by segmenting scar in MRI LGE and registering this to the CTA images.
Short axis slices were taken from the CTA, which served as the input to the networks. An independent external
set of 22 cases (27% the size of the cross-validation set) was used to test the best network.
Results: A network classifying lateral scar only achieved an area under ROC curve of 0.75, with a sensitivity
of 0.79 and specificity of 0.62 on the independent test set. The results of septal scar classification were poor
(AUC < 0.6) for all networks. This was likely due to a high class imbalance. The highest AUC network encoded
anatomical shape information in the network latent space, indicating it was important for the successful
classification of lateral scar.
Conclusions: Automatic lateral wall scar detection can be performed from a routine cardiac CTA with
reasonable accuracy, without any scar specific imaging. This requires only a single acquisition in the
cardiac cycle. In a clinical setting, this could be useful for pre-procedure planning, especially where MRI
is contraindicated. Further work with more septal scar present is warranted to improve the usefulness of this
approach.
1. Introduction

Assessment of cardiac scar using imaging assists in patient diag-
nosis, prognosis and guiding heart failure therapies [1]. Determining
scar presence is important for predicting long term outcomes [2];
however, for many applications, such as cardiac resynchronization
therapy (CRT), localising scar is of key importance [3,4]. With CRT,
the lateral wall is a preferred target region for left ventricle (LV)
lead implantation. Scar detected here in pre-procedure imaging could
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indicate the need for alternative pacing methods such as endocardial
or physiological pacing.

Magnetic resonance imaging (MRI) with late gadolinium enhance-
ment (LGE) is the gold standard in cardiac scar imaging [1]. MRI with
LGE is often contraindicated. Many patients are unable to undergo
MRI due to availability, claustrophobia, or metallic implants causing
large artefacts [5]. Computed tomography angiography (CTA) is a
potential alternative imaging method due to a reduction in all of these
vailable online 15 October 2022
010-4825/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.compbiomed.2022.106191
Received 12 August 2022; Received in revised form 1 October 2022; Accepted 8 O
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ctober 2022

http://www.elsevier.com/locate/compbiomed
http://www.elsevier.com/locate/compbiomed
mailto:hughlavelleobrien@gmail.com
https://doi.org/10.1016/j.compbiomed.2022.106191
https://doi.org/10.1016/j.compbiomed.2022.106191
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2022.106191&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computers in Biology and Medicine 150 (2022) 106191H. O’Brien et al.
contraindications. CTA does not, however, have a well validated uni-
form approach for scar imaging.

Visual assessment of routine CTA for scar has not been widely vali-
dated, but is likely operator dependent and reliant on visible biomark-
ers for scar such as wall thinning [6]. Late enhancement CTA, which
requires additional imaging sequences, has been shown to have com-
parable accuracy to MRI with LGE on the manual reading of American
Heart Association (AHA) segments [7], but with reduced contrast-to-
noise ratios compared to MRI [8]. Additional acquisitions result in
increased radiation doses for the patient. These limitations have limited
its clinical use. Low availability of late enhancement CTA images with
scar ground truth means there have been few attempts at automatically
analysing these images [9,10]. Assessing motion is predictive of scar
regions in both MRI [11] and CTA [12]; however, in CTA this requires
images to be taken across the cardiac cycle rather than at a single
phase. Therefore, a large increase in radiation dose is required for
this approach [13]. Additional imaging may be a viable approach for
CTA scar detection but requires radiation dose increase and additional
clinical input for manual assessment.

From single frame, prospective ECG-gated CTA, which is the clinical
standard in many centres, anatomical features can be extracted which
are indicative of scar in the LV. Shape alone has been previously shown
to be predictive of infarct presence across the whole LV [14]. Local
thickness measurements in CTA have been shown to have agreement
with invasive electromapping [15] and assessment during ablation
procedures [16]. Using shape as the input to neural networks can
provide short axis (SA) level prediction of scar presence [6]. All of
these methods do not use the intensity values of the CTA images di-
rectly, rather opting for an anatomy-based approach. Late enhancement
studies have shown that the contrast agent used in clinically standard
CTA can visualise scar with the right imaging parameters [8]; however,
textural changes may be present even at standard timings and energy
levels.

In recent years neural networks have demonstrated state of the
art performance on many cardiac image analysis tasks [17]. In order
to translate advances in machine learning to the clinic, clear clinical
applications must be identified [18]. We know scar is difficult for
human readers to delineate from clinically standard CTA; however,
neural networks may be able to extract additional information from
the intensity values to classify scar presence.

A common theme in network architectures for biomedical imaging
applications is encoder–decoder networks. Here images are encoded
into a smaller latent representation and then decoded into a target
output. Networks such as U-Net are gold standard for tasks such as seg-
mentation [19,20]. The encoder–decoder model allows for the learning
of a compact latent space with the required information to construct
the decoder’s output. This latent space can then be utilised to perform
tasks other than that of the main decoder, which may be the primary
goal of the network. This approach has been applied successfully to
cardiac applications including CRT response prediction [21] and multi-
modal segmentation [22]. An underlying latent space derived from
cardiac imaging can encode meaningful features which are usable for
downstream tasks.

The aim of this study is to develop an automated method of LV
scar detection on CTA using the images as inputs to encoder–decoder
networks. We hypothesise that using the images to generate a latent
space could provide regional scar prediction.

2. Methods

2.1. Dataset

The dataset primarily was collected as a retrospective study using
prospective ECG gated coronary CT scans data from Guy’s and St
Thomas’ NHS Foundation Trust (GSTT), the collection of which was
approved by the Regional Research Ethics Committee (reference ID
2

Table 1
Demographics and main scan indications for CTA in the data set. Gender
and age was missing for 11 cases due to anonymisation prior to receiving
the scans.
Scan indications

Chest pain 39
CAD investigation 28
HF 11
VT ablation 7
Ischaemic heart disease 9
CRT implant 2
Valve replacement 2
NSTEMI investigation 2
Dilated cardiomyopathy 3
Syncope investigation 2
HCM investigation 1
VT investigation 1
Ventricular ectopic investigation 1
RV mass 1
Tachycardia-induced cardiomyopathy 1
T-wave inversion 1
Hypertension 1
Cardiac thrombus investigation 1

Gender

Male 65
Female 37
Unknown 11

Age groups

<50 17
50–54 16
55–59 19
60–64 23
65–70 22
>70 16

264642). These cases were selected using the hospital picture archiving
and communication system (PACS) system for cardiac patients who had
CTA with a previous MRI within 2 years. From the search 82 cases
were downloaded, filtering for the correct sequences being available in
both modalities and being of sufficient quality to produce reasonable
segmentations as described below. 2 additional cases were obtained
from an ongoing study of patients awaiting coronary artery bypass
surgery at GSTT. An additional 29 cases were obtained via a data-
sharing agreement between KCL and Sheffield Teaching Hospitals,
in the same manner as the GSTT cases. Either end-diastolic or end-
systolic images were used depending on availability since only one was
acquired in most cases. The demographics for all cases are displayed in
Table 1

All CT scans were standard first-pass single-phase images with no
additional iodinated contrast agent or ionising radiation dose beyond
normal clinical practice for the site. A single bolus of contrast (at 5 ml/s
or 6 ml/s dependent on patient size) with saline flush was used in
both sites. CTA scans were acquired with a slice thickness of between
0.25 mm and 1 mm (mean: 0.57 mm) and with a tube voltages between
90–120 kV (mean: 105 kV). The single phase was selected by the
clinician as the best end diastolic or end systolic depending on scan
indication.

2.2. Dataset generation

From the paired MRI and CTA images anatomical segmentations
were carried out using prototype software provided by Siemens Healthi-
neers [23]. This software was used because it produces semi-automatic
segmentations for both CTA and LGE MRI, providing a reproducible
and standardised method for processing images. The method described
here is not dependent on this software and could be performed with
alternative segmentation methods.

From these segmentations the MRI was registered to the CTA

meshes, with the resulting transform being used to register the LGE
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Fig. 1. Data generation process for the septal/lateral scar CTA dataset. MRI meshes are registered to the CTA meshes in three steps. The meshes are aligned with the CTA DICOM
volume, from which SA slices are taken. The septal area is calculated and scar class is determined by a threshold of volume against the volume of the region. ICP: iterative closest
point registration.
derived scar mesh into the CTA space. Registration was performed in
three steps. Initially, the major axis of each mesh is aligned, then the
right ventricle join points to the septum are aligned and finally the
whole endocardium meshes are registered to fine-tune the registration.
All of these steps are performed using iterative closest point registra-
tion. The CTA DICOM volume is then loaded and converted from the
scanner coordinate system to the heart coordinate system used by the
meshes. The DICOM stack, which is now aligned with the meshes, is
then sampled with cutting planes at 60 evenly spaced SA slice locations.
Scar and anatomical segmentation masks are also saved for each slice
based on the meshes. The registration and slicing were performed using
custom software written using the VTK C++ library [24]. The output
of this process is a set of 2D images per slice consisting of a SA CTA
slice, anatomical segmentation mask and scar segmentation mask. An
overview of this process is shown in Fig. 1.

For most experiments, the resulting images were classified with two
labels. From the extracted image slices and segmentations, the septal
region was calculated as myocardium adjacency to the RV mask. The
remaining myocardium was considered as the lateral wall, including
the anterior and inferior regions. From these two regions, scar mask
overlap was calculated and a threshold of 10% of the myocardium
volume was used to label this as a region containing scar. Slices were
excluded basally when they included the aortic valve. This was due to
common self intersection in the segmentation masks. They were also
excluded at the apex when the right ventricle was no longer visible in
the short axis view. This was due to our regional separation method
relying on right ventricle localisation.

Efforts were made with alternative divisions of regions for classifi-
cation. A 4 quadrant approach was tried with the septal region and 3
equally sized sections from the remaining myocardium. Also attempted
was utilising AHA regions calculated from the CTA meshes. Both of
these approaches were unsuccessful from the outset (AUC<0.55) and so
work was focused on dividing SA slices into two segments as described.
3

2.3. Image processing

CTA slices were acquired at a fixed size of 600 × 600 pixels by
our slicing software. These were re-scaled and cropped to a normalised
size of 256 × 256. First, the images were down-sampled using the
MONAI framework [25] zoom function with a zoom factor of 0.6. The
resulting image set is then at a normalised size of 360 × 360 pixels.
The endocardial segmentation mask is used to calculate the centre of
the region of interest to crop from. After this calculation, a random
offset of between ± 0 and 20 pixels in both dimensions was applied
to avoid having all data centred. The RV mask was used to ensure the
outermost region of interest was fully included in the final crop.

Slices were excluded from the dataset using a fixed set of criteria. A
minimum myocardial volume of 50 pixels indicated the slice was either
close to the apex or above the base. A self-intersecting myocardium
mask, where the epicardial surface moves through the epicardial sur-
face, indicated we were at the aortic valve. Slices not containing any
RV, which can occur near the apex, were excluded as we could not
automatically determine the septal region.

Cases with hypertrophic cardiomyopathy (HCM) were excluded.
This was based on early experiments showing they were consistently
incorrectly classified, which is in line with previous studies showing
HCM scar can present differently to neural network approaches [6,
26]. A version of the results with HCM included in presented in the
supplement.

For the cross-validation optimising and training there were 79 cases,
which produced 2682 slices from the processing pipeline, 285 with a
septal scar (10.6%) and 481 with a lateral scar (17.9%). These were
from 53 separate scars. 22 scar presented with some qualitatively
assessed wall thinning on the anatomical scan. Across valid slices the
mean scar burden in cases with scar present was 9.18% (std: 10.6%) as
percentage volume of segmented myocardium.

After training and optimisation experiments were completed, 22
new cases (27% the size of the cross-validation set) from the Sheffield
site were received and used as an independent test set. These produced



Computers in Biology and Medicine 150 (2022) 106191H. O’Brien et al.
Fig. 2. Network design for regional scar classification using a VAE and latent space classification approach. The encoded latent space is the input to the decoder as well as two
classification branches, one for each scar region.
735 slices, 139 with lateral scar (18.9%) and 42 with septal (5.7%) for
the test set.

2.4. Classification networks

Several network variations were designed, with all following the
principle that a latent representation from an encoder–decoder network
could be used to classify scar presence in one or more sections of
the image. In all networks, the input was a single 2D SA slice from
the CTA stack. All networks were implemented in Python using Py-
Torch [27] along with functions and network blocks from the MONAI
framework [25]. The training was performed on both Nvidia Titan XP
and Nvidia RTX 3090 cards depending on availability at training time.
Network runs were tracked and optimised using the sacred library [28]
and MongoDB.

Three network experiments are presented here for comparison:

• A variational autoencoder (VAE) with fully connected classifier
networks connected to the latent space. Here the output of the
decoder is the input image.

• U-Scar: A U-Net [19] style network, with skip connections be-
tween the encoder and decoder branches and with the output
being a segmentation of the endocardium, epicardium and right
ventricle of the slice.

• A variation on the U-Scar network where only the lateral scar
is classified. This was investigated due to a clear pattern in the
initial results.

The size of the latent space size was 128 for all networks. All
networks included group normalisation layers between convolutional
layers to improve training stability [29].

For all variants, the classification network was originally treated
as an optimizable hyperparameter. Each classification branch consists
of blocks consisting of a fully connected layer, group normalisation
and PReLU activation function [30]. The PReLU activation function
has been shown to improve model fitting for ImageNet classification
4

by introducing a learnable parameter instead of a constant value for
negative activations. The number of layers and size of each layer was
configurable and several different configurations were experimented
with.

Based on early experiments where overfitting was an issue, dropout
was used in all networks at a rate of 0.5 during training.

Based on the first batch of experiments while designing the net-
works, for the classification branches a format of 2 1000 input layers
followed by a 256 input layer was found to have the highest AUC
consistently and this became a fixed parameter. Fewer input connection
configurations generally had low performance (AUC<0.55) and we
found no benefit from adding additional layers or connections for
our dataset with the cost of increased training time. Therefore, the
results present comparisons of networks using this format for each
classification branch. A softmax was performed on the output of the
classification branches to determine the predicted class probabilities.
Fig. 2 shows the variational autoencoder network based classification
and Fig. 3 demonstrates the topology of the combined U-Scar network.

2.5. Network training and metrics

Training and optimisation metrics were calculated with 5-fold cross
validation stratifying by patient on the training dataset.

The loss function was a combination of 3 losses:

• Binary cross-entropy loss for the decoder output (𝐿𝑑). This was
selected over Dice loss based on early experiments that found it
was easier to tune the weighting against the other losses.

• Focal loss for each scar classification, one for septal and one for
lateral. (Eqs. (1) and (2))

• Kullback–Leibler divergence between the latent variables and a
unit Gaussian distribution

The septal regional scar loss can be defined as:

𝐿 (𝑝 ) = −𝛼 (1 − 𝑝 )𝛾𝑠 𝑙𝑜𝑔(𝑝 ) (1)
𝑠 𝑠𝑒𝑝𝑡𝑎𝑙 𝑠 𝑠𝑒𝑝𝑡𝑎𝑙 𝑠𝑒𝑝𝑡𝑎𝑙
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Fig. 3. U-Scar network design. U-Net style network with convolutional layer blocks as an encoder followed by a de-convolution block decoder with skip connections. The output
is a segmentation map of the endocardium, epicardium and RV. The intermediate part of the network is that of a VAE where a latent space is constructed. This latent space is

the input to the decoder and a pair of fully connected classification networks predicting scar in either lateral or septal regions.
The lateral regional scar loss can be defined as:

𝐿𝑙(𝑝𝑙𝑎𝑡𝑒𝑟𝑎𝑙) = −𝛼𝑙(1 − 𝑝𝑙𝑎𝑡𝑒𝑟𝑎𝑙)𝛾𝑙 𝑙𝑜𝑔(𝑝𝑙𝑎𝑡𝑒𝑟𝑎𝑙) (2)

For the focal losses, there are separate parameters for both the
weighting (𝛼) and focusing (𝛾) terms.

The combined loss for the VAE style network case can be written as
follows

𝐿𝑡𝑜𝑡𝑎𝑙(𝑋, �̃�, 𝑝𝑙 , 𝑝𝑠) = 𝑊𝑥(𝐿𝑥(𝑋, �̃�))+𝑊𝑘𝑙(𝐿𝑘𝑙(𝜇, 𝜎))+𝑊𝑠(𝐿𝑠(𝑝𝑠))+𝑊𝑙(𝐿𝑙(𝑝𝑙)) (3)

Where each loss component has a separate weighting parameter
‘‘W’’ which we tuned as hyperparameters. 𝐿𝑥 is the cross-entropy loss
between the input image and decoded image (𝑋 and �̃�). In the case
of U-Scar, this is the cross-entropy of three-channel segmentation and
the predicted segmentation maps from the network. Otherwise, the
loss composition is the same. 𝐿𝑘𝑙 is the Kullback–Leibler divergence
taking the latent mean and standard deviation, denoted by 𝜇 and 𝜎
respectively, as inputs.

3. Results

Training took between 4–10 h per network depending on the graph-
ics card used, with the newer 3090 increasing speed.

Fig. 5 shows ROC curves for septal and lateral scar classification
on a slice wise basis across cross-validation folds and on the holdout
test set for lateral classification. No network performed well at septal
5

scar classification. For this reason and the low rate of septal scar in
the test set, the test results are presented for the lateral only network
trained on the whole cross-validation dataset. Table 2 displays a subset
of the network runs from the hyperparameter optimisation done using
grid search. These show the general trend in results where the U-
Scar variant with only a lateral scar detection branch far exceeded the
performance of the other networks.

The consistently poor septal classification performance informed the
use of the U-Scar network with only a lateral branch. Fig. 4 displays two
sets of loss curves for both iterations on the U-Scar net, both having a
clear decrease in training loss over time but the inclusion of septal scar
training affected the validation causing it to become unstable on some
folds.

A single test case took 1 min to calculate the slices and run them
through the trained network.

The U-Scar with lateral classification only was chosen over a VAE
with this formulation as it was more reliable to train. The VAE often
failed to train with a tendency to end with either all scar or no
scar predictions. It was decided optimising the U-Scar with this new
formulation would be preferable.

3.1. Dataset assessment

The poor septal performance indicated a deficit in the dataset in
this class or an underlying difficulty in classifying this type of scar.
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Fig. 4. Comparision of two run training curves for U-Scar with both septal and lateral classification branches (top) and with only lateral classification (bottom).
Table 2
Representative subset of optimisation runs comparing networks and focal loss 𝛼 values. AUC: area under the ROC curve. CI: Confidence interval. Acc: Accuracy, averaged between
septal and lateral. U-Scar-Lat is the variant of U-Scar network with no septal classification branch.

Network 𝛼 Acc Septal Lateral

AUC [95% CI] Sensitivity Specificity AUC [95% CI] Sensitivity Specificity

Cross validation

VAE-Scar 0.05 30% 0.52 [0.49–0.55] 0.66 0.38 0.55 [0.52–0.57] 0.98 0.02
VAE-Scar 0.1 73% 0.43 [0.40–0.46] 0.04 0.90 0.44 [0.42–0.47] 0.29 0.60
U-Scar 0.05 78% 0.42 [0.39–0.45] 0.03 0.93 0.47 [0.44–0.49] 0.21 0.8
U-Scar 0.1 73% 0.37 [0.34–0.39] 0 1 0.41 [0.39–0.44] 0.5 0.37
U-Scar-Lat 0.05 74% – – – 0.70 [0.67–0.72] 0.60 0.73
U-Scar-Lat 0.1 71% – – – 0.67 [0.64–0.69] 0.54 0.75
U-Scar-Lat 0.2 77% – – – 0.68 [0.65 – 0.70] 0.41 0.85

Hold-out test

U-Scar-Lat 0.05 70% – – – 0.75 [0.734–0.77] 0.79 0.62
The rate of septal scar slices also having a lateral scar, by our region
boundaries was high. 65% of septal scar slices also had a lateral scar.
Taking an average of 3 replications of the highest AUC U-Scar lateral
configuration, slices with both scar classes accounted for 39% of the
false negatives, a rate comparable to their presence in the dataset. They
were underrepresented in the false positives, with an average of 21
false positives. This indicates the network was not simply classifying
scar presence across the whole slice but was learning some amount of
lateral localisation.

The rate of septal scar in the dataset was low, at only 10.6% in the
training dataset. Scar in these slices commonly occurred on the border
of the lateral wall and septum regions. Combined with the known
rate of septal scar slices also hitting the threshold (10% of myocardial
volume) for lateral scar, the rate of independently septal scars was
possibly not sufficient to independently classify slices in this class.

4. Discussion

CTA is the second most common cardiovascular imaging modality
after echocardiography [31], with many indications. It can also be a
good alternate for patients who are clinically indicated for an MRI but
who have contraindications. We have proposed a novel deep neural net-
work latent space based classifier to provide additional scar information
6

from routine clinical CTA. This would provide estimates of regional
scar risk as an incidental finding in patients receiving CTA for other
indications. It could also estimate scar location for planning radiation
ablation or CRT implants in patients contraindicated for MRI. While
the accuracy is modest, the marginal cost of analysis is negligible and
supports creating larger data sets to improve this approach.

There was a high class imbalance in the dataset, meaning a larger
dataset may improve the results of this approach. There were low
AUC results in every iteration of the VAE based classification network.
Additional hyperparameter tuning may have been able to obtain an
improved result but based on the results of these experiments optimi-
sation was focused on the U-Scar network design. The U-Scar network
produced modest accuracy and sensitivity when focused on the lateral
wall scar task. This was confirmed using our independent test set.

The hypothesis behind the U-Scar design was that anatomical infor-
mation would be helpful for scar classification and we can enforce its
inclusion in the latent encoding using the segmentation loss. Previous
studies have shown a link between anatomical shape and predicting
scar presence on CTA [6,16]. The improved training stability compared
to the VAE network indicates encoding the shape could be an important
aspect of the network design for this task.

The U-Scar design similarly had very low performance on septal
region scar, but an improved result with the lateral region. There were
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Fig. 5. ROC curves for networks using cross validation for lateral (top) and septal (bottom) scar classification.
fewer septal scar slices available in the dataset which could explain
this. Specifically, the number of septal slices which did not also have
scar above the threshold in the lateral region was very low. Other
definitions of the septal boundary may have made it easier to classify
scar in the septum but the class imbalance would still have been an
issue. Alternatively, it may be harder to learn septal scar from CTA due
to the smaller region of interest and differences in anatomical presen-
tation. Testing either explanation would require a much larger dataset,
especially in the septal scar class. Since classes were determined by
a threshold based on scar volume compared to total region volume,
septal scars could be included based on a smaller total volume. Using
an alternative approach to determine scar presence may be desirable
but would worsen the class imbalance in our dataset. Increasing the
dataset size would be a clear next step in any future work.

While septal scar was not predictable in our dataset, lateral wall
scar prediction specific to an apical–basal slice could be useful for some
clinical applications. Specifically, CRT implants have lower success
rates in the presence of lateral scar since they may be on or near the
available epicardial pacing site [3]. These patients often have existing
devices implanted, meaning MRI is contraindicated. Pre-procedural
identification of patients who are unlikely to respond to conventional
CRT due to lateral scar would provide a potential screen for innovative
endocardial or physiological pacing approaches [32]. Applying this
method to a CRT specific cohort as an external validation set would
be a useful next step to demonstrate clinical usefulness.
7

Alternative approaches for CTA based scar imaging have been pro-
posed but no existing approach matches the potential benefits of our
method. Thickness based maps have been shown to have good agree-
ment during ablation [16]; however, these are based on a single cutoff
thickness value, which may vary greatly between patients and miss
smaller scars. Motions based methods tracking the deformation of CTA
volumes provide highly localised scar estimation but require a retro-
spectively gated CT protocol which incurs a large increase in radiation
dose to the patient [12]. A recent study using radiomic parameters was
able to obtain AHA level accuracy in CTA [33]; however, with only
one slice per region and exclusively applied to HCM patients. Manual
reading of scar from late enhancement CTA has been demonstrated,
but also requires additional imaging sequences which are not widely
performed [8]. Our results demonstrate a neural network architecture
that is capable of greater than slice based accuracy; however, additional
datasets would be required to improve these results for any clinical
application.

In difficult cases where MRI is contraindicated or LGE would not
be tolerated a lateral slice location of scar would be clinically useful.
This method is superior to previous methods as it does not require
segmentation of the LV to predict scar presence [6,16]. Adding a
segmentation step both adds additional implementation complexity and
a possibility to introduce errors via the segmentation. This level of scar
location detail could also be useful for modelling applications, adding
an estimate of scar location rather than relying on thickness or other
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-

biomarkers alone as a guide in CTA based models [34]. Additionally,
this method would be fast enough to be used during a CT exam to signal
if there was a need for scar specific imaging, such as late enhancement
CTA.

5. Limitations

HCM cases were excluded from the dataset as the networks did not
generalise well to them, as shown in the supplementary experiments.
This may be improved with additional HCM cases, but a disease-specific
approach may be required due to differences in scar presentation [26]
and anatomical shape.

To try to mitigate the class imbalance focal loss was used for the
classification losses, with a very low 𝛼 value required to produce posi-
tive results. Addressing this imbalance would be the main improvement
for any future work on this task. With more data, it could be beneficial
to train on scar cases only to narrow the scope of the task to localising
scar in known scar positive cases. Based on the analysis of the dataset
this is the most likely reason for the difficulty in classifying septal scar.
Generating datasets of clinically standard CTA for scar analysis require
patients also having a previous scar scan for establishing ground truth,
in our case MRI with LGE, prior to the CTA. This requirement greatly
limits the available data for analysis; however, our results indicate
collecting a large dataset may allow for localised scar detection in CTA.

To generate the training and test datasets a registration from MRI
with LGE to CTA needed to be performed. Mesh-based registration
performed well in our cases but the accuracy of this method is de-
pendent on the segmentation accuracy in both modalities. Low quality
scans, especially MRIs with significant motion artefacts could not be
included due to this. There is an inherent error introduced with a
registration approach as all registrations will have some error, which
for our purposes will extend to the ground truth. The timings of scans in
different modalities will also not match exactly, introducing additional
error to the ground truth. Due to the lack of scar ground truth in CTA,
this limitation means more specific regional scar estimation is difficult.
While a segmentation would not be required for using our method
clinically, it is required for generating larger training datasets.

A shortage of paired CTA-MRI datasets is a clear weakness of this
study. Acquiring cases which have had both scans within a short
time period, as well as the labour intensive nature of processing both
modalities will be an ongoing problem for future studies. While we have
assembled a larger dataset than previously seen in studies addressing
this problem, we have shown our dataset is insufficient for broader
generalisability to either HCM or septal scar classes. In the supplement
we show an experiment using a cycle-GAN based technique to augment
the dataset with synthesised CT generated from new MRI datasets [35].
While our experiments found this was not possible using existing tools,
a specialised generative model may be a way forward for cardiac scar
detection in the future.

6. Conclusion

Classification of lateral wall scar in a clinically standard CTA is
feasible using the presented method. Additional datasets would be
desirable to generalise to septal regions or divide up the lateral region
further to provide increased localisation of scar classification. As it
requires no specialised imaging sequences and is demonstrated using
routine CTA, our method would be suitable for integration into an
existing clinical or experimental workflow. This could decrease scan
reading times or provide additional information in complex cases where
the status of lateral scar was of interest.
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