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Abstract

Alpha-helical integral membrane proteins comprise ~25% of the proteome in all organisms. The 

membrane proteome is highly diverse, varying in the number, topology, spacing and properties 

of their transmembrane domains. This diversity imposes different constraints on the insertion 

of different regions of a membrane protein into the lipid bilayer. Here, we present a cohesive 

framework to explain membrane protein biogenesis wherein different parts of a nascent substrate 

are triaged between Oxa1 and SecY family members for insertion. In this model, Oxa1 family 

proteins insert transmembrane domains flanked by short translocated segments whereas the 

SecY channel is required for insertion of transmembrane domains flanked by long translocated 

segments. Our unifying model rationalises evolutionary, genetic, biochemical and structural data 

across organisms and provides a foundation for future mechanistic studies of membrane protein 

biogenesis.

Introduction

The transfer of molecules and information between the inside and outside of a cell relies 

on integral membrane proteins of diverse topology and characteristics (Box 1). The core 

processes of membrane insertion would have existed at the plasma membrane of the last 

universal common ancestor1. The plasma membrane remains the site of membrane protein 

insertion in bacteria and archaea. The endoplasmic reticulum (ER), which likely evolved 

from the archaeal plasma membrane2, is the major site of membrane protein insertion in 

eukaryotes. Mitochondria and plastids evolved from bacteria3, so their inner membranes 

descended from the ancestral bacterial plasma membrane. All of these evolutionarily related 

membranes have members of the Oxa1 family4,5 or SecY family6 (Box 2), the only known 

membrane protein insertion factors that trace back to the last universal common ancestor7.

The evolutionary path of membrane protein insertion presumably progressed from an 

unassisted insertion reaction to a process facilitated by insertion factors. This transition 

broadened the range of proteins that could be inserted into membranes, which in turn 

allowed the evolution of more elaborate and diversified insertion machinery. By considering 
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how membrane insertion and its accompanying machinery arose, we arrive at a unifying 

model for membrane protein biogenesis that accommodates the current diversity of the 

membrane proteome across all organisms. In this model, Oxa1 facilitates insertion of 

transmembrane domains (TMDs) flanked by a short translocated domain, whereas SecY is 

required for insertion of TMDs followed by a long translocated domain. Proteins of diverse 

topology and properties can be accommodated by dynamically toggling between SecY and 

different Oxa1 family members during their co-translational insertion.

The evolution of membrane insertion

Theoretical and experimental studies show that the energetically favourable reaction of 

partitioning a hydrophobic transmembrane domain (TMD) into the lipid bilayer is sufficient 

to offset the penalty of translocating a short segment of flanking hydrophilic polypeptide 

across the membrane8–11. This can be achieved for a single TMD with a short ‘tail’ at the 

N- or C-terminus (Fig. 1, left), or two TMDs with a short intervening loop. This would 

have been the ancestral mechanism of membrane protein insertion. The substrate range 

of ‘unassisted’ insertion would presumably have been very limited, with insertion being 

strongly competed by insolubility and aggregation, especially for multi-TMD proteins.

Expansion of the substrate range for the unassisted mechanism could have occurred 

by evolving a ribosome receptor that allows synthesis close to the membrane. Such a 

receptor could simply have been a ribosome-binding peripheral or single-TMD protein that 

engages near the polypeptide exit tunnel. Membrane-proximal protein synthesis would have 

facilitated co-translational insertion of multi-TMD proteins by successively inserting TMD 

pairs as they emerge from the ribosome. Each newly emerging TMD would rapidly bind 

to the adjacent membrane surface12, reducing its exposure to the bulk cytosol. By having 

only two membrane-associated TMDs exposed at any time, the possibility of substrate 

aggregation into translocation-incompetent states is reduced.

Although the substrate range would still be limited to short translocated tails and loops, 

this mechanism is compatible with either topology: the first TMD could insert by itself 

concomitant with N-tail translocation, or insert as a pair with the next TMD concomitant 

with translocation of the intervening loop. Experiments with liposomes or nanodiscs show 

that various multipass membrane proteins can indeed be inserted without any insertion 

factors, albeit with low efficiency due to competing aggregation13–16. Not surprisingly, the 

insertion must occur co-translationally17, is favoured by high membrane concentration18, 

and is only compatible with substrates containing short translocated loops and tails.

A membrane protein that reduces the energetic barrier for hydrophilic segment translocation 

would relax the constraint on translocated domain length, allowing for translocation of 

longer tails and loops (Fig. 1, middle). The Oxa1 family is thought to achieve this by 

providing a hydrophilic vestibule that penetrates part of the way into the membrane4,19,20. 

The vestibule locally thins the membrane21, reducing the barrier to translocation of a 

hydrophilic segment from this site. Importantly, the universally conserved core Oxa1 fold, a 

simple three-TMD bundle with short translocated hydrophilic segments5,7,20,22, could have 

evolved at a time when only the ancestral insertion mechanism was possible.
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Once an Oxa1-like protein had evolved, the substrate range could be expanded in two 

ways. First, a lower barrier to flanking domain translocation would allow insertion of 

lower hydrophobicity TMDs. Second, flanking domains could be longer. These relaxed 

features would allow the evolution of increasingly complex and diverse membrane 

proteins. Oxa1 members have been shown to translocate hydrophilic segments of up to 

~50 amino acids, depending on composition and folding propensity of the translocated 

domain, hydrophobicity of the flanking TMD(s), and features of the specific Oxa1 family 

member4,20. Diversification of the Oxa1 family has allowed some members to accommodate 

longer translocated domains for certain substrates23.

From membrane insertion to secretion

Translocation of hydrophilic segments longer than ~100 amino acids must generally use a 

membrane-spanning channel. This role is served by the SecY family, a pseudosymmetric 

protein whose two homologous halves house a channel between them24. Structural and 

sequence analysis suggests that the core of each SecY half arose from an Oxa1-like 

ancestor7. Duplication, fusion, and anti-parallel interaction of this ancestor would have 

juxtaposed two hydrophilic vestibules that evolved into a transmembrane channel capable of 

translocating long hydrophilic domains across the membrane.

Like the Oxa1 family from which it may have evolved, hydrophilic domain translocation 

by SecY is coupled to membrane insertion of an adjacent hydrophobic domain. Rather 

than the hydrophilic segment passing through a locally distorted membrane, it is pulled 

into SecY’s membrane-spanning aqueous channel25,26. The hydrophobic domain achieves 

this by accessing the membrane via a lateral gate in SecY such that its downstream 

flanking domain enters the central channel in a looped configuration (Fig. 1, right). Because 

hydrophobic domain binding at the lateral gate is coupled to channel opening, the initiation 

of translocation is coupled to membrane insertion.

Once the SecY channel has been opened and the initial downstream segment of hydrophilic 

polypeptide has been threaded through, there is no limit to the length of protein that can 

move across the membrane24. Translocation ends and the channel reverts to its inactive 

closed state in one of two ways: termination of translation or emergence of a downstream 

TMD. Each of these is described in turn.

Translation termination allows translocation of the polypeptide’s C-terminus through SecY. 

This C-terminal translocated domain would remain anchored to the membrane by the 

preceding hydrophobic domain. The evolution of a membrane-bound protease that liberates 

the membrane-embedded hydrophobic domain would have led to the invention of protein 

secretion. The enzyme that carries out this reaction, called signal peptidase, is specific for 

particularly short hydrophobic domains known as signal peptides27,28.

Emergence of a downstream TMD from the ribosome allows the TMD to enter SecY and 

pass through its lateral gate into the membrane29,30. In this way, a long loop of polypeptide 

between the translocation-initiating hydrophobic domain and translocation-terminating 

TMD is translocated to the non-cytosolic side of the membrane. If the translocation-

initiating hydrophobic domain is a signal peptide, it is proteolytically cleaved to liberate 
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the new N-terminus on the trans site of the membrane. Thus, a long segment of hydrophilic 

polypeptide can be translocated through SecY as long as it is preceded by a hydrophobic 

domain that engages SecY’s lateral gate.

A general model for membrane protein biogenesis

With mechanisms for translocating short hydrophilic tails and loops via Oxa1 and long 

hydrophilic domains through SecY, one can rationalise how the two together can mediate 

insertion of the full topologic range of membrane proteins (Box 1). To better convey the 

overall concept, we describe this framework using the general terms Oxa1 and SecY, rather 

than species-specific nomenclature (which is summarized in Box 2). The initial step is 

targeting of the nascent membrane protein to the lipid bilayer31. This typically occurs 

co-translationally and is mediated by the first hydrophobic segment, either a signal peptide 

or TMD. This element is engaged by the signal recognition particle (SRP) and delivered to 

a receptor at the membrane, where the remainder of the protein is synthesized. When the 

only hydrophobic element(s) are within ~70 amino acids of the C-terminus, targeting occurs 

post-translationally, aided by cytosolic factors that keep the substrate soluble until its arrival 

at the membrane32–36. After targeting, the TMD(s) are inserted concomitant with flanking 

domain translocation.

Membrane proteins without any long translocated domains can be inserted by Oxa1 family 

member(s) and do not require SecY’s lateral gate or central channel37–42. This typically 

occurs co-translationally for all TMDs except those near the C-terminus, which are inserted 

post-translationally34,39,43. Because TMDs flanked by short translocated domains can also 

insert unassisted44,45, albeit with lower efficiency and increased risk of aggregation, the 

Oxa1 requirement for many substrates is not absolute. Proteins with one or more long 

translocated domains require SecY, with the preceding hydrophobic domain initiating 

translocation by engaging SecY’s lateral gate46.

Membrane proteins with multiple TMDs and translocated domains of different lengths 

use both Oxa1 and SecY for different regions as dictated by translocated domain length. 

TMDs close to the N- or C-terminus with a short translocated tail use an Oxa1 family 

member operating co- or post-translationally, respectively40,43. All other TMDs are inserted 

co-translationally by a membrane-bound ribosome using Oxa1 for short translocated loops 

and SecY for long translocated loops and termini46,47. During the co-translational phase 

of biogenesis, the ribosome provides a binding platform for both Oxa1 and SecY family 

members46,48, allowing the nascent chain to access the appropriate factor suited for each 

segment of polypeptide46 (Fig. 2).

What emerges is a unified model where biogenesis of a membrane proteome uses Oxa1 

and SecY for the translocation of short and long segments of hydrophilic polypeptide, 

respectively (Fig. 3). Given that Oxa1’s activity can be replaced by an unassisted mechanism 

(albeit with lower efficiency), especially in the context of a membrane-bound ribosome, 

its loss can be tolerated for some substrates or in some cells. SecY’s translocation 

activity cannot be compensated, so it is only dispensable for substrates whose translocated 

hydrophilic domains are all short. Thus, the SecY family is needed for translocation of 

long hydrophilic domains, whereas Oxa1 family members carry out the bulk of insertion 
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reactions given that the median length of membrane protein translocated domains is ~20 

amino acids in all organisms. This would explain why bacteria, yeast, mammalian cells, and 

endosymbiont organelles are each severely compromised or inviable when their Oxa1 family 

member(s) are eliminated4,41,49,50. The essentiality of secretion would explain why SecY 

deletion is inviable across all organisms24.

Experimental support for the unifying model

A wide range of genetic, biochemical, structural and evolutionary data across experimental 

systems can be rationalized by the unifying model of membrane biogenesis proposed here. 

The experimental and predicted structures of diverse Oxa1 family members in bacteria, 

archaea, endosymbiont organelle inner membranes and the ER show a cytosol-facing 

hydrophilic vestibule that would lower the barrier for translocation of short domains, but 

no channel that could support translocation of long domains7,19,20,22,46,48,51–57. By contrast, 

structures of prokaryotic and eukaryotic SecY family members show a reversibly plugged 

translocation channel and an adjacent lateral gate where a hydrophobic signal has been 

observed in bacterial and mammalian systems24–26,58.

Translocation of long hydrophilic domains coupled to membrane insertion of a preceding 

hydrophobic domain is strictly dependent on SecY based on immunodepletion experiments 

in vitro40,59, SecY inactivation or mutation experiments in cells60–65, and sensitivity to 

inhibitors46,66–73 that bind to and occlude the SecY lateral gate74,75. Membrane insertion of 

a few such substrates can be reconstituted with purified SecY in proteoliposomes59,70,76–81, 

a reaction that cannot proceed if the lateral gate is covalently locked by a disulfide bond82. 

Although many of these studies used a cleavable signal peptide as the hydrophobic domain, 

the extrapolation to a TMD engaging the lateral gate in the same topology is compelling. 

Thus, SecY is both necessary and sufficient for long domain translocation initiated by 

lateral-gate-mediated membrane insertion of a preceding hydrophobic domain.

By sharp contrast, SecY lateral gate inhibitors do not impact membrane proteins with 

short translocated domains40,43,46,66,67,71–73,83. Immunodepletion of SecY from mammalian 

ER microsomes had little or no effect on co-translational insertion of N-terminal TMDs 

preceded by a short translocated tail40 or post-translational insertion of C-terminal TMDs 

followed by a short translocated tail34,40,44,84. Sec-independent post-translational insertion 

of a C-terminal TMD was also shown in S. cerevisiae85. The insertion of a number 

of membrane proteins, each with only short translocated domains, are unaffected upon 

acute SecY depletion in E. coli41,86–90. Although other such proteins are impacted by 

SecY depletion77,86,91–93, interpretation of this result warrants caution because the SecY 

requirement could reflect its ribosome binding function and not that it’s channel or lateral 

gate were used for insertion46. Despite this caveat, TMD insertion coupled to translocation 

of a short flanking domain generally occurs via route(s) that do not depend on the SecY 

channel or lateral gate.

Conversely, depletion of Oxa1 family members in bacteria41,63–65,88–90,92–95, inner 

endosymbiont organelle membranes42,96–100, and the ER39,40,43,46,47,101 impairs biogenesis 

of membrane proteins containing short translocated domains. This applies to N-tails, 

internal translocated loops, and C-tails. Extending these elements either precludes 
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translocation or makes their translocation dependent on SecY via the preceding hydrophobic 

domain43,46,102–104. N- and C-tails can be physically crosslinked to the hydrophilic vestibule 

of both bacterial and eukaryotic Oxa1 family members prior to tail translocation43,105,106. 

SecY-mediated initiation of translocation by a preceding hydrophobic domain and Oxa1-

mediated translocation of short domains by adjacent TMD(s) has been reconstituted with 

purified prokaryotic and eukaryotic family members37,39,40,59,77,78,80,81,107.

All membrane systems derived from the plasma membrane of the last universal common 

ancestor would have originally contained Oxa1 and SecY7,108 (Box 2). In the inner 

mitochondrial membrane where long domains are no longer translocated from the matrix, 

SecY (but not Oxa1) is almost always lost. By contrast, SecY and Oxa1 are both retained 

in the inner membranes of plastids where translocation of long domains from the stroma 

is still required. The selective retention of Oxa1 upon loss of long-domain-translocation 

implies that SecY cannot effectively fulfil membrane insertion reactions typically carried 

out by Oxa1. One reason might be that opening a closed SecY seems to be slow in 

native membranes109,110, so the risk of losing translocation competence would be high 

when multiple TMDs are separated by short intervening segments. By contrast, the simple 

architecture of Oxa1 would allow insertion to occur sufficiently rapidly to keep up with 

translation. It is also possible that two closely spaced TMDs would require the second 

TMD to be pulled into SecY’s hydrophilic channel, an energetically unfavoured reaction that 

impedes lateral gate engagement by the preceding TMD. By inserting both TMDs together, 

Oxa1 would bypass this problem.

The paradigm of the mammalian ER

Division of labour between Oxa1 and SecY for the range of substrates that comprise 

the membrane proteome has been demonstrated in bacteria, yeast, and mammals. The 

mechanistic basis of such division, and the cooperation between Oxa1 and SecY during 

multipass membrane protein biogenesis, is best understood in mammals. The mammalian 

ER contains three Oxa1 family members as part of larger complexes called GET, EMC and 

GEL7,22,46,47,53. The core of each complex contains an Oxa1 protein (GET1, EMC3, and 

TMCO1, respectively) associated with an obligate partner (GET2, EMC6, and OPTI, each 

of which share an evolutionary origin). The Oxa1 members and their partners derive from 

archaeal ancestors7,52. The SecY family members in eukaryotes are known as Sec6124.

GET, EMC and GEL collectively mediate insertion of TMDs flanked by short translocated 

domains, whereas Sec61 mediates insertion of TMDs that are followed by long translocated 

domains. The choice between GET, EMC and GEL for TMD insertion depends on its 

context and hydrophobicity. GET is used for tail-anchored (TA) proteins with a high-

hydrophobicity TMD33,34,39,111–114. This specificity is imposed by GET3, the targeting 

factor that delivers TA proteins to the GET1-GET2 complex. TA proteins of lower 

hydrophobicity use EMC for insertion39. The overlap between GET and EMC among 

TA protein substrates is substantial, so only the most and least hydrophobic TMDs are 

strongly reliant on GET and EMC, respectively. This redundancy, together with at least some 

capacity for unassisted TA protein insertion44,45, explains why neither GET nor EMC is 

strictly essential at the single cell level but shows strong synthetic fitness costs49.
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The remaining single-pass membrane proteins target to the membrane co-translationally 

using SRP, then use either EMC or Sec61 for TMDs flanked by short or long translocated 

domains, respectively. EMC mediates the co-translational insertion of TMDs preceded by a 

translocated N-tail of ~50 amino acids or less40,83,105, whereas Sec61 mediates insertion of 

all other non-TA single-pass membrane proteins59,71,72. This clear segregation of pathways 

is supported by experiments using Sec61 lateral gate inhibitors, which only inhibit the latter 

class of proteins. Triage between these two routes occurs shortly after targeting105, when 

nascent substrates first sample EMC for potential insertion before ribosome docking at 

Sec61. Thus, all single-pass proteins with a short translocated domain use an Oxa1 family 

member (either GET or EMC), whereas those with a long-translocated domain use the 

Sec61 channel. This same segregation likely applies to S. cerevisiae (which has both GET 

and EMC) and E. coli (which contains YidC as its sole Oxa1 family member).

The insertion machinery used by multipass membrane proteins is also dictated by the length 

of its translocated domain(s). For proteins containing both short and long translocated 

domains, more than one factor is employed during insertion. If the first translocated domain 

is short, EMC would be employed for insertion of the first (or first two) TMD(s) before 

ribosome docking at Sec61. Once docked on Sec61, subsequent insertion of pairs of 

TMDs proceeds by one of two routes. If the loop between them is short, the TMD pair is 

inserted by the ribosome-associating GEL complex46,47, which is part of a larger multipass 

translocon20,46–48,115. If the loop between them is long, the first TMD engages the Sec61 

lateral gate, the loop is translocated through the Sec61 channel, and the second TMD inserts 

via the lateral gate. Although many eukaryotes, such as S. cerevisiae, do not contain the 

GEL complex, EMC could potentially fulfil this role.

The mechanism of toggling between Sec61 and GEL is not clear but seems to involve the 

PAT complex, a ribosome-binding chaperone conserved widely across eukaryotes46,47,116. 

Part of the ribosome-binding domain of the PAT complex is positioned between Sec61 and 

the ribosome to preclude opening of the Sec61 lateral gate46. In this configuration, the 

substrate would be directed for insertion to GEL, which sits adjacent to PAT. Emergence 

of a long loop downstream of a TMD might displace PAT to allow that TMD to engage 

Sec61’s lateral gate46. The key helix of PAT that blocks Sec61 opening also protrudes into 

the ribosome exit tunnel, suggesting a potential mechanism by which accumulation of a 

non-translocated loop of substrate can trigger PAT displacement.

Insertion of pairs of TMDs via either GEL or Sec61 continues until termination. If there 

remains a final TMD whose C-terminal flanking domain needs to be translocated, the path 

used again depends on C-tail length43. Those longer than ~50 amino acids use Sec61’s 

lateral gate (as shown by its sensitivity to a Sec61 inhibitor), whereas shorter tails are 

translocated via EMC by a mechanism similar to TA protein insertion. A multipass protein 

can therefore toggle back and forth between different Oxa1 family members and Sec61 

depending on the TMD’s context. For example, a protein could begin insertion using 

EMC, then a combination of GEL and Sec61, and come back to EMC for the final TMD. 

Despite this complexity, the principle remains straightforward: the SecY family is needed 

when translocated domains are long, and Oxa1 family members are used when translocated 

domains are short.
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We propose that this unifying principle applies across all life and reflects the evolutionary 

origins and conservation of the Oxa1 and SecY families. Both the Oxa1 family and SecY 

family are essential at the cell level across organisms. This is easily seen in organisms, such 

as E. coli, where only one of each family member is present, but is only now emerging 

in the eukaryotic ER where multiple Oxa1 members afford some degree of redundancy 

and robustness. Although various nuances in this paradigm will undoubtedly emerge, 

interpretations of past results and future studies will benefit from the guiding principle of a 

division of function between the Oxa1 and SecY families based on length of the flanking 

translocated domain.

Future challenges

The body of evidence marshalled to support our unifying framework for membrane protein 

insertion derives from many experimental systems employing a range of model substrates. 

Although such diverse sources of data affords a degree of robustness to our model, it will 

be important to now test each part of the model in a systematic manner in key prokaryotic 

and eukaryotic systems. Molecular dissection is best done in well-controlled and precisely 

manipulable biochemical systems, with proteome-wide analyses being used to generalise the 

findings. This is analogous to how the core principles and mechanisms of SRP-mediated 

targeting derived from detailed analysis of model substrates117, followed much later by 

proteome-wide validation118–120. The challenge now is to use fully reconstituted systems of 

membrane insertion to define the activities and limitations of each key factor, then use global 

in vivo analyses to corroborate the findings and reveal gaps in our understanding.

A related challenge is to reconstruct the hypothesised evolutionary path of membrane 

insertion using a series of increasingly complex membrane protein insertion factors. This 

would begin with an empty liposome system capable of simple membrane insertion at 

low efficiency44,45 and progressively build up the membrane-embedded factors to reach 

a minimal machinery for efficient biogenesis of complex membrane proteins thought to 

exist in the last universal common ancestor7. The ability to design membrane proteins of 

desired characteristics de novo121 makes this goal feasible. Such a bottom-up reconstruction 

would define the core design principles and minimal requirements for translocation factors 

that facilitate membrane protein insertion. These insights might also help understand the 

mechanisms of other types of insertion factors, such as those in endosymbiont organelle 

membranes122–126 or peroxisomes127, that emerged after the evolution of eukaryotes.
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Box 1

Membrane protein topology

Alpha-helical membrane proteins contain one or more transmembrane domains (TMDs). 

They are typically helices of ~22 predominantly non-polar amino acids, but can be 

as short as 13 amino acids, as long as 30 amino acids, and can have substantially 

hydrophilic or even charged character20,128. The number, location, and distribution of 

TMDs is essentially unrestricted. Membrane protein topology can be Ncyt or Nexo 

depending on whether the N-terminus is located on the cytosolic or exoplasmic side 

of the membrane, respectively. Proteins that initiate via their first TMD in the Ncyt 

topology can have a preceding N-terminal cytosolic domain of any length. Proteins that 

initiate via their first TMD in the Nexo topology typically contain a preceding N-terminal 

translocated domain shorter than ~50 amino acids. Some proteins initiate membrane 

insertion in the Ncyt topology before proteolytic removal of the first hydrophobic domain, 

leaving the downstream protein in the Nexo topology. The processed hydrophobic 

domain in these cases is termed a cleavable signal peptide, whose characteristically 

short hydrophobic segment (~7-9 amino acids) allows selective recognition by signal 

peptidase27. Nexo membrane proteins produced in this manner typically contain a 

translocated N-terminal domain longer than ~100 amino acids between the signal 

peptide and first TMD. The topology of the first hydrophobic domain is determined 

by a combination of flanking domain charge, flanking domain length, and hydrophobic 

domain length and hydrophobicity129. The topology of downstream TMDs alternate in 

orientation opposite to the TMD preceding it. The loops between TMDs are typically 

short (around 15 amino acids on average), but can be of any length regardless of which 

side of the membrane they reside. The C-terminal hydrophilic domain following the last 

TMD can be of any length and can be located in the cytosolic or exoplasmic side of the 

membrane.
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Box 2

Membrane protein translocation machinery

The prokaryotic plasma membrane, eukaryotic ER, and inner membranes of 

endosymbiont-derived organelles (mitochondrial and plastids) derive from a common 

ancestor that already had membrane insertion factors of the Oxa1 and SecY families7,108, 

depicted below in blue and green, respectively. The nomenclature for these families 

across species is heterogeneous (see figure below) due to the manner and order of 

their discovery125. SecY family members in prokaryotes and endosymbiont-derived 

organelles continue to be called SecY whereas family members in the ER are termed 

Sec61 (S. cerevisiae) or Sec61α. These channel-forming subunits are typically associated 

with two small membrane proteins which have different names in different organisms 

(Sec61β and Sec61γ in mammals, SecE and SecG in bacteria). Oxa1 family members 

in the mitochondrial inner membrane are called Oxa1, those in the inner chloroplast 

membrane are called Alb3, and those in the bacterial plasma membrane are called 

YidC. Oxa1 family members in the ER are called GET1, EMC3, and TMCO1, each 

of which is associated with a partner (GET2, EMC6, and OPTI, respectively) as part 

of the GET, EMC, and GEL complexes. GET and EMC are widely distributed across 

most eukaryotes, whereas GEL has a more sporadic distribution. Archaeal Oxa1 most 

closely resembles the ER counterparts and likely associates with a GET2/EMC6/OPTI-

like partner, consistent with an archaeal origin for the ER. A small number of alpha-

helical membrane proteins are inserted into the outer membrane of mitochondria and 

plastids, and possibly the peroxisomal membrane, by more newly evolved and unrelated 

machinery122–127. Beta-barrel membrane proteins, found only in the outer membranes 

of bacteria, mitochondria and plastids, are inserted by a yet different specialized 

machinery130,131.
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Fig. 1. Mechanisms for alpha-helical membrane protein insertion.
(Left) Unassisted membrane protein insertion can occur if the energetically favoured 

reaction of transmembrane domain (TMD, red) partitioning into the hydrophobic membrane 

offsets the penalty for translocation of a short flanking segment of hydrophilic polypeptide. 

(Middle) Oxa1 family members use a hydrophilic vestibule to facilitate translocation of 

short tails and loops during insertion of one or two TMDs. (Right) SecY family members 

use a central channel to initiate the translocation of long tails and loops concomitant with 

TMD insertion via a lateral gate.
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Fig. 2. Oxa1 and SecY collaborate during multipass protein translocation.
The ribosome serves as a binding platform for Oxa1 and SecY modules during multipass 

protein biogenesis. A nascent chain emerging from the ribosome can toggle between 

Oxa1 for translocation of short hydrophilic segments and SecY for translocation of long 

hydrophilic segments.
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Fig. 3. Division of labor between Oxa1 and SecY accommodates a diverse membrane proteome.
SecY and Oxa1 family members work together on different parts of many multipass 

proteins, but can also work separately on other types of proteins. The translocated tails 

and loops of topologically diverse membrane proteins are labelled by which type of protein 

(Oxa1 or SecY family) would mediate their translocation. The specific factors thought to be 

responsible for the different types of translocation in the mammalian ER are indicated below 

(GET, EMC, and GEL are Oxa1 family members and Sec61 is a SecY family member).
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