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Abstract

Multivariate pattern analysis (MVPA) has emerged as a powerful method for the analysis of 

functional magnetic resonance imaging, electroencephalography and magnetoencephalography 

data. The new approaches to experimental design and hypothesis testing afforded by MVPA have 

made it possible to address theories that describe cognition at the functional level. Here we review 

a selection of studies that have used MVPA to test cognitive theories from a range of domains, 

including perception, attention, memory, navigation, emotion, social cognition and motor control. 

This broad view reveals properties of MVPA that make it suitable for understanding the ‘how’ of 

human cognition, such as the ability to test predictions expressed at the item or event level. It also 

reveals limitations and points to future directions.

Technological developments in human neuroimaging over the past few decades have led 

to an explosion of investigations into the full range of human cognitive abilities, including 

perception, attention, memory, navigation, emotion, social cognition, motor control, and 

more. In parallel, researchers concerned with understanding the mind from a functional 

point of view – what are the cognitive representations and processes that support human 

behaviour? – have regularly asked whether neuroimaging offers any useful answers to 

theoretical debates at that level of understanding1–6.

In the past two decades, and at an increasing pace, researchers have turned to multivariate 

pattern analysis (MVPA) approaches to the design and analysis of human neuroimaging 

studies. MVPA capitalizes on the latent information found in patterns of brain activity that 

are distributed across voxels in an fMRI experiment or across channels in an MEG or EEG 

experiment (Figure 1). Researchers have claimed that these approaches would offer new 

ways to test mechanistic accounts of cognition7–10. The purpose of this review is to take 

stock of that claim by reviewing a wide sample of recent studies that have tested cognitive 
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theories by developing hypotheses about the patterns of brain activity that emerge while 

participants perform tasks from many different domains.

Numerous recent reviews have examined MVPA studies from other perspectives, focusing 

on methodological aspects8,11–13, philosophical considerations and in-principle limitations 

of the approach14–16, applications in brain-computer interfaces17, historical perspectives18, 

“mind-reading”19,20, and integrating MVPA studies with computational models21 including 

deep neural networks22–24. In contrast, here we take a pragmatic approach to understanding 

whether and how MVPA has been used to shed light on theories about the “how” of human 

behaviour. Unlike previous theoretical and methodological perspectives, the aim of this 

review is to provide specific examples of studies that have successfully used MVPA to test 

cognitive theories. While these examples primarily highlight the strengths of MVPA, like 

any approach it also has limitations, which we discuss after the examples. Furthermore, by 

presenting these examples, we do not imply that MVPA is the only way to test cognitive 

theories with neuroimaging data. Finally, we briefly identify some future directions for 

research that should build on the findings and principles identified here.

What is multivariate pattern analysis?

MVPA studies vary widely, but generally depend (sometimes implicitly) on the assumption 

that neural activity patterns (the distribution of activity across a set of voxels or channels) 

index the structure of a mental representation or process. In its most basic form, MVPA 

can be used to test whether the activity patterns in a given brain region are reliably distinct 

for two different stimulus classes (Figure 1). If this is the case, then that region may 

be considered to represent some dimension that distinguishes those classes. However, the 

finding of above-chance classification alone may not provide much theoretical insight, as 

there are typically many dimensions on which two conditions differ that could drive the 

classification15,25. Therefore, many studies have used more complex approaches to relate 

brain activity patterns to measures of behaviour, to judgments of (dis)similarity, or to 

parameters derived from formal computational models. As we will see in the examples 

below, two approaches have been particularly fruitful for testing cognitive theories: cross-

decoding (Figure 1b) and representational similarity analysis (Figure 1c). Still other studies 

adopt the logic that multivariate patterns provide a “signature” that indexes the degree to 

which one of several possible mental states is more engaged in a given task26. Finally, 

multivariate decoding approaches are complemented by encoding methods27–29. Unlike 

decoding, which aims to predict experimental conditions from neural activity patterns, 

encoding aims to predict neural activity patterns from experimental conditions. While all 

these approaches have strengths and weaknesses12,27,29, the claim evaluated here is that they 

can provide insight, at a fine-grained level, into the links between neural activity patterns 

and the mechanisms or representations implied by cognitive theories.

As with any other measure of neural activity, the inferential strength of an MVPA finding 

depends on other factors. Stronger claims will be supported, for example, by results that are 

robust across different tasks, stimulus items, and participants; by demonstrating a systematic 

relationship between patterns and overt behaviour; or by demonstrating specificity to brain 

regions or time windows. Understanding MVPA results from fMRI or M/EEG at the 
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underlying neurophysiological level has proved challenging, as illustrated by debates about 

the interpretation of above-chance decoding of visual orientation from activity patterns in 

primary visual cortex30–35. However, as illustrated below, MVPA has been successful even 

without a complete picture of the neurophysiological basis of the activity patterns that 

differentiate between conditions.

What is a cognitive theory?

A cognitive theory is one that explains how a behaviour emerges from processes and 

representations at a level that abstracts away from the specific neural substrate. This 

corresponds closely to the “algorithmic” level of Marr’s influential analysis of the tasks 

confronted by vision, a level that lies between the properties of neurons and neural 

networks (the “implementation” level), and a description of the problem the organism 

faces and the relevant information that is available in its environment (the “computational” 

level)36,37. Cognitive theories adopt an information processing perspective to describe 

mental representations of internal states and of the external world. Representations are 

powerful because they can make explicit some latent dimensions, while obscuring others, 

thereby supporting behaviours that rely on those exposed dimensions. By way of analogy, 

Arabic representations of number make units of ten explicit in a way that Roman numerals 

do not, so that decimal operations are trivial to perform in one (8 x 10 = 80) but not the other 

(VIII x X = LXXX). Cognitive theories also take up the formation, manipulation, retrieval, 

and use of representations: that is, cognition encompasses active mental processes as well 

as stable mental representations38,39. A key aspect of the cognitive approach is the idea 

that multiple relatively simple processes and representations can interact in different ways, 

depending on the actor’s goals, to produce a wide range of complex behaviours.

Specifying a cognitive model entails answering several questions, such as: what kinds of 

inputs must be represented, and what kinds of latent information must be extracted from 

those inputs? What is the format and durability of stored representations? What is the 

number and kind of processes that manipulate, store, retrieve, or draw inferences about 

represented information? What are the capacity limits or “bottlenecks" of these processes, 

and to what extent do they interact with each other? How does information flow within and 

between processes or stages?40

As we review examples of specific studies in the following section, we will show how 

neuroimaging studies have used MVPA to address some of the questions and problems 

that emerge from cognitive theories of behaviour. Outside of our scope, there are theories 

of information representation and transformation that are fundamentally neuroscientific, 

aimed at capturing the properties of a given brain region, pathway, or network41. Likewise, 

while we are concerned here with MVPA tests of cognitive theories, this logic is 

sometimes reversed, as when cognitive theories are invoked to explain patterns of activity 

in neuroimaging results2. Finally, while cognitive theories are also used as a framework to 

understand individual differences42, psychiatric conditions43, or cross-cultural variation44, 

our focus here (without denying the importance of those topics) is on mental universals, in 

the tradition of cognitive psychology.
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What makes MVPA suitable for testing cognitive theories?

What are some of the properties of MVPA logic that suit it to testing hypotheses generated 

by models of cognition? We do not claim that other approaches to the design and analysis 

of neuroimaging experiments (e.g., repetition suppression or mass univariate studies) cannot 

achieve similar aims. Rather the emphasis is on features of MVPA that naturally align to 

testing cognitive models. One feature that stands out is that MVPA is readily used to index 

representations with fine granularity, by measuring the brain states that are tied to specific 

items, events, or experiences. This property enables contact between theory and data at a 

level that is required for testing predictions effectively.

Rich item-level data sets have proved powerful in the representational similarity 

approach45,46 to MVPA that characterises neural spaces through dense measurement of 

inter-item similarity. These descriptions can be related across imaging methods (e.g. 

fMRI-MEG fusion47), and also to overt measures of behaviour such as reaction times in 

search tasks48,49 or explicit similarity ratings46, as well as to similarity spaces derived 

from computational models50,51. Importantly, this approach improves the specificity of 

predictions about neural activity, and hence the ability to distinguish competing models, 

by going beyond simple “point” predictions (A>B, or A>0) that are known to provide a 

weak basis for theorising52,53. In turn, more exploratory studies, or those motivated more by 

neuroscientific aims, may reveal neural representational spaces that were not expected from 

cognitive theories, but that nonetheless inform them.

Neuroimaging studies have often taken advantage of the ability to covertly index mental 

states without perturbing the behaviours that generate those states54–57. This feature has 

proven still more powerful in combination with the sensitivity of MVPA, for example in 

studies of activity related to perceptual events that should be ignored58,59, to activation 

states in the delay interval of working memory tasks60,61, to contextual information 

that is retrieved from memory incidentally62, or to the preparation to generate overt 

behaviours63,64. Finally, MVPA can be particularly informative when used to test for 

generalization by using a cross-decoding approach that compares activity patterns across 

domains, modalities, tasks, time, or individuals (Figure 1b)65–68. For example, this approach 

allowed researchers to show that perceptual aspects of the encoding context are reinstated 

during retrieval, that emotions and mental states are shared across tasks and individuals, and 

that visual object representations are activated by attention cues and modulated by scene 

context, as reviewed in more detail below.

Applications of MVPA to testing cognitive theory.

In each section below, we introduce a cognitive capacity of interest, and describe one 

or more influential theories from that domain. We then illustrate how MVPA studies 

of adult human participants have assessed the predictions of those theories or informed 

debates between theories. Together, these examples highlight the ways in which multivariate 

neuroimaging methods, leveraging some of the design and analysis advantages noted above, 

can speak to core issues that have shaped theorising about human cognition for decades. 

Space limits mean that many other worthy examples have been omitted.
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Spatial navigation

Tolman69 argued that the sophisticated mammalian capability for navigation is enabled 

by symbolic representations of the spatial environment that support inducing new paths 

to previously visited locations (commonly referred to as “cognitive maps”70). While 

neuroimaging methods typically require participants to remain immobile, clever task 

design has enabled MVPA tests of key predictions of this general theory of the 

neurocognitive processes supporting human navigation. Specifically, MVPA revealed 

distinct representations of spatial location (one’s position in a mental map) and facing 

direction (one’s orientation at a given location) in the medial temporal lobes71 while 

participants viewed images of different familiar campus locations that were photographed 

from each of the four cardinal directions (Figure 2). A related study72 revealed how we 

encode experienced episodes. Participants wore photo-capturing devices that recorded time- 

and location-stamped egocentric images over a month. They later viewed some of these 

images during fMRI, and tried to recall the depicted episodes. Hippocampal activity patterns 

were more similar for more proximate than more distant autobiographical events, both 

in terms of their distance in space as well as in time. These studies illustrate how the 

cognitive map concept has been elaborated by MVPA approaches to human neuroscience, 

by showing functional dissociations amongst navigation mechanisms, and relating neural 

activity patterns to real-life experience using representational similarity analysis.

More generally, the evidence speaks to cognitive theories about long-term knowledge 

representations, showing that the encoding of time and spatial location are partly shared, 

and yet distinct from the representation of heading direction.

Object perception

Behavioural studies have shown that object recognition is strongly facilitated by scene 

context73,74, but there has been debate about the underlying mechanisms. According 

to interactive accounts, the visual processing of objects and scenes interacts, such that 

object processing is modulated by expectations derived from scene context75. Alternatively, 

information from objects and scenes may be processed in parallel, with facilitation resulting 

from post-perceptual evidence integration76. Recent studies applied MVPA cross-decoding 

to fMRI and MEG data to provide evidence for the interactive account77. Participants 

viewed ambiguous objects (e.g., degraded by blurring) within or outside of scene context. 

Multivariate activity patterns evoked by the ambiguous objects in object-selective visual 

cortex (measured with fMRI) at 300 ms after stimulus onset (measured with MEG) became 

more similar to the activity patterns evoked by intact objects (determined in a separate 

experimental run) when the ambiguous objects were presented in scenes. Because the 

scenes alone did not evoke object-specific activity patterns, the modulation could not 

be explained by additive processing of scenes and objects, thus providing evidence for 

interactive accounts.

In this example, MVPA was used to index the processing of within-scene objects by relating 

visual cortex response patterns evoked by degraded objects in scenes to canonical (intact) 

object responses in isolation. Through this cross-decoding approach, differences between 
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conditions could be related to the modulation of visual object processing, which was key to 

testing the predictions of contextual facilitation models.

Attention

Attentional mechanisms allow cognitive processes to focus on currently relevant 

information78. According to the influential biased competition theory of attention79, 

attention biases the competition between neural representations of multiple simultaneously 

presented stimuli (e.g., visually presented objects) in favour of the attended stimulus. 

Neuroimaging studies have used MVPA cross-decoding to provide evidence for a central 

component of the biased competition theory (and other theories of attention): the attentional 

template80. In visual search tasks, when attention is directed to a particular stimulus 

attribute, such as an object’s shape or colour, neurons in macaque visual cortex representing 

that attribute show increased activity, even before a search display is presented81. This 

preparatory activity constitutes a top-down attentional bias82, facilitating the processing 

of subsequently presented target objects. fMRI studies have used MVPA to show that 

a classifier trained to distinguish between activity patterns evoked by visually presented 

objects can predict what specific object participants prepared to search for in separate trials, 

in the absence of visual input83,84. Recently, this approach has been used to go beyond 

what was known from animal work, showing that such attentional templates incorporate 

contextual expectations during naturalistic visual search85.

In this example, MVPA was used to address hypothesised intervening stages between the 

decision to act and the act itself, providing evidence for an attentional template that mediates 

between a verbal understanding of a task and the active processing of a search array. Here, 

a key methodological strength was the ability to measure indices of target objects at an 

item-specific level, as previously achieved in neurophysiological studies.

Memory

Most cognitive theories of memory distinguish between encoding, storage, and retrieval 

stages. According to the encoding specificity theory86, memory performance depends on the 

similarity between encoding and retrieval contexts. Accordingly, remembering a particular 

fact or episode may include mentally reinstating the encoding context, for example the 

place where the memory item was encountered. In an MEG study87, participants learned 

arbitrary associations between visual images (of scenes or faces) and words (Figure 3A). 

In the retrieval phase, participants were only presented with the words, reporting whether 

they had seen the words before. Multivariate classifiers were trained on responses evoked 

by the images presented without the words (in the encoding phase) and tested on responses 

evoked by the words without the images (in the retrieval phase). Results showed that the 

category of the word-associated images could be decoded at retrieval, indicating that the 

encoding context was reinstated. Importantly, by training and testing classifiers at different 

time points, the analysis showed that the activity pattern at 180 ms after image onset (during 

encoding) was reinstated around 500 ms after the word retrieval cue (Figure 3B), providing 

evidence that relatively early stages of encoding are reinstated during recollection.
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This study thus cleverly used MVPA cross-decoding to provide evidence for contextual 

reinstatement by associating activity patterns during retrieval with content-specific activity 

patterns during encoding, at an item-specific level.

Category Learning

Researchers have used MVPA to test cognitive theories about how new categories are 

learned. One such study88 directly compared two formal models, applied to a trial-and-error 

task requiring participants to assign geometric shapes to one of two categories. Each 

model posits different internal representations of learned categories: the prototype model89 

describes an abstracted encoding of category-defining features, while the exemplar model90 

instead emphasizes representations of individual category exemplars. At the behavioural 

level, each model described categorization decisions equally well. Whole-brain MVPA of 

fMRI data examined distinct predictions made by the two models about the activity patterns 

that would be evoked by each learned exemplar. The observed patterns of brain data were 

significantly more consistent with representational states predicted by the exemplar model, 

relative to the prototype model. Further analysis demonstrated a close link between patterns 

of activity in key occipital, parietal, and lateral prefrontal regions, and parameters from the 

exemplar model that describe attention to category-defining object features.

This study provides a clear example of how the hypothetical representations of two 

competing models may be translated into item-level predictions about the patterns of 

neural activity evoked by those items, revealing mental encoding principles that were not 

distinguishable at the level of behaviour.

Conceptual knowledge

Conceptual knowledge describes the rich information we can retrieve and manipulate about 

categories of objects, events, and abstractions such as “chair”, “party”, or “freedom”. 

What are the key dimensions that describe meaningful, real-world concepts, once they are 

learned? Researchers have tested the claim from embodied (or grounded) cognition theories 

that direct sensorimotor experience of the world pervades our mental representations of 

concepts, even abstract ones91,92. MVPA provides a test of this proposal by searching 

for neural signatures of such first-hand sensorimotor experience during cognition about 

concepts. A recent fMRI study used representational similarity analysis to compare models 

of the dimensions that describe knowledge of abstract and concrete concepts, including 

objects and events, expressed in single words93. These different models were based on: 1) 

taxonomic relationships (e.g., Pippin -> Apple -> Fruit); 2) patterns of local co-occurrence 

in large text corpora, an index of semantic proximity; and 3) overlap in features of shared 

“experiential” content that related to sensory, motor, spatial, and affective properties. Across 

a range of brain regions, the third model was most effective at capturing variance in the 

activity patterns evoked by the tested concepts. This finding supports the grounded cognition 

proposal that abstract knowledge about concepts is constituted, at least in part, from a 

mixture of modality-specific experiences.
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This study is an example of how MVPA can index representations with fine granularity. 

The ability to measure similarities between item-level activity patterns allowed for tests of 

competing models that describe how semantic knowledge is organised.

Emotion

A long-standing debate in the field of emotion research revolves around the role and 

importance of basic emotions94,95. According to discrete emotion theory96, a small number 

of basic emotions (e.g., joy, anger, fear, disgust) are the building blocks of emotional 

states, each characterized by specific and universal behavioural, physiological, and neural 

signatures. MVPA has been used to provide evidence for such emotion-specific neural 

correlates. In one study, participants either viewed short movies depicting the basic 

emotions or mentally imagined being in a particular emotional state97. Classifiers trained 

to distinguish emotion categories during movie viewing could classify emotion categories 

during mental imagery, suggesting that basic emotions are supported by discrete neural 

signatures that generalize across emotion-eliciting conditions. However, evidence against 

basic emotion theory comes from an fMRI study that investigated the neural similarity of 20 

complex emotional states (e.g., jealousy, nostalgia) inferred from brief verbal narratives98. 

For each narrative, participants indicated the degree to which it elicited each of the six basic 

emotions. These data were used to construct a similarity space, in which complex emotions 

that elicited basic emotions in similar ways were represented as relatively more similar to 

each other. Subsequently, MVPA was used to obtain the neural similarity of the activity 

patterns evoked by the 20 conditions in mentalizing regions (medial prefrontal cortex; 

temporo-parietal junction) that were previously shown to distinguish basic emotions99. 

Results from this representational similarity analysis showed that a model based on appraisal 

theory100,101 significantly outperformed the basic emotion model at explaining the mental 

“space” of complex emotions, suggesting that these are high-dimensional and cannot be 

fully reduced to a combination of basic emotions.

These studies demonstrate how MVPA can provide information about the dimensions that 

structure our knowledge and experience of emotions, with complex emotions only partly 

described by reference to basic emotion categories.

Social Cognition

Successful navigation of the social world requires recognizing that the sensations and 

mental states of other humans can differ from our own. According to simulation theory102, 

we understand others’ minds through a simulation that is grounded in shared perceptual 

processes. In contrast, according to the theory-theory103, social cognition is more like 

inductive reasoning, in which propositions are assessed to make assessments of others’ 

likely mental states. To provide evidence for the simulation theory, one fMRI study104 

induced aversive emotions (e.g. pain, disgust, and unfair treatment) in participants, who also 

observed a friend experiencing the same emotions. Cross-decoding analyses (e.g., train on 

painful vs non-painful stimulation, test on disgusting vs neutral gustatory stimuli) revealed 

patterns in cingulate and insular regions that generalised across both the aversive stimulus 

type (pain, gustatory) and, importantly, also over the recipient (self, other). These results 
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support the simulation theory in that they identify shared neural encoding of directly and 

vicariously experienced sensations. However, MVPA has also provided evidence for the 

theory-theory105. Sighted and congenitally blind individuals listened to stories that described 

a protagonist learning something of either positive or negative valence, either through the 

visual modality (e.g., the protagonist sees a break-up note from his partner) or auditory 

modality (e.g., the protagonist learns her job application was successful via a voicemail). 

Multivoxel patterns in the right temporal-parietal junction (rTPJ) encoded the information 

source of the narratives (heard vs seen) and, crucially, did so equally for blind and sighted 

participants. These results support the theory-theory in that they evidence a concept of 

"seeing" that is not grounded in first-hand experience (absent in the blind participants), 

but rather an abstract one that is derived from second-hand experience, such as through 

language.

Representations make some dimensions explicit while obscuring others. Here we see how 

some of the representations of emotionally adverse experiences revealed with MVPA make 

explicit the valence of an emotional experience while obscuring whether it is the self or 

another person who is having that experience.

Sensori-motor prediction

Influential theories in the domain of motor behaviour state that actions are accompanied by 

efference copies that serve to predict and suppress the sensory consequences of one’s own 

actions106,107, reducing self-generated sensations. Research in animals has supported this 

idea, for example by showing that primary somatosensory cortex (S1) encodes motor-related 

activity before movement initiation108. Two recent fMRI studies used MVPA to provide 

evidence for similar anticipatory signals in the human brain. In one study109, participants 

performed a delayed object manipulation task in the scanner. On each trial, a cue indicated 

the action to be performed on that trial (e.g., lift object with right hand). Results showed that 

the effector used in the action (left or right hand) could be decoded from S1 activity patterns 

during the delay period before the movement, in the absence of sensory input. A related 

study64 investigated the planning of movements at a finer scale (Figure 4A), at the level of 

individual finger presses (thumb, middle finger, little finger). Multivariate activity patterns 

in S1 carried information about the specific finger that participants planned to move, even 

on no-go trials, where the action was planned but not executed. Finally, representational 

similarity analysis revealed that the finger-specific activity patterns during the planning 

phase resembled the finger-specific activity patterns during the execution phase (Figure 4C). 

These studies provide converging evidence that motor planning activates predicted sensory 

consequences in S1, in line with classical theories of motor control in which an internal 

forward model predicts future body states and their sensory correlates.

In this example, the ability of MVPA to distinguish the activity profiles of individual digits 

shed new light on the way we prepare to produce complex behaviours and anticipate their 

sensory consequences.
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Sequential Motor Behaviour

Learning to play even a simple piano tune involves pressing the right keys in the right 

order at the right times. How does a parallel brain produce such series of behaviours 

coherently? One family of models posits a chain of associations, such that each behaviour 

acts, via associative processes, to trigger the next110. In contrast, competitive queuing 

models propose that action sequences are encoded in a parallel scheme111. A serial model 

predicts that preparation of the first act alone should suffice to elicit the action chain, 

while a competitive queuing model predicts simultaneous pre-activation of all effectors: 

the first in the sequence most strongly, and each other in proportion to its position in the 

temporal sequence. An MEG study supports the competitive queuing model63. Participants 

learned sequences of timed finger keypresses (Figure 5A). At test, separate preparatory 

and performance phases enabled each to be analysed separately. Using a cross-decoding 

approach, linear classifiers were trained on sensor data acquired during performance and 

then tested on activity patterns that were evoked during preparation, as an index of 

the activation state of each finger. Results revealed the predicted ordinal arrangement of 

preparatory activity (Figure 5B), as predicted by competitive queuing models.

This study reveals how multivariate measures of neural activity offer a sensitive and non-

intrusive measure of the internal mental states that precede overt behaviour. In this way 

they are able to test the implications of formal models that make detailed and time-specific 

predictions about those internal states.

Limitations of MVPA for testing cognitive theories

While the aim of our review is to show how MVPA of neuroimaging data can be (and 

has been) used to test cognitive theories, there are clearly also limitations to this approach. 

Most of these limitations are shared with other correlational neuroscience methods, some 

are specific to one or multiple neuroimaging methods (e.g., fMRI, MEG, or EEG), and still 

others are specifically related to MVPA. Here, we briefly mention some of these limitations, 

and describe how they apply to several of the example studies reviewed above.

One well-known limitation of correlational methods is that they do not provide evidence that 

a particular neural measure (e.g., activity of a neuron) causally contributes to the cognitive 

process of interest. For example, the studies that used MVPA to reveal object-specific 

preparatory activity in visual search tasks interpreted this as evidence for an attentional 

template83,84. Similarly, studies that demonstrated the activation of encoding context 

during memory retrieval assumed this activation to contribute to memory performance87. 

However, an alternative interpretation for these findings is that this such activity reflects 

epiphenomenal mental imagery that is unrelated to attentional selection or memory. While 

task design and correlation of neural measures with behavioral measures112,113 can go 

some way to alleviating these concerns, ideally MVPA findings are supplemented by causal 

evidence such as provided by TMS. This approach has been successfully used, for example, 

to demonstrate that the contextual facilitation in visual cortex observed with MVPA causally 

contributes to object recognition114.
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MVPA can be highly sensitive to small differences, complicating the interpretation of above-

chance decoding. Specifically, the finding that two conditions can be decoded above chance 

in a particular brain region (in fMRI) or at a particular time point (in M/EEG) is not 

necessarily informative about the underlying processes driving the decoding. For example, 

decoding whether a participant experiences aversive or neutral events104 could be driven 

by a range of processes, including sensory processing, affective responses, (preparation of) 

defensive actions, or even artifacts such as small eye or body movements115. For this reason, 

researchers have adopted the cross-decoding approach (Figure 1b), in which classifiers are 

trained on one distinction (e.g., experiencing pain) and tested on another distinction (e.g., 

viewing someone else in pain) to reveal commonalities and thereby inform interpretation. 

An advantage of this approach is that demonstrating how classification generalises over a 

range of materials, tasks, or other contexts reduces the possibility that confounding variables 

specific to one of those contexts explains decoding performance. Finally, as we have seen, 

another informative approach is to combine MVPA with RSA to relate neural similarity to 

the similarity between conditions in competing cognitive models (Figure 1c).

While MVPA is typically more sensitive than univariate analyses, it is still limited by the 

spatial resolution of neuroimaging methods. As such, it is likely that many neural signals are 

not expressed at the level of voxels (fMRI), electrodes (EEG), or sensors (MEG). Therefore, 

finding no evidence for a particular neural distinction cannot be taken as evidence that such 

a distinction does not exist in the brain. For example, the lack of a difference in decoding 

the source of narratives (heard vs seen) in blind and sighted participants105 could reflect the 

insensitivity of MVPA to such information that may be present at other scales. Furthermore, 

the sensitivity of MVPA differs across brain regions and neuroimaging methods (e.g., fMRI 

vs MEG116), complicating direct comparisons and multimethod integration.

Finally, a general concern that has been raised about neuroimaging research is the 

“consistency fallacy”. Neuroimaging results that are merely consistent with one cognitive 

theory cannot be taken as strong evidence for that theory2,117. To be most informative, 

the results should additionally be inconsistent with one or more alternative theories. One 

example from the studies reviewed here is the finding of above-chance decoding of basic 

emotion categories97. While this finding is certainly consistent with the discrete emotion 

theory, above-chance decoding is also consistent with alternative theories (e.g., appraisal 

theory). Indeed, subsequent studies used MVPA in combination with RSA to test more 

detailed predictions of these theories, showing that the representation of complex emotions 

cannot be fully captured by a combination of basic emotions98. We suggest that MVPA 

in combination with cross-decoding or RSA allows for more informative tests of cognitive 

theories, but these approaches do not in themselves provide a substitute for well-articulated 

alternative models.

Thus, while neuroimaging and MVPA are not without limitations, many shared with other 

approaches, we believe that the examples provided in this review show that, when used 

appropriately, MVPA can be a useful method to test cognitive theories.
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Future directions

Further developments in analysis methods promise to make MVPA even more useful 

for testing cognitive theories. For example, the “hyperalignment” approach68 aligns 

representational spaces (as opposed to anatomy) across individuals, making it possible 

to distinguish aspects of the geometry of those spaces that are shared across individuals 

from idiosyncratic variation. This approach extends the improvement in representational 

granularity provided by MVPA from items and events to individual participants118,119. 

Reliable measures at the single-participant level allow tests of hypotheses about links 

between brain measures and individual differences in behaviour120, which in turn 

may address new predictions that arise from cognitive models121. Second, multivariate 

connectivity methods122,123 measure connectivity in information shared across brain 

regions, rather than activation per se, an approach that may lend itself to cognitive 

theories that describe transformation of representations in stages over time. Finally, rapid 

developments in the field of artificial intelligence have generated new computational models 

and improved decoding algorithms124, which may in turn provide more sensitive and robust 

descriptions of the neural patterns that correspond to hypothesised cognitive representations.

Improvements in the quality and resolution of neuroimaging data will also bring new 

opportunities for testing cognitive theories. For example, high spatial resolution fMRI 

data, combined with MVPA, allows distinguishing representations within specific cortical 

layers, which has revealed similarities and differences between representations activated 

during cognitive tasks of working memory, attention, prediction, and imagery125. Further, 

recent developments in high-density mobile EEG systems now allow for measuring neural 

activity during natural behaviour126. Combined with MVPA, this opens up the possibility to 

investigate cognitive processes in more ecologically-valid environments and tasks127, which 

may provide better ways to test how cognition depends on complex contextual variables than 

possible in standard controlled laboratory tasks128.

In sum, these recent analytical and technical developments improve on existing advantages 

of MVPA for testing specific, granular predictions that cognitive models make about patterns 

of brain activity and their variability over time, anatomical location, participants, and 

contexts. Of course, better data and more powerful analysis methods alone are no substitute 

for continued progress in developing the cognitive theories that we aim to test using these 

methods. Ideally, such theories are computationally explicit and provide a mechanistic 

explanation of the cognitive process under investigation129–131; among other advantages, 

those features will tend to support specific predictions about patterns of neural activity in 

space and time that are measurable with MVPA. Researchers’ questions are often shaped, 

at least in part, by the methods and tools available to them. As applications of MVPA to 

cognitive theories continue to prove their value, we believe researchers will see in these 

methods new ways to develop, improve, and refute those theories, across the span of the 

human behavioural repertoire.
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Conclusion

Since their advent, human neuroimaging methods have attracted criticism of their ability to 

go beyond localization of neural events, whether in anatomical regions or in time, and thus 

whether they would be able to shed any light on functional accounts of human behaviour. 

This criticism and the ensuing responses have rapidly and productively shaped the way 

researchers approach cognitive neuroimaging; the large-sample, data-rich, and hypothesis-

driven studies of today represent a marked leap forward from the relatively simple and often 

exploratory studies of only 20 years ago. That is not to criticise those earlier researchers 

(amongst them the present authors!) but rather it is a sign of progress in common with that 

seen in other life sciences methodologies. In that spirit, we argue that human neuroimaging 

will continue to deliver on its early promise as one tool in the toolbox for understanding 

human behaviour, providing neural constraints on cognitive theories1.
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Figure 1. Overview of key steps in multivariate pattern analysis of neuroimaging data, illustrated 
with the design of previous fMRI and M/EEG studies investigating the representation of object 
category and shape48,116.
A) Neural activity is measured indirectly using fMRI or directly using M/EEG. fMRI 

provides high spatial resolution, with activity patterns measured across a set of voxels 

(each typically 2x2x2 mm) in specific brain regions (e.g., the occipital cortex). MEG and 

EEG provide high temporal resolution, with activity patterns measured across channels at 

specific points in time (e.g., 180 ms after image onset). Activity patterns across voxels 

(fMRI) or channels (M/EEG) are used to train a classifier to distinguish between two 

or more classes (e.g., snake vs bird). Typically, the classifier is trained on part of the 

data and tested on held-out data with the same conditions occurring in the training and 

testing sets (cross-validation). B) Alternatively, the classifier can be tested on different but 

related conditions, to test for generalization (cross-decoding), for example across different 

stimulus sets or across format. C) Pairwise decoding accuracy can be used as a distance 

measure in representational similarity analysis45: object pairs that are accurately classified 

are representationally dissimilar (illustrated by darker cells). Other distance measures can 

also be used132. The resulting representational dissimilarity matrix (RDM) of a particular 

brain region (fMRI), or at a particular time point (M/EEG), can then be correlated with 

models derived from cognitive theories that make different predictions about the structure 
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of representations. Here, for example, two models are illustrated that emphasize either the 

status of an object as (in)animate, or its overall shape.
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Figure 2. 
As we navigate through space and time, we track our position in familiar locations 

(orange spots) and the direction we are facing (blue cameras), and we encode memories 

of specific events at specific times (green clock icons). Studies using MVPA of fMRI 

data have investigated patterns of brain activity that emerge as participants view locations 

from familiar environments71 or recall episodes captured in images from their own daily 

lives72. In medial temporal brain regions, distributed patterns of activity demonstrated 

some key properties in accordance with map-like cognitive representations. Specifically, 

in representations of location, patterns were more similar for nearby than distant locations; 

likewise, in representations of direction, neural patterns were more similar for similar than 

distinct directions; and finally, events experienced closer in time were captured in more 

similar activity patterns than more temporally distant events.
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Figure 3. Schematic summary of an MEG study investigating contextual reinstatement during 
memory retrieval87.
A) During the encoding phase, participants viewed pictures of scenes and faces. Each image 

was first shown in isolation and subsequently together with a semantically unrelated word. 

Participants were instructed to memorize the picture-word associations. Classifiers were 

trained on MEG data to distinguish between the visually presented faces and scenes (before 

words were presented). Decoding peaked at around 180 ms after image onset. B) During 

the retrieval phase, participants read words and reported whether or not the word had been 

presented during the encoding phase. MEG activity patterns carried information about the 

image category that had been presented together with the words during the encoding phase: 

a classifier trained to distinguish between faces and scenes at 180 ms after image onset could 

significantly decode the cue-associated image category at around 500 ms after cue onset. 

This provides evidence that the word cues activated an early perceptual representation of the 

encoding context, in line with the contextual reinstatement hypothesis.
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Figure 4. Schematic summary of an fMRI study investigating motor prediction64.
A) Single finger movements were cued before an extended motor planning interval 

of varying duration (left). On ”go” trials, participants carried out the movement; it 

was withheld on “no go” trials, which were further analysed to segregate ”pure” 

planning processes. B) Representational dissimilarity matrix in contralateral primary 

somatosensory cortex (S1) for the planning and execution phases, measured with fMRI. 

C) Multidimensional scaling (MDS) illustration of the correspondence between the relative 

similarities of activity patterns across planning (orange) and execution (blue) of single 

finger movements (1=thumb, 3=middle, 5=little). While the main distinction was between 

planning and execution (principal component 1 (PC1); left panel), the preserved geometry 

from preparation to execution (PC2-PC3; right panel) supports the proposal that planned 

behaviour in part entails pre-activation of anticipated sensory outcomes of behaviour.
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Figure 5. Schematic summary of an MEG study investigating sequential motor behaviour63.
A) A cue signalled which of several learned finger-movement sequences to prepare, 

initiating a planning interval. Next a “go” cue instructed the participant to execute the 

sequence. B) MEG recordings captured the strength of activation of patterns representing 

each finger movement during the planning interval (left, before “go” cue). These were 

ordered systematically such that the first planned movement dominated the observed MEG 

patterns, followed by the second, third, and so on, in an orderly queue. This finding is 

predicted by formal models of “competitive queuing” that postulate a mechanism by which a 

parallel system can produce serial behaviours.
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