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Abstract

This article introduces an integrated and biologically inspired theory of decision making, motor 

preparation, and motor execution. The theory is formalized as an extension of the diffusion 

model, in which diffusive accumulated evidence from the decision-making process is continuously 

conveyed to motor areas of the brain that prepare the response, where it is smoothed by a 

mechanism that approximates a Kalman–Bucy filter. The resulting motor preparation variable 

is gated prior to reaching agonist muscles until it exceeds a particular level of activation. We 

tested this gated cascade diffusion model by continuously probing the electrical activity of the 

response agonists through electromyography in four choice tasks that span a variety of domains 

in cognitive sciences, namely motion perception, numerical cognition, recognition memory, 
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8Ratcliff and McKoon (2018) also evaluated a model variant in which subjects solve the task by comparing the number of dots to the 
number of blank spaces, and found similar fits. We found similar fits for this GCD and GCDF variant.
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and lexical knowledge. The model provided a good quantitative account of behavioral and 

electromyographic data and systematically outperformed previous models. This work represents 

an advance in the integration of processes involved in simple decisions and sheds new light on the 

interplay between decision and motor systems.
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Introduction

Many of our internal choices are communicated to the world, and this communication 

requires an interplay between decision and motor systems. For instance, the choice to vote 

for a candidate in an election eventually results in the deposit of a ballot in a box (or pushing 

a button on a voting machine). Deciding who to have friendships and relationships with 

results in concrete approach/avoidance behaviors. Choices about where to spend our money 

determine our consumer behavior. Decision and motor systems are also jointly engaged in 

many experimental cognitive tasks. For instance, recognition memory tasks, lexical decision 

tasks, perceptual decision tasks, numerosity judgment tasks, and conflict tasks all involve 

a decision between two or more options (e.g., old/new, greater/less than a quantity), each 

option being mapped to a specific motor plan (e.g., manual button press, saccade toward 

a target, vocal response). Decision and motor systems have each benefited from extensive 

research (for reviews, see Cisek and Kalaska, 2010; Ebbesen and Brecht, 2017; Forstmann 

et al., 2016; Freedman and Assad, 2016; Gold and Shadlen, 2007; Lemon, 2008; O’Connell 

and Kelly, 2021; Ratcliff and Smith, 2004; Ratcliff et al., 2016; Robinson, 1973; Schall, 

2019; Schall and Paré, 2021; Summerfield and Parpart, 2022), and recent modeling efforts 

have sought to specify the relationship between them (Servant et al., 2015, 2021; Verdonck 

et al., 2021). However, as will become obvious in the next sections, current models fail 

to capture important aspects of empirical data, either at the motor preparation or at the 

motor execution processing levels. The present work aims to address these short-comings 

by introducing an integrated theory of decision-making, motor preparation, and motor 

execution. The theory builds upon a gated cascade evidence accumulation architecture and 

incorporates a filtering mechanism at the motor preparation level, for which we provide a 

computational foundation.

The article is structured as follows. We will first review traditional theoretical conceptions 

regarding the relationship between decision and motor stages and recent neurophysiological 

data that challenge them. We will then highlight the shortcomings of current modeling 

approaches and introduce the integrated theory.

Deciding and Acting: Traditional Views and Challenges

A traditional view in psychology is that the motor system is engaged when the decision-

maker has committed to an internal choice (Donders, 1969; Logan and Cowan, 1984; 

Sternberg, 1969). The decision process produces a discrete result, indicating which response 

to prepare and execute. This view still persists in contemporary decision-making models, 
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according to which noisy evidence from our senses and memory is accumulated until a 

threshold quantity of cumulative evidence is attained (e.g., Bogacz et al., 2006; Evans and 

Wagenmakers, 2020; Laming, 1968; Ratcliff and Smith, 2004; Tillman et al., 2020). Each 

accumulator is associated with a specific choice, and the accumulator that first reaches the 

threshold determines the choice and the duration of decision formation. The choice is then 

passed on to the motor system and does not carry any information about the strength of the 

evidence.

A growing body of neurophysiological evidence challenges this traditional view however. 

Electroencephalographic (EEG) studies have identified two electrical signals that exhibit key 

signatures of the theoretical accumulation-to-threshold decision variable (for reviews, see 

O’Connell and Kelly, 2021; O’Connell et al., 2018). The first signal, termed centroparietal 

positivity (CPP), reflects accumulated sensory evidence and culminates to a threshold 

voltage around the time of the response. The CPP appears whenever an individual has 

to make a decision between two options and shows the same temporal dynamics and 

spatial topography regardless of sensory and response modalities. Importantly, the CPP 

appears even when participants are instructed to make the decision mentally (i.e., without 

communicating the outcome through the motor system; O’Connell et al., 2012) or when 

the stimulus-response mapping is not yet known during stimulus presentation (Twomey et 

al., 2016). Although the precise functional interpretation of the CPP requires additional 

investigations (O’Connell and Kelly, 2021), these empirical findings suggest that it may 

reflect a decision about alternative categories of a stimulus with a neural generator in the 

parietal cortex.

The second signal corresponds to effector-selective motor preparation EEG activities (de 

Jong et al., 1988; Gratton et al., 1988; Pfurtscheller and Lopes da Silva, 1999), such as 

the lateralized readiness potential or the decrease in spectral activity in the mu/beta band 

over the motor cortex (in case of left/right manual responses). Similar to the CPP, effector-

selective EEG signals appear to reflect the theoretical accumulation-to-threshold decision 

variable. Although ramping electrical activities of the two classes of signals overlap in time 

and reach their voltage peak around the time of the response, the onset latency of effector-

selective signals occurs after the onset latency of the CPP (Kelly and O’Connell, 2013). 

In addition, effector-selective EEG signals are absent when participants are instructed to 

make the decision mentally or when the stimulus-response mapping is not yet known during 

stimulus presentation (O’Connell et al., 2012; Twomey et al., 2015). These results suggest 

that when decisions are mapped onto actions, the decision variable is represented in motor 

areas of the brain that prepare the response. Similar findings have been observed using 

magnetoencephalography (de Lange et al., 2013; Donner et al., 2009), functional resonance 

imaging (Filimon et al., 2013; Tosoni et al., 2008), transcranial magnetic stimulation (Klein-

Flügge and Bestmann, 2012), and single-unit recordings in awake monkeys (Gold and 

Shadlen, 2000, 2003, 2007; Purcell et al., 2010; Ratcliff et al., 2003; Schall, 2019).

Another source of neurophysiological evidence that speaks against strict serial discrete 

processing between decision and motor stages comes from surface electromyographic 

(EMG) studies. EMG is a non-invasive technique that measures the electrical activity of 

muscles through electrodes placed on the skin surface. Recording the EMG activity of 
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agonist muscles in a reaction time (RT) task (e.g., the flexor pollicis brevis for a button press 

with the thumb) allows researchers to partition each RT into two latencies: a premotor time 

(PMT, from stimulus onset to the EMG onset of the response; see Figure 1) and a motor 

time (MT, from EMG onset to the response; Botwinick and Thompson, 1966; Weiss, 1965). 

Recent studies have shown that both mean PMT and mean MT increase as the perceptual 

discriminability of the stimulus decreases (Servant et al., 2021; Weindel et al., 2021; see also 

Selen et al., 2012, for similar findings obtained with a different EMG methodology based 

on reflex gains). These results demonstrate that EMG activity reflects a quantity that scales 

with sensory evidence and suggest a flow of the decision variable down to agonist muscles. 

The flow is not purely continuous because EMG bursts have a discrete onset (that occurs 

~150-180 ms on average before the response for a button press with the thumb, with ~900 

gram-force required; see Servant et al., 2021).

Modeling the Interplay Between Decision and Motor Systems

Servant et al. (2021, 2015) proposed a dual-threshold diffusion model to account for the 

aforementioned neurophysiological findings, with a particular focus on EMG findings. The 

theory concerns two-choice decisions that are mapped onto actions and assumes that the 

decision variable is continuously transmitted to motor areas of the brain that prepare the 

response (such as premotor and primary motor cortices for body movements). Through 

continuous flow, some of the work usually done in forming motor commands can be done 

during decision formation, providing an advantage in terms of processing time (Eriksen and 

Schultz, 1979; McClelland, 1979; Shadlen and Kiani, 2013). In addition, this architecture 

offers substantial flexibility to motor control by allowing for real-time modulations and 

revisions of evolving motor commands based on incoming evidence (Nakayama et al., 2023; 

Resulaj et al., 2009; Stone et al., 2022). This flexibility appears particularly important in 

real-life settings, as individuals are constantly dealing with a changing environment. For 

instance, the affordance competition hypothesis states that the brain continuously processes 

sensory information to determine an ensemble of possible actions while simultaneously 

gathering information to select among these actions (Cisek, 2007).

The theory further assumes that the transmission of information from motor preparation to 

agonist muscles is continuous but regulated by a gate. The gate determines the minimum 

level of accumulated evidence required to pass on the decision variable to muscle fibers and 

is presumably mediated by the basal ganglia system (hypothesized to act as a gate-keeping 

mechanism for the execution of motor plans; e.g., Frank, 2011; Hikosaka, 2007; Mink, 

1996). The gate might serve two main purposes. First, it prevents low levels of accumulated 

evidence from exciting muscle fibers. Low levels of accumulated evidence are associated 

with a low likelihood that the decision is correct, so gating these activations prevents 

unnecessary muscular activity. Second, the gate offers a shield against unwanted behaviors. 

These purposes are consistent with the gating function of the basal ganglia system: Patients 

with basal ganglia disorders often encounter difficulties initiating purposeful movements and 

exhibit involuntary movements such as tremors and chorea (Hikosaka, 2007; Mink, 1996).

Formally, the decision variable follows a diffusion process (Ratcliff, 1978):
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dx(t) = vdt + σdW (t), x(0) = x0,

(1)

where x(t), v, σ, and W(t), respectively, correspond to the accumulated evidence at time t, 
the drift rate, the diffusion coefficient, and a Brownian motion. Parameter x0 represents the 

starting point of the process. If there is no bias for a particular response, x0 = 0.

The gate was originally formalized as a threshold (termed "EMG threshold") superimposed 

on x(t). Here, we propose a different interpretation (though mathematically equivalent) of 

the gate as a constant inhibition. This interpretation is consistent with the tonic inhibitory 

control of the basal ganglia over motor areas (Hikosaka, 2007; Mink, 1996) and allows for 

a clearer description of inputs to muscle fibers. Specifically, in the context of a choice task 

involving left versus right manual responses, inputs to left and right muscle fibers, variables 

zL(t) and zR(t), respectively, are defined as follows:

zL(t) = max( − x(t) − g, 0)
zR(t) = max(x(t) − g, 0),

(2)

where parameter g corresponds to gating inhibition. Variables zL(t) and zR(t) are classically 

referred to as neural drive. The electrical excitation of muscle fibers, measured by EMG, 

starts when the neural drive becomes positive. The full-wave rectified EMG signal1 can be 

interpreted as a noisy approximation of the neural drive to the area of muscle over which 

the electrodes are placed (Dideriksen and Farina, 2019; Farina et al., 2010; Vigotsky et al., 

2018). For this reason, we will represent full-wave rectified EMG signals (instead of raw 

signals) in the present work.

Researchers in biomechanics have evidenced a strong association between the neural drive, 

the resulting electrical excitation of muscle fibers, and force production (for a review, see 

Vigotsky et al., 2018).2 Consequently, the model assumes that the response (e.g., a button 

press) is issued when a particular level of neural drive has been produced, which is modeled 

by applying a threshold (parameter r) on zL(t) and zR(t). A left response is issued if variable 

zL(t) first reaches r, whereas a right response is issued if variable zR(t) first reaches r. We 

refer to r as response threshold. This parameter depends on the force required to give the 

response, properties of agonist muscles, and muscular variables specific to each individual 

(e.g., strength and endurance).

This processing architecture makes EMG predictions (such as distributions of PMT and 

MT) that are strictly identical to the dual-threshold diffusion model proposed by Servant et 

al. (2021, 2015). The only difference concerns the interpretation of the gate as a constant 

1Full-wave rectification consists of taking the absolute value of voltages across time points (so all negative voltages become positive). 
This transformation requires the EMG signals to be centered around zero.
2Technically, the neural drive refers to the electrical activity of α-motoneurons that innervate muscle fibers. This activity triggers an 
excitation-contraction coupling at the level of muscle fibers, leading to force production (Calderón et al., 2014). EMG measures the 
electrical excitation of muscle fibers, which is a precursor to force generation.
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inhibition (instead of a threshold), which translates into a minor parametric change3 and 

prompts a renaming of the model. We refer to it as gated cascade diffusion model (GCD) 

to emphasize the main processing components (diffusion decision variable, continuous flow, 

and gate).

In each trial, the predicted PMT corresponds to the latency between the onset of evidence 

accumulation and the time at which zL(t) or zR(t) becomes positive. Note, however, that 

the latter event can occur more than one time during a trial due to noisy fluctuations of 

the accumulated evidence variable x(t) around the gate. This phenomenon allows the model 

to predict a well-established EMG phenomenon termed partial EMG burst (e.g., Coles 

et al., 1985; Servant et al., 2015). A partial EMG burst corresponds to a small burst of 

muscular excitation that sometimes occurs during PMT and that does not generate sufficient 

force to issue the response (for empirical illustrations, see Appendix A). The predicted 

PMT thus corresponds to the latency between accumulation onset and the time tg at which 

zL(t) or zR(t) becomes positive for the last time before reaching the response threshold, 

consistent with the empirical definition (Figure 1). The predicted MT corresponds to the 

latency at which zL(t) or zR(t) hits the response threshold minus tg. In addition, predicted 

PMT and MT each incorporate residual processing components with mean duration Te and 

Tr, respectively. At minimum, Te includes stimulus encoding processes and Tr includes 

the electromechanical delay (time lag between muscle excitation and a measurable change 

in force output). This delay involves both electrochemical and mechanical processes (e.g., 

propagation of action potentials, excitation-contraction coupling, force transmission along 

the active and passive parts of the series elastic component; Cavanagh and Komi, 1979). In 

its raw form (without between-trial variability in any of the model components and with an 

unbiased starting point of evidence accumulation x0 = 0), GCD has five free parameters: 

drift rate v, gating inhibition g, response threshold r, and mean residual latencies Te and Tr.

Because muscular excitation is determined by x(t), modulations of drift rate impact both 

predicted PMT and MT. Consequently, GCD predicts an increase in mean PMT and mean 

MT as the perceptual discriminability of the stimulus decreases, explaining empirical EMG 

findings reported in the previous section. Servant et al. (2021) derived other predictions 

from the model. First, for any given drift rate, distributions of PMT and MT should exhibit 

a similar right-skewed shape, which should translate into an approximately linear PMT 

quantile-MT quantile plot. Second, and as mentioned before, GCD sometimes predicts 

partial EMG bursts during PMT. The proportion of trials containing at least one partial burst 

and the latency of the first partial burst should increase as the drift rate decreases. Third, 

for any given drift rate, the between-trial correlation between PMT and MT should be null, 

due to the Markov property of the diffusion process (given the present, the future does not 

depend on the past).

To test these predictions, Servant et al. (2021) recorded the EMG activity of muscles 

associated with left/right manual responses in a random dot motion task. In each trial, 

participants had to determine the global direction (left vs. right) of moving dots and press 

the corresponding response button with their left or right thumb. The proportion p of 

3Parameters g and r, respectively, correspond to parameters m and r−m in the dual-threshold diffusion model.
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dots moving coherently in the left or right signal direction, termed motion coherence, was 

manipulated across six levels (p = 0, .05, .08, .12, .2, .4), in order to modulate the perceptual 

difficulty of the decision. The EMG data provided evidence for each prediction.4 In addition, 

fits of GCD to the joint distributions of PMT and MT in correct and incorrect trials and to 

accuracy data were good, providing quantitative evidence for the model.

However, Servant et al. (2021) did not attempt to fit the proportion and latency of partial 

EMG bursts, nor did they examine the predictive accuracy of the model with respect 

to these variables. Figure 2A shows the observed versus predicted proportion of correct 

trials containing at least one partial EMG burst during PMT (upper plot) and the mean 

latency of the first partial EMG burst (lower plot) averaged across subjects for each motion 

coherence condition. Model predictions are computed using the best fitting parameters 

from Servant et al. (2021) and 100,000 simulated trials per condition. GCD strongly 

overestimates the proportion of correct trials containing at least one partial burst during 

PMT and underestimates the average latency of the first partial burst, especially for low 

coherence levels. Similar results were obtained when considering both correct and incorrect 

trials and by taking the median latency of the first partial burst. These results demonstrate 

that the amount of within-trial noise predicted by GCD is too large, causing too many 

oscillations around the gate. To solve this problem, one may be tempted to decrease the 

diffusion coefficient (parameter σ in Equation 1) that regulates the amplitude of within-trial 

noise. However, the diffusion coefficient is fixed at an arbitrary value to satisfy a scaling 

property within the model (Ratcliff, 1978). This means that adjusting the value of σ –either 

to a different fixed value or as a free parameter– has no impact on model predictions, as any 

modulation will be counteracted by a proportional modulation of the other model parameters 

to produce identical predictions. This analysis suggests that a processing step is missing in 

GCD.

As reviewed in the previous section, EEG studies have identified two electrical signals 

that exhibit key signatures of the theoretical accumulation-to-threshold decision variable, 

with important functional differences. The first signal (the CPP) appears to perform a 

decision about alternative categories of a stimulus and is fully supramodal. We refer to this 

processing stage as decision making. The second signal corresponds to effector-selective 

motor preparation activities. Decision making and motor preparation EEG signals also 

exhibit a different sensitivity to strategic influences, as manipulations of response bias and 

speed-accuracy modulate motor preparation signals but not the CPP (Kelly et al., 2021; 

Steinemann et al., 2018). GCD approximates decision making and motor preparation by a 

single evidence accumulation diffusion process, but this assumption does not capture the 

lag between the two corresponding EEG signals, nor does it capture their anatomical and 

functional differences. The same criticism applies to the diffusion model (Ratcliff, 1978) or 

to other evidence accumulation models such as the leaky competing accumulator (Usher and 

McClelland, 2001), the linear ballistic accumulator (Brown and Heathcote, 2008), racing 

4The only apparent discrepancy concerned the between-trial correlation between PMT and MT. This correlation was slightly positive 
on average in the data, and there was some variability between participants, presumably due to the impact of noise on EMG onset 
detection. Additional simulations of GCD showed that the model could predict a small positive correlation between PMT and MT for 
a given drift rate level when between-trial variability in drift rate is incorporated.
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diffusion models (Ratcliff et al., 2003; Tillman et al., 2020), and Poisson counter models 

(Ratcliff and Smith, 2004; Vickers, 1970).

Verdonck et al. (2021) recently hypothesized that the evidence accumulation decision 

variable is continuously transmitted to motor areas of the brain that prepare the response, 

similar to Servant et al. (2021, 2015). They further assumed that the decision variable is 

filtered during motor preparation. Formally, the evidence accumulation variable x(t) follows 

a diffusion process identical to Equation 1. The motor preparation variable y(t) takes x(t) as 

a continuous input and performs a leaky accumulation according to the following differential 

equation:

dy(t) = λ(x(t) − y(t))dt, y(0) = x0,

(3)

where λ > 0 corresponds to the leak parameter. The response is executed when y(t) reaches 

one of two thresholds. As can be seen by solving Equation 3, the motor preparation variable 

is obtained by applying a smoothing filter to x(t):

y(t) = λ∫
−∞

t
dt′x t′ eλ t′ − t .

(4)

The value of the decision variable at t − t′ seconds before the current time t contributes 

x(t′)eλ(t′−t) to the value of the motor preparation variable at time t. The motor preparation 

variable y(t) thus corresponds to the weighted sum of past states x(t′) of the decision-

making variable, with weights exponentially decreasing at rate λ (the leak parameter). When 

λ approaches infinity (high leak), all weights on past states tend to zero, and the model 

reduces to the diffusion model (Ratcliff, 1978). Conversely, as λ decreases (low leak), the 

number of past states of the decision-making variable contributing to the motor preparation 

variable increases. This results in a reduction of random noise. The amount of smoothing 

at the motor preparation level thus increases as λ decreases. Verdonck et al. (2021) further 

showed that for large values of t, the mean of y(t) is delayed by λ−1 relative to the mean of 

x(t), corresponding to the filter-related delay. A modulation of λ thus produces a modulation 

of the speed and accuracy of the decision.

This cascade evidence accumulation architecture for decision making and motor preparation, 

termed leaky integrated threshold model (LIT) by the authors, provides a straightforward 

explanation to the partial temporal overlap between corresponding neurophysiological 

activities, their rise-to-threshold morphology, and the modulation of their respective 

accumulation rate by stimulus difficulty. It also allows for specific strategic influences 

at each processing stage. Although Verdonck et al. (2021) did not test LIT against 

neurophysiological data, they showed that it provides a better account of behavioral data 

than the diffusion decision model in three data sets (a face/car discrimination task, a 

lexical decision task, and a random dot motion task). Two of these data sets included a 
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speed-accuracy manipulation, which was better explained by a variation of leakage than the 

variation of decision thresholds commonly assumed in the literature.

There are two theoretical issues with the LIT framework. First, the rationale for the model 

is not clear. The diffusion model is known to implement an optimal strategy in the sense 

that it minimizes the expected decision time for a given expected accuracy level (Bogacz et 

al., 2006). Consequently, it is not clear why the motor preparation process would average 

past accumulated evidence (containing less information) with current accumulated evidence 

(containing more information). The second issue concerns motor execution. If the threshold 

operates at the motor preparation level, as in the original model definition, the choice is 

categorically communicated to the muscles for execution, and the model cannot account 

for the modulation of mean MT by stimulus discriminability and partial EMG bursts. 

Alternatively, one may assume that the threshold operates at the motor execution level and 

corresponds to the response. This hypothesis, however, would lead to a continuous activation 

of response-relevant muscles, at odds with EMG bursts. The integrated theory of decision 

making, motor preparation, and motor execution introduced in the next section provides a 

solution to both problems. We further illustrate how the theory can capture partial EMG 

burst statistics.

An Integrated Theory of Decision Making, Motor Preparation, and Motor Execution

We first propose a computational foundation (Marr, 1982) for the motor preparation process. 

The brain is a noisy information processing system (Shadlen and Newsome, 1994), and the 

decision variable is likely corrupted by noise during its continuous transmission to motor 

preparation areas. Therefore, an important goal of motor preparation might be to recover the 

original decision variable from noise. Formally, the corrupted decision variable x received 

by the motor preparation process can be defined as:

x(t) = x(t) + ξU(t), x(0) = x0,

(5)

where ξU (t) corresponds to white Gaussian noise with standard deviation ξ added during 

the transmission process. It is well known that the Kalman-Bucy filter provides the optimal 

solution to this problem in the sense that the Kalman-Bucy filtered process y minimizes 

the mean squared prediction error E (x(t) − y(t))2  (Kalman and Bucy, 1961; Øksendal, 

2003). y satisfies the following differential equation (see Appendix B, for the mathematical 

derivation):

dy(t) = σ
ξ tanh σ

ξ t (x(t) − y(t))dt + vdt, y(0) = x0 .

(6)

The term σ
ξ  tanh σ

ξ t  corresponds to the so-called Kalman gain and determines the amount 

of smoothing of x(t) needed to optimally recover x(t) from noise.
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Equation 6 poses an important challenge for the motor preparation system: it requires 

knowledge of the ratio between σ (diffusion coefficient) and ξ (amplitude of transmission 

noise) as well as the drift rate v, which is implausible. After all, if the motor preparation 

system had knowledge of the drift rate, no decision-making mechanism would be necessary. 

Consequently, these parameters may be replaced by priors under strategic control. Let 

parameter λ’ denotes the prior on the ratio between σ and ξ, and parameter v′ the prior on 

the drift rate. If there is no bias toward a particular stimulus/response, a reasonable prior for 

v′ is v′ = 0. Equation 6 thus becomes:

dy(t) = λ′tanh λ′t (x(t) − y(t))dt, y(0) = x0,

(7)

Equation 7 can be viewed as the best estimate of the decision variable x(t) that the motor 

preparation system can plausibly provide, given available information.5 It turns out the 

motor preparation process y(t) from LIT is very similar to y(t). Note that the gain λ′ tanh 

(λ′t) quickly increases to its asymptotic value λ′, and therefore:

dy(t) ≈ λ′(x(t) − y(t))dt, y(0) = x0 .

(8)

Comparing Equations 3 and 8, the main difference between y(t) and y(t) concerns the input 

to motor preparation: y(t) takes the corrupted decision variable x(t) as input, instead of the 

decision variable x(t) (see Appendix B, for additional mathematical details). The prior λ′ 
corresponds to the leak parameter λ and can be interpreted in a similar way. To summarize, 

the filter at the motor preparation level can be viewed as an attempt to recover the original 

decision variable from noise. This mechanism has an important consequence that will 

become clear in the next section: it prevents unnecessary muscular activity triggered by 

random noise in the accumulated evidence and thus appears complementary to the action of 

the gate in stabilizing motor control.

The above analysis suggests that a complete theory of decision making, motor preparation, 

and motor execution may require a combination of GCD and LIT models. This combination 

can still be viewed as a gated cascade diffusion model, but we add the letter F at the end 

of the acronym of the model to indicate that the decision variable is filtered during motor 

preparation (GCDF). An illustration of GCDF is provided in Figure 1. Decision making and 

motor preparation are modeled by x(t) (Equation 1) and y(t) (Equation 3), respectively. We 

chose y(t) instead of y(t) to save one free parameter (the amplitude of transmission noise 

ξ) and reduce the risk of trade-offs between parameters. This choice does not have any 

impact on our main conclusions, since model variants incorporating y(t) versus y(t) provide 

a comparable fit performance to data (see Appendix C), consistent with the above analysis. 

5Equation 7 is still optimal in the sense that it minimizes the mean squared prediction error E (x(t) − y(t))2 , but optimality here 

must be understood under the assumption that parameters v, σ, and ξ are replaced by priors v′ and λ′. It can be contrasted with the 
optimal filter applied by an ideal observer – who would use the actual values of v, σ, and ξ (see Appendix C).
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Gating inhibition now operates on y(t), so inputs to left and right muscle fibers, variables 

zL(t) and zR(t), respectively, are defined as follows:

zL(t) = max( − y(t) − g, 0)
zR(t) = max(y(t) − g, 0) .

(9)

The response (left vs. right) is determined by the variable that first hits the response 

threshold r, similar to GCD.

Model Simulations

Within GCDF, the smoothing mechanism at the motor preparation level should reduce the 

predicted proportion of partial EMG bursts and increase their mean latency (due to the 

filter-related delay). Figure 2B shows simulations of the model with varying levels of leak 

λ and drift rate v. Similar to GCD, the model predicts an increase in the proportion of 

correct trials containing at least one partial EMG burst during PMT (upper plot) and an 

increase in the average latency of the first partial burst as the drift rate decreases (lower 

plot). Importantly, and as predicted, the former decreases and the latter increases as λ 
decreases. Additional analyses of simulated data showed that GCDF predicts an increase in 

mean PMT and mean MT as drift rate decreases for each level of leak, and an approximately 

linear PMT quantile-MT quantile plot. Interestingly, low leak levels produce a small positive 

between-trial correlation between PMT and MT, especially for high drift rates (Figure 

D1). This complex pattern results from two opposite forces: the Markov property of the 

diffusion process on the one hand (that predicts a null correlation between PMT and MT) 

and the filtering process on the other hand (that reduces random fluctuations and positively 

increases the correlation). Because processing components are likely variable from trial 

to trial (e.g., Laming, 1968; Ratcliff and Rouder, 1998), we explored the effect of between-

trial variability in GCDF parameters. The only noticeable difference in model predictions 

was caused by between-trial variability in drift rate (normally distributed with mean v 
and standard deviation sv). This source of variability produces a positive between-trial 

correlation between PMT and MT, especially for low leak and high drift rate levels (Figure 

D2). It also predicts a slightly curvilinear PMT quantile-MT quantile plot (the departure 

from linearity increases as sv increases).

Given the complexity of GCDF, it is difficult to guarantee that these predictions are 

robust across the whole (plausible) parameter space. In our opinion, a complete test of 

the model requires three key ingredients: (a) a quantitative fit to both behavioral and 

electrophysiological data (EEG and EMG); (b) a comparison with GCD as a benchmark 

using model selection techniques; and (c) an evaluation of the fit quality of the model to 

both electrophysiological and behavioral data from a range of choice RT tasks that tap 

into different cognitive domains. The latter is important because it will offer an assessment 

of the generality of the model and delineate potential boundary conditions of application. 

We aimed to incorporate the three ingredients in the present work in order to provide the 

first attempt to jointly model decision making, motor preparation, and motor execution 

processing stages. However, we restricted our analyses to behavioral and EMG data from 
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choice tasks that tap into four different cognitive domains (motion perception, numerical 

cognition, recognition memory, and lexical knowledge) in order to maintain a manageable 

amount of electrophysiological and modeling work. Although EEG data could supplement 

our assessment of decision making and motor preparation processes, the poor signal-to-noise 

ratio of EEG forces researchers to apply a low-pass filter to smooth the signal, obscuring the 

degree to which the brain may perform such filtering.

Experiment 1: Motion Perception

As a first step, we fit GCDF to the joint distributions of PMT and MT in correct and 

incorrect trials and to accuracy data from the left/right random dot motion task of Servant 

et al. (2021). Following Palmer et al. (2005), we assumed a linear relationship between 

motion coherence and drift rate. We predicted a better performance (balance between fit 

quality and parsimony) of GCDF compared to GCD, especially with regard to partial EMG 

burst statistics. Arguably, there are several ways to incorporate partial burst statistics into 

the loss function, quantifying the discrepancy between data and model predictions. We 

chose the following scheme for its simplicity. Accuracy data were divided into six trial 

types: pure- correct trial (pureC: correct response, no partial EMG burst during PMT), 

correct-correct trial (CC: correct response, at least one partial EMG burst during PMT, 

first partial burst located in the correct EMG channel), incorrect-correct trial (IC: correct 

response, at least one partial EMG burst during PMT, first partial burst located in the 

incorrect EMG channel), and so forth for incorrect responses (pure-incorrect trial pureI, 

incorrect-incorrect trial II, correct-incorrect trial CI). The proportion of each of these six trial 

types was incorporated into the loss function. Comparisons between GCD and GCDF were 

performed with and without between-trial variability in processing components in order to 

examine the robustness of findings.

Method

Critical details of the experiment are presented below, but readers are directed to Servant 

et al. (2021) for full details. Eighteen healthy and right-handed participants (two men; 

age range: 18-32; mean age: 21.1) from the University of Franche-Comté performed a 

random dot motion task with six levels of coherence (0, .05, .08, .12, .2, .4). In each trial, 

participants had to determine the global direction (leftward vs. rightward) of dots and press 

the corresponding response button with their left or right thumb. The sampling rate of the 

response device was 1,000 Hz, and the force required to press each button was ~900 gram-

force. The EMG activity of response agonists (the flexor pollicis brevis in particular) was 

recorded by means of two electrodes fixed 1 cm apart on the skin of the thenar eminence of 

each hand. Participants performed 12 blocks of 96 trials each, with a short break between 

blocks. Within each block, trials were defined by a factorial combination of motion direction 

(left vs. right) and motion coherence (six levels). All types of trials occurred equally often 

and were presented in a random order. Each trial started with the presentation of the random 

dot motion stimulus, which remained on the screen until the participant responded. An RT 

deadline was set to 5 s, and the interval between the response to the stimulus and the next 

trial was 1.5 s.
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Bipolar EMG signals (sampling rate = 1,024 Hz) were high-pass filtered using a 10 Hz 

cut-off (3rd order Butterworth filter) and epoched -0.5 s to 5 s relative to stimulus onset. For 

each epoch, EMG burst onsets were detected using a three-step semi-automatic procedure 

(see Servant et al., 2021). Trials with a high level of noise were discarded from analyses 

(7.5% of trials on average; range 0.2%-24%).

Models and Fit Procedure—GCD and GCDF were coded in C, using the method 

and framework of Evans (2019). The fit procedure was coded in Python. The time step 

was set to .001 s to provide the same granularity as the behavioral and EMG data, and 

the diffusion coefficient σ (see Equation 1) was fixed at .1 to satisfy a scaling property 

within the models (see general introduction). Following Servant et al. (2021), we fixed the 

starting point of the decision-making process at x0 = 0, since left and right responses were 

equiprobable.6 Consequently, we modeled incorrect/correct responses instead of left/right 

responses (with negative evidence favoring the incorrect response and positive evidence 

favoring the correct response). In its raw form (i.e., without between-trial variability in 

any of the model parameters), GCDF has six free parameters: the slope k of the linear 

relationship relating motion coherence to drift rate, gating inhibition g, response threshold 

r, mean residual latencies Te and Tr, and the leak parameter λ. The raw GCD has five 

free parameters (all GCDF parameters except λ), and the full GCD has four additional 

parameters (between-trial variability in drift rate sv, starting point sx0, and residual latencies 

sTe and sTr). sv corresponds to the standard deviation of a Gaussian distribution with mean 

v. sx0, sTe, and sTr correspond to the range of a uniform distribution with mean x0, Te, 

and Tr, respectively. These distributional assumptions are directly inherited from standard 

applications of the diffusion model (Boehm et al., 2018; Ratcliff and Rouder, 1998; Voss et 

al., 2004; Wiecki et al., 2013). The full GCDF has one additional between-trial variability 

parameter, corresponding to between-trial variability in leakage (uniformly distributed with 

range sλ and mean λ). A uniform distribution was chosen because we do not have any 

theoretical assumption about the distributional shape of variability in leakage. All free 

parameters were constrained to be ≥0 and were not allowed to vary between motion 

coherence conditions. Parameters sx0, sTe, sTr, and sλ were further constrained to not 

exceed 180% of g, Te, Tr, and λ, respectively. The models were fit to each individual data 

set by minimizing the following loss function (likelihood-ratio chi-square statistic):

G2 = 2 ∑
i = 1

6
∑

j = 1

6
∑

k = 1

6
∑

l = 1

6
nijkllog nijkl/ni

nijkl
′ /ni

′ .

(10)

Summations over i and j extend over the six motion coherence levels and the six trial types 

(pureC, CC, IC, pureI, II, CI; see the Introduction section of this experiment), respectively. 

Summations over k and l extend over the six bins bounded by PMT quantiles (.1, .3, .5, 

.7, and .9) and the six bins bounded by MT quantiles (.1, .3, .5, .7, and .9) respectively.7 

6Relaxing this constraint did not change model selection results, and had a negligible impact on the goodness-of-fit of the models.
7If subjects made a number of errors comprised between five and 10 in a given condition, a median split was used to form two bins. It 
there were fewer than five errors, error PMTs and MTs for the condition were excluded from the G2 calculation.
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The variables nijkl and nijkl
′  refer to the observed and simulated number of trials in coherence 

condition i, trial type j, PMT bin k, and MT bin l. Finally, the variables ni and ni
′ refer to 

the observed and simulated number of trials in coherence condition i, and log refers to the 

natural logarithm. The G2 statistic thus characterizes the goodness-of-fit of the model to the 

joint distributions of PMT and MT and to the proportion of each of the six trial types. It was 

minimized using differential evolution (Storn and Price, 1997) and 20,000 simulated trials 

per condition. Observe that we did not incorporate the latency of partial EMG bursts into 

the G2 formula in order to mitigate the potential impact of artifactual partial bursts on the fit 

quality of other aspects of the data. The latency of partial bursts can thus be considered as 

out-of-sample data, and the comparison between these data and model predictions will serve 

as a generalization test of the models.

Before turning to model comparison techniques, it is important to note that GCD is nested 

in GCDF: the two models are equivalent when the leak parameter λ approaches infinity. 

Consequently, a low best fitting leak value would indicate that GCDF adds to a GCD 

description of the data. The key question is whether this improvement in fit quality is 

sufficiently important to justify the additional complexity of GCDF. To answer this question, 

the G2 was converted to both Akaike information criterion (AIC) and Bayesian information 

criterion (BIC):

AIC = G2 + 2m,

(11)

BIC = G2 + mlog(N),

(12)

where m corresponds to the number of free parameters, log corresponds to natural logarithm, 

and N equals the number of observations used in the G2 computation. BIC and AIC 

thus both penalize for model complexity but in a different way. Since both statistics have 

advantages and drawbacks (Vrieze, 2012), we report both of them, hoping for consistency 

between model decisions. For each individual subject, the best model is the one associated 

with the smallest AIC or BIC. If 14 (or more) out of 18 subjects support one model over the 

other in terms of AIC or BIC (two-sided binomial test), then the result is significant.

Results

GCDF was associated with lower AIC and BIC statistics compared to GCD for each of 

the 18 subjects of the experiment and for both raw and full model variants (Figure 3A). 

The difference in AIC and BIC between raw and full models was much smaller for GCDF 

compared to GCD, indicating that between-trial variability in GCDF parameters has a minor 

impact on model performance, contrary to GCD. In fact, the raw GCDF was associated with 

lower AIC (BIC) statistics compared to the full GCD for 16 (16) subjects. This analysis 

provides strong evidence for the superiority of GCDF.
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Best fitting parameters for the full models are shown in Table 1 (main parameters) and 

Table 2 (between-trial variability parameters). Best fitting parameters for the raw models are 

shown in Table C1. As predicted, both raw and full GCDF capture the EMG data with a 

low level of leakage, indicating strong filtering of the evidence accumulation variable during 

motor preparation (model trajectories for decision making and motor preparation variables 

computed from best fitting parameters averaged across subjects are illustrated in Figure 4A). 

Note that the amount of between-trial variability in the best fitting full model components 

was higher for GCD compared to GCDF, especially for residual latencies (parameters sTe 
and sTr).

Figure 5 displays the goodness-of-fit of the full models to several aspects of the data. GCDF 

predictions are displayed in red, GCD predictions in green, and the data in black. Figure 

5A shows observed versus predicted mean PMT (upper plot) and mean MT (lower plot) 

in correct trials averaged across subjects. Figure 5B displays observed versus predicted 

quantile probability functions for both PMT (upper plot) and MT (lower plot) distributions 

averaged across subjects. Quantile probability functions are constructed by plotting PMT 

or MT quantiles (y-axis) of the distributions of correct and incorrect responses for each 

condition against the corresponding response type proportion (x-axis). Five quantiles (.1, .3, 

.5, .7, .9) were chosen to provide a summary of the shape of PMT and MT distributions. If 

PMT and MT are uniformly distributed, the temporal separation between adjacent quantiles 

should be constant. If PMT and MT both exhibit a right-skewed shape, as evidenced by 

Servant et al. (2021) and visible in Figure 5B, the temporal separation between .7 and .9 

quantiles should be larger than the separation between .5 and .7 quantiles, the separation 

between .5 and .7 quantiles should be larger than the separation between .3 and .5 quantiles, 

and so forth. Quantile probability functions thus represent a concise way to examine the 

shape of PMT and MT distributions for correct and incorrect responses, and how this shape 

varies across conditions (for a thorough treatment of quantile probability functions, see 

Ratcliff and Smith, 2004). Note that the five PMT and MT quantiles for incorrect responses 

in a given condition are displayed if each subject made at least 10 errors in that condition. 

Figure 5C shows the observed versus predicted proportion for each of the six trial types 

(pureC, CC, IC, pureI, II, CI) averaged across subjects. Figure 5D shows the observed versus 

predicted proportion of correct trials featuring at least one partial EMG burst during PMT 

(upper plot), and the mean latency of the first partial EMG burst averaged across subjects 

(lower plot). Figure 5E displays the observed versus predicted PMT quantile-MT quantile 

plot (computed from nine decile points) from correct trials averaged across subjects. Finally, 

Figure 5F shows the observed versus predicted between-trial Pearson correlation coefficient 

between PMT and MT in correct trials for each subject (scattered dots and crosses), as well 

as the correlation averaged across subjects (horizontal lines). The data shown in the lower 

plot of Figure 5D (mean latency of the first partial EMG burst in correct trials) and Figure 

5F (between-trial Pearson correlation between PMT and MT) were not used to constrain 

parameter estimation and serve as a generalization test of the models.

Overall, the full GCDF provides a good account of the data, though two minor discrepancies 

are apparent. First, the model overestimates the .9 quantile of PMT distributions as motion 

coherence decreases, especially for incorrect trials. Second, the predicted between-trial 

correlation between PMT and MT for each individual subject shows less dispersion 
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compared to observed data, but this phenomenon is likely due to noise in EMG onset 

detection. In addition, GCDF slightly overestimates the correlation for the highest motion 

coherence level. As discussed previously (see general introduction and Appendix D), the 

model predicts a positive correlation when a high drift rate is combined with a low leakage 

level, especially if between-trial variability in drift rate is incorporated.

In its raw form, GCD grossly overestimates the proportions of trials containing at least 

one partial EMG burst during PMT, replicating the failure of the model highlighted in 

the general introduction section. Since this failure was apparent in each of the four 

experiments presented in this article, the raw GCD will no longer be discussed. The full 

GCD provides a better account of the six trial types (pureC, CC, IC, pureI, II, CI), though 

the model overestimates the proportion of CC trials as motion coherence increases. The 

better performance of the full GCD comes from a much smaller response threshold r, but 

this modulation has several negative consequences. Most importantly, the predicted mean 

MT essentially corresponds to parameter Tr, which is implausible from a physiologial 

perspective, and the predicted variability in MT is mostly driven by parameter sTr. The 

model thus strongly underestimates the effect of motion coherence on mean MT and fails to 

account for the right-skewed distribution of MTs (observe the constant temporal separation 

between adjacent MT quantiles predicted by the model in Figure 5B, diagnostic of a uniform 

distribution).

Experiment 2: Numerical Cognition

Many tasks in numeracy research involve a decision between two responses based on the 

magnitude of some nonsymbolic stimulus. For example, subjects have to determine which of 

two arrays that are spatially separated feature the larger amount of dots, or whether an array 

of dots contains more blue or yellow dots. Here we use another common task in numeracy 

research in which subjects have to determine whether the number of dots (range: 31-70) 

randomly scattered in a 10×10 virtual array is greater or less than a criterion quantity (50). 

Performance is slower and less accurate when the difference between the number of dots and 

the criterion is small (e.g., 45 or 55 dots) compared to when it is large (e.g., 31 or 70 dots). 

Ratcliff and colleagues have demonstrated that the diffusion model captures RT distributions 

for correct and incorrect responses and accuracy data in this task with a variation of drift rate 

across numerosity conditions (e.g., Ratcliff and Childers, 2015; Ratcliff et al., 2010). Ratcliff 

and McKoon (2018) further showed that the modulation of drift rate could arise from 

an approximate number representation in which numerosities are represented as Gaussian 

distributions, with the mean and standard deviation of these distributions increasing linearly 

with numerosity (Dehaene, 2003). In this framework, the drift rate corresponds to the 

difference between the number of dots and the criterion, scaled by a free parameter (to 

account for interindividual differences in discrimination performance). Consequently, both 

GCDF and GCD predict an increase in mean MT as the number of dots approaches the 

criterion, resulting in an inverted U-shaped function of numerosity (with a peak around 50). 

Methodological details regarding the experiment and the modeling of the data are provided 

in Appendix E.
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Results

Behavior and EMG—The data from 24 subjects were grouped into eight conditions 

(31-35 dots; 36-40; 41-45; 46-50; 51-55; 56-60; 61-65; 66-70), represented by the mean 

number of dots of each bin (33, 38, 43, 48, 53, 58, 63, 68). They were analyzed by means of 

quadratic contrasts (two-sided) with numerosity as within-subjects factor and specific error 

terms (as recommended for within-subjects designs; e.g., Boik, 1981). Anticipations (RTs 

< 150 ms; 0%) and trials in which participants failed to respond before the 4 s deadline 

(0.12%) were discarded from analyses.

Accuracy data exhibited a U-shaped function of numerosity, t(23) = 31.36, p < .001, 

reflecting the increased proportion of errors as numerosity approaches the criterion. 

Consistent with model predictions, mean RT, mean PMT, and mean MT showed an inverted 

U-shaped function of numerosity, Figure 6A; mean RT: t(23) = -10.78, p < .001; mean 

PMT: t(23) = -10.75, p < .001; mean MT: t(23) = -5.37, p < .001. Both the proportion of 

correct trials containing at least one partial EMG burst and the mean latency of the first 

partial burst also exhibited an inverted U-shaped function of numerosity, t(23) = -9.61, p 
< .001 and t(23) = -6.95, p < .001, respectively (Figure 6D). For each condition, PMT 

quantile-MT quantile plots from correct trials had an approximately linear shape, and the 

between-trial Pearson correlation coefficient between PMT and MT was positive and close 

to zero on average (with a slight initial reduction followed by a more pronounced increase 

as numerosity increases; Figure 6F). Overall, EMG results as a function of task difficulty are 

similar to those observed in the random dot motion task (Servant et al., 2021).

Model Fits—The fit procedure was identical to that used in Experiment 1, except that 

we treated the starting point x0 of the decision-making process as a free parameter. We 

modeled "less than 50" and "greater than 50" responses (with negative evidence favoring 

the "less" response, and positive evidence favoring the "greater" response). The six trial 

types considered in the fit procedure were pure-less trial (pureL: "less" response, no partial 

EMG burst during PMT), less-less trial (LL: "less" response, at least one partial EMG burst 

during PMT, first partial burst located in the "less" EMG channel), greater-less trial (GL: 

"less" response, at least one partial EMG burst during PMT, first partial burst located in 

the "greater" EMG channel), and so forth for "greater" responses (pure-greater trial pureG, 

greater-greater trial GG, less-greater trial LG).

Similar to Experiment 1, GCDF was associated with lower AIC and BIC statistics compared 

to GCD for each of the 24 subjects and for both raw and full model variants (Figure 3B). 

The difference in AIC and BIC between raw and full models was much smaller for GCDF 

compared to GCD, and the raw GCDF was associated with a lower AIC (BIC) compared to 

the full GCD for 21 (22) subjects. This analysis provides strong evidence for the superiority 

of GCDF.

Best fitting parameters for the full models are shown in Table 1 (main parameters) and 

Table 2 (between-trial variability parameters). Best fitting parameters for the raw models are 

shown in Table C1. Although the best fitting leakage (λ) value from GCDF was larger than 

that observed in Experiment 1, this value still implies substantial smoothing of the evidence 

accumulation variable during motor preparation, though with a reduced filter-related delay 
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(for an illustration of model trajectories, see Figure 4B). The amount of between-trial 

variability in the best fitting full model components was higher for GCD compared to 

GCDF, especially for residual latencies (parameters sTe and sTr).

Figure 6 displays the goodness-of-fit of the full models to data. Compared to Experiment 

1, the full GCD provides a better account of the task difficulty effect on mean MT, thanks 

to a larger response threshold. However, the model still fails to provide a good fit to MT 

quantiles because the contribution of residual motor latencies to predicted MTs remains 

substantial. In addition, the full GCD systematically overestimates the rate of correct LL 

and GG trials and the mean latency of the first partial EMG burst. The full GCDF captures 

most trends of the data. The only apparent misfit is an overestimation of the right skew 

of PMT distributions for the most difficult conditions. Note that the model provides a 

reasonable account of between-trial Pearson correlation coefficients between PMT and MT 

across numerosity conditions and does so with a complex combination of three ingredients: 

(a) a moderate and constant level of leakage across conditions, (b) drift rates that follow 

a U-shaped function of numerosity, and (c) a moderate amount of variability in drift rate 

that slightly increases as numerosity increases (from 0.0896 to 0.0925, computed from best 

fitting parameters using Equation E2 in Appendix E).

Experiment 3: Recognition Memory

The diffusion model was originally developed to provide a theory of memory retrieval and 

showed a good fit to behavioral data from different item recognition paradigms (Ratcliff, 

1978). This finding has been replicated multiple times since (e.g., Ratcliff et al., 2004, 

2010). Here, we perform an EMG analysis of response-relevant muscles in a standard 

study-test task. During the study phase, participants had to memorize a list of words, each 

word being presented individually at a pace of 1 s. During the test phase, studied words 

were intermixed with nonstudied words, and participants had to decide whether each word 

was old or new by pressing a left or right button. In this task, the drift rate represents the 

meeting point between decision making and memory systems: it is equal to the amount 

of match between the test item and the memory trace. To modulate the drift rate, we 

manipulated the number of word repetitions during the study phase. Specifically, each word 

was studied one time, two times, or four times. The drift rate should increase as the number 

of repetitions (and thus memory strength) increases. Consequently, both GCD and GCDF 

predict a decrease in mean MT as memory strength increases.

Although early applications of the diffusion model to recognition memory data assumed a 

constant between-trial variability in drift rate (parameter sv) between old and new items, 

there is evidence from both memory models (e.g., Ratcliff et al., 1992; Shiffrin and Steyvers, 

1997; Wixted, 2007) and diffusion model fits (e.g., Starns and Ratcliff, 2014) that the 

evidence entering the decision process is more variable for old than new items. One possible 

reason is that some old items are better learned than others (Wixted, 2007). Consequently, 

we let sv free to vary between conditions. Methodological details regarding the experiment 

and the modeling of the data are provided in Appendix E.
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Results

Behavior and EMG—Twenty-four subjects completed the experiment. Anticipations (RTs 

< 150 ms; 0.004%) and trials in which participants failed to respond before the 4 s deadline 

(0.068%) were discarded from analyses. Performance to old words was analyzed by means 

of linear contrasts (two-sided) with memory strength (words studied one time, two times, or 

four times) as within-subjects factor and specific error terms. Accuracy increased as memory 

strength increased, t(23) = 14.14, p < .001. Consistent with model predictions, mean RT, 

mean PMT, and mean MT decreased as memory strength increased, Figure 7A; mean RT: 

t(23) = -5.72, p < .001; mean PMT: t(23) = -5.50, p < .001; mean MT: t(23) = -3.11, p 
= .011. Note that the amplitude of the memory strength effect on mean MT (M = 5 ms) 

is smaller compared to the numerosity effect observed in Experiment 2 (M = 10 ms) and 

the motion coherence effect observed in Experiment 1 (M = 35 ms). The amplitude of the 

memory strength effect on mean PMT data (M = 79 ms) is also smaller compared to the 

numerosity effect (M = 198 ms) and the motion coherence effect (M = 692 ms). The positive 

correlation between the magnitude of difficulty effects on mean PMT and mean MT across 

tasks is consistent with the hypothesis -core to GCD and GCDF- that PMT and MT are 

driven by a similar evidence accumulation process.

Although both the proportion of correct trials containing at least one partial EMG burst and 

the mean latency of the first partial burst decreased as memory strength increased (Figure 

7D), only the latter reached statistical significance, t(23) = -1.91, p = .069 and t(23) = -3.02, 

p = .006, respectively. For each condition, PMT quantile-MT quantile plots from correct 

trials exhibited a slight curvilinearity (Figure 7E). The between-trial Pearson correlation 

coefficient between PMT and MT was close to zero on average and slightly decreased as 

memory strength increased (words studied one time: r = .07; words studied two times: r = 

.04; words studied four times: r = 0; Figure 7F).

To compare performance between old and new items, we averaged the performance to old 

items across memory strength levels and ran two-sided paired sample t tests. The only 

significant difference concerned accuracy data. The proportion of correct responses was 

higher for new than old items, t(23) = 5.56, p < .001.

Model Fits—The fit procedure was identical to that used in the previous experiments. We 

modeled "new" and "old" responses (with negative evidence favoring the "new" response 

and positive evidence favoring the "old" response). The six trial types considered in the 

fit procedure were pure-old trial (pureO: "old" response, no partial EMG burst during 

PMT), old-old trial (OO: "old" response, at least one partial EMG burst during PMT, first 

partial burst located in the "old" EMG channel), new-old trial (NO: "old" response, at least 

one at least one partial EMG burst during PMT, first partial burst located in the "new" 

EMG channel), and so forth for "new" responses (pure-new trial pureN, new-new trial NN, 

old-new trial ON).

The raw GCDF was associated with lower AIC and BIC statistics compared to the raw GCD 

for each of the 24 subjects, and the full GCDF was associated with lower AIC and BIC 

statistics compared to the full GCD for 23 subjects (Figure 3C). The difference in AIC and 

BIC between raw and full model variants was smaller for GCDF compared to GCD, and 
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the raw GCDF was associated with a lower AIC (BIC) compared to the full GCD for 16 

(17) subjects. The pattern of model selection results is thus similar to that observed in the 

previous experiments and provides strong evidence for GCDF.

Best fitting parameters for the full models are shown in Table 1 (main parameters) and 

Table 2 (between-trial variability parameters). Best fitting parameters for the raw models are 

shown in Table C1. GCDF captures the data with a moderate amount of leakage (λ), though 

the best fitting value for the full model is a bit larger compared to Experiment 2 (implying 

reduced smoothing and filter-related delays; for an illustration of model trajectories, see 

Figure 4C). The amount of between-trial variability in the best fitting full model components 

was generally higher for GCD compared to GCDF. Note that between-trial variability in 

drift rate (sv) was larger for old than new words, consistent with previous work. It also 

decreased as memory strength increased, suggesting that evidence variability decreases as 

function of learning.

Figure 7 displays the goodness-of-fit of the full models to data. The full GCD provides a 

poor account of MT distributions due to the large contribution of residual motor latencies 

to predicted MTs. In addition, the full GCD systematically overestimates the proportion of 

correct OO and NN trials and the mean latency of the first partial EMG burst. The full 

GCDF provides a good fit to data used to constrain parameter estimation (though it slightly 

overestimates the .9 quantile of PMT distributions for old responses as the number of word 

presentations decreases) but shows a relatively poor generalization performance. Although 

the model predicts the effect of memory strength on the mean latency of the first partial 

EMG burst, it systematically overestimates this latency by about 100 ms. In addition, the 

model overestimates the between-trial correlation between PMT and MT, especially for old 

words studied two and four times.

Experiment 4: Lexical Knowledge

The ability to recognize words is essential for reading, and the lexical decision task has 

been widely used to study this process. In this task, subjects have to decide whether strings 

of letters are words or nonwords. A standard finding is that high-frequency words are 

recognized faster and more accurately compared to low-frequency words. Ratcliff et al. 

(2004) showed that the diffusion model provides a good account of performance in this task, 

with a decrease of drift rate as word frequency decreases. Consequently, both GCD and 

GCDF predict an increase in mean MT as word frequency decreases.

Later modeling work suggests that word frequency modulates other parameters of the 

diffusion model. Both Donkin et al. (2009) and Gomez and Perea (2014) showed a 

variation of mean nondecision time across word frequency levels, suggesting that frequency 

modulates lexical access processes (that determine how much evidence the stimulus 

provides for each response alternative). Tillman et al. (2017) recently showed evidence for a 

larger between-trial variability in drift rate for words than nonwords and for high frequency 

compared to low frequency words, a pattern predicted by a model of lexical retrieval 

(Wagenmakers et al., 2004). Consequently, the mean residual latency added to predicted 

PMT (Te), drift rate (v), and between-trial variability in drift rate (sv) parameters were 
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free to vary across word frequency conditions in our modeling of the data. Methodological 

details regarding the experiment and the modeling of the data are provided in Appendix E.

Results

Behavior and EMG—Twenty-four subjects completed the experiment. Anticipations (RTs 

< 150 ms; 0%) and trials in which participants failed to respond before the 4 s deadline 

(0.1%) were discarded from analyses. Performance to word stimuli was analyzed by means 

of linear contrasts (two-sided) with word frequency (very low, low, medium, high) as 

within-subjects factor and specific error terms.

Accuracy decreased, t(23) = 12.54, p < .001, and mean RT increased, t(23) = -8.36, p < .001, 

as word frequency decreased, reflecting the classic word frequency effect. Although mean 

PMT decreased as word frequency decreased, t(23) = -8.70, p < .001, mean MT exhibited 

an unexpected inverted U-shape function of word frequency (Figure 8A). Accordingly, 

the planned linear contrast was not significant, t(23) = 0.53, p = .60, while a post hoc 

quadratic contrast reached significance, t(23) = -2.24, p = .04. This inverted U-shape pattern 

is unlikely due to a statistical power or an EMG signal quality issue because (a) the sample 

size was identical to Experiment 3, (b) the amplitude of the word frequency effect on mean 

RT (M = 187 ms) was larger than the amplitude of the memory strength effect on mean RT 

(M = 79 ms), and (c) EMG signal quality was approximately similar between Experiments 3 

and 4, as revealed by a comparable percentage of rejected trials on average.

Both the proportion of correct trials containing at least one partial EMG burst during PMT 

and the mean latency of the first partial burst decreased as word frequency increased, t(23) 

= -6.13, p < .001 and t(23) = -6.39, p < .001, respectively (Figure 8D). For each condition, 

PMT quantile-MT quantile plots from correct trials exhibited an approximately linear shape 

(Figure 8E), and the between-trial Pearson correlation coefficient between PMT and MT was 

remarkably close to zero on average, with no apparent trend across conditions (Figure 8F).

To compare the performance between word and pseudoword stimuli, we averaged the 

performance to word stimuli across frequency levels and ran two-sided paired sample t tests. 

The proportion of correct responses was higher for pseudowords than words, t(23) = -4.24, p 
< .001. Mean RT, mean PMT, and mean MT were slower for pseudowords than words, t(23) 

= -4.40, p < .001, t(23) = -3.35, p = .003, and t(23) = -2.49, p = .02, respectively. Finally, 

there was a trend for a smaller proportion of correct trials containing at least one partial 

EMG burst for words than pseudowords, t(23) = -2.05, p = .052, and the mean latency of the 

first partial burst was faster for words, t(23) = -4.21, p < .001.

Model Fits—The fit procedure was identical to that used in the previous experiments. 

We modeled "pseudoword" and "word" responses (with negative evidence favoring 

"pseudoword" responses and positive evidence favoring "word" responses). The six trial 

types considered in the fit procedure were pure-word trial (pureW: "word" response, no 

partial EMG burst during PMT), word-word trial (WW: "word" response, at least one 

partial EMG burst during PMT, first partial burst located in the "word" EMG channel), 

pseudoword-word trial (PW: "word" response, at least one partial EMG burst during PMT, 

first partial burst located in the "pseudoword" EMG channel), and so forth for "pseudoword" 
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responses (pure-pseudoword trial pureP, pseudoword-pseudoword trial PP, word-pseudoword 

trial WP).

GCDF was associated with lower AIC and BIC statistics compared to GCD for each of the 

24 subjects and for both raw and full model variants (Figure 3D). The difference in AIC and 

BIC between raw and full model variants was smaller for GCDF compared to GCD, and 

the raw GCDF was associated with a lower AIC (BIC) compared to the full GCD for 14 

(15) subjects. The pattern of model selection results is thus similar to that observed in the 

previous experiments and provides strong evidence for GCDF.

Best fitting parameters for the full models are shown in Table 1 (main parameters) and 

Table 2 (between-trial variability parameters). Best fitting parameters for the raw models 

are shown in Table C1. GCDF captures the data with a higher level of leakage λ compared 

to the previous experiments (implying reduced smoothing and filter-related delays; for an 

illustration of model trajectories, see Figure 4D). Consistent with previous work (Donkin 

et al., 2009; Gomez and Perea, 2014), GCDF and GCD both predict an increase in 

the mean residual latency parameter Te added to predicted PMT as word frequency 

decreases. Although evidence variability (parameter sv) was generally larger for words 

than pseudowords, consistent with previous work (Tillman et al., 2017; Wagenmakers et 

al., 2004), it increased as word frequency decreased. The latter pattern is opposite to that 

found by Tillman et al. (2017) using traditional diffusion model fits. The number of words 

for which people do not know the definition may increase as word frequency decreases, 

inflating evidence variability. More generally, the amount of between-trial variability in 

the best fitting full model components was generally higher for GCD compared to GCDF, 

consistent with model fits obtained in the previous experiments.

Figure 8 displays the goodness-of-fit of the full models to data. As expected, both GCDF 

and GCD predict an increase in predicted mean MT as word frequency decreases, and fail 

to capture the observed inverted U-shaped pattern. GCD systematically underestimates the 

.9 quantile of PMT distributions for correct responses and overestimates the proportion of 

correct WW and PP trials. GCDF provides a better account of PMT distributions and the six 

trial types (pureW, WW, PW, pureP, PP, WP). Both models overestimate the mean latency of 

the first partial EMG burst and the between-trial correlation between PMT and MT.

Comparison Between the Neural Drive to Muscle Fibers Predicted by GCDF 

and Full-Wave Rectified EMG Signals

As a final evaluation of GCDF, we compared the predicted neural drive to muscle fibers, 

variables zL(t) or zR(t) (Equation 9), with full-wave rectified EMG signals. As mentioned in 

the general introduction, the full-wave rectified EMG signal can be interpreted as a noisy 

approximation of the neural drive to the area of muscle over which the electrodes are placed, 

and should thus scale with the predicted neural drive computed from best fitting parameters. 

We restricted this analysis to EMG data from Experiments 1 and 2, in which the effects of 

experimental manipulations on MT were the largest and well accounted for by the model.
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Figure 9A and 9C show the predicted neural drive to muscle fibers associated with the 

correct response, averaged across correct trials and subjects for the random dot motion 

task and the numerosity judgment task, respectively. Model trajectories are time-locked on 

tg, latency at which zL(t) or zR(t) becomes positive for the last time before reaching the 

response threshold (see Figure 1). For each task, subject, and condition, 1,000 correct trials 

were simulated using the best fitting parameters from the full GCDF. In each simulated trial, 

the neural drive was assumed to decay at an arbitrary linear rate of -0.15 units/s after hitting 

the response threshold. Trajectories were then time locked on tg and averaged. For each task, 

the rising slope of the predicted neural drive decreases as difficulty increases, reflecting the 

dynamics of the underlying motor preparation signal.

Figure 9B and 9D show full-wave rectified EMG signals from muscles associated with 

the correct response for each condition of the random dot motion task and the numerosity 

judgment task, respectively. Signals are time-locked to the EMG onset of the response, 

and are averaged across correct trials and subjects. Consistent with model predictions, the 

rising slope of EMG signals decreases as difficulty increases. A linear contrast computed on 

the rising slope (estimated by linear regression in the 0-50 ms window) in the random dot 

motion task was highly significant, t(27) = 4.89, p < .001, and so was the quadratic contrast 

in the numerosity judgment task, t(23) = 3.66, p < .001. This analysis provides additional 

evidence for GCDF.

General Discussion

To our knowledge, this work represents the first attempt to jointly model decision making, 

motor preparation, and motor execution processes in choice RT tasks. The proposed GCDF 

assumes a continuous flow of the evidence accumulation decision variable to agonist 

muscles. The model further incorporates a smoothing mechanism at the motor preparation 

level and a gate that regulates the flow of information from motor preparation to muscle 

fibers. This architecture offers substantial flexibility to motor control by allowing for real-

time adjustments of motor commands based on incoming evidence, while simultaneously 

shielding the system against unwanted behaviors and preventing unnecessary muscular 

activity. The smoothing mechanism at the motor preparation level may also reflect 

an attempt to recover the decision variable from noise that can corrupt it during the 

transmission process and can be seen as an approximation of a Kalman-Bucy filter.

We tested GCDF against behavioral and EMG data from four choice tasks that span a variety 

of domains in cognitive sciences, namely motion perception (Experiment 1), numerical 

cognition (Experiment 2), recognition memory (Experiment 3), and lexical knowledge 

(Experiment 4). Each task featured a manipulation of choice difficulty to bring additional 

constraints to the model. GCDF was evaluated in its ability to capture (a) the shape of PMT 

and MT distributions for correct and incorrect responses; (b) the proportion of six trial types 

defined by the combination of response type, presence versus absence of at least one partial 

EMG burst during PMT, and EMG channel location of the first partial burst; (c) the mean 

latency of the first partial EMG burst in correct trials; (d) the relationship between the shape 

of PMT and MT distributions in correct trials; (e) the between-trial Pearson correlation 

coefficient between PMT and MT in correct trials; (f) the neural drive to muscle fibers; and 
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(g) the variation of all of the above aspects of the data across difficulty conditions. Overall, 

GCDF provided a good fit to data used to constrain parameter estimation (a, b, and d). The 

only apparent discrepancy between data and model predictions was an overestimation of the 

.9 quantile of PMT distributions for the most difficult experimental conditions. One way to 

solve this issue would be to incorporate an urgency signal into the model (Cisek et al., 2009; 

Ditterich, 2006; Evans, Hawkins, and Brown, 2020; Hawkins et al., 2015; Trueblood et al., 

2021). Urgency can take the form of temporally collapsing boundaries or a time-increasing 

gain applied to the incoming evidence. Both mechanisms reduce the skew of predicted RT 

distributions (Hawkins et al., 2015), offering a potential solution to the observed GCDF 

misfit. Although urgency signals remain controversial when considering behavioral data 

alone (Evans, Hawkins, and Brown, 2020; Glickman and Usher, 2019; Glickman et al., 

2022; Hawkins et al., 2015; Ratcliff et al., 2016; Trueblood et al., 2021), neurophysiological 

studies have provided evidence for them at the motor preparation level in both monkeys 

and humans (Churchland et al., 2008; Hanks et al., 2014; Murphy et al., 2016), even 

when subjects are not under speed pressure (Kelly et al., 2021). Interestingly, urgency 

signals are not observed at the decision-making level (Kelly et al., 2021; Steinemann et al., 

2018), further emphasizing the functional dissociation between decision making and motor 

preparation. Fitting GCDF variants that incorporate urgency mechanisms is beyond the 

scope of the present work and should be conducted in tandem with an electrophysiological 

investigation of motor preparation.

Although GCDF showed a good fit to data used to constrain parameter estimation, it 

provided a mixed predictive account of the remaining data. The model captured the 

mean latency of the first partial EMG burst in Experiments 1 and 2 but systematically 

overestimated this latency by about 100 ms in Experiments 3 and 4. We cannot exclude 

the possibility that a set of parameters could have better captured the partial burst latency 

data had we considered these data in parameter estimation. Alternatively, variations in EMG 

signal quality across experiments may have contributed to this pattern of results, as the 

percentage of rejected trials was larger on average in Experiments 3 (12.41%) and 4 (10.4%) 

compared to Experiments 1 (7.5%) and 2 (2.7%). Therefore, the data from Experiments 3 

and 4 might incorporate a larger amount of artifactual partial EMG bursts.

Besides the mean latency of partial EMG bursts, GCDF provided a mixed predictive account 

of the between-trial correlation between PMT and MT. In general, model predictions showed 

more dispersion compared to observed data at the individual level, but this phenomenon 

is likely explained by noise in EMG onset detection. However, the model systematically 

overestimated the correlation averaged across subjects in Experiments 3 and 4, and the 

easiest condition of Experiment 1. One may argue that this discrepancy between data and 

model predictions speaks against the model architecture, as the filtering mechanism at 

the motor preparation level flattens out random fluctuations of the evidence accumulation 

signal and increases the predicted correlation between PMT and MT at the single-trial 

level. Once again, we cannot exclude the possibility that a set of parameters could have 

better captured the between-trial correlation between PMT and MT had we considered these 

data in parameter estimation. Alternatively, it is important to remember that the filtering 

mechanism (regulated by the leak parameter) interacts in complex ways with drift rate 

and between-trial variability in drift rate (see Appendix D). This interaction is problematic 
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because GCDF variants used in Experiments 3 and 4 do not incorporate representational 

assumptions that specify how drift rate distributions arise from the stimuli. In addition, 

although the linear relationship between motion coherence and drift rate provided a good 

fit to data from Experiment 1 (see also Palmer et al., 2005; Ratcliff and McKoon, 2008), a 

more complex representational assumption has recently been proposed for the random dot 

motion task (Smith and Lilburn, 2020). Consequently, discrepancies between data and model 

predictions may stem from a misspecification of drift rate distributions.

More generally, these findings highlight the need of considering predecisional processing 

stages when modeling motor phenomena. This need is further highlighted by the lexical 

decision data from Experiment 4. The word frequency effect has been successfully 

modeled by assuming that word frequency modulates drift rate (Ratcliff et al., 2004), 

mean nondecision time (Donkin et al., 2009; Gomez and Perea, 2014), and between-trial 

variability in drift rate (Tillman et al., 2017). Within the framework of GCDF, the decrease 

of drift rate as word frequency decreases should increase the predicted mean MT. Contrary 

to this prediction, we found an inverted U-shape relationship between mean MT and word 

frequency. Specifically, mean MT showed an initial increase from high frequency to medium 

frequency words, followed by a decrease for low and very-low frequency words. At first 

glance, this result speaks against the architecture of GCDF. However, the model does not 

incorporate assumptions regarding how the drift rate is computed in this task, so the origin 

of the problem is unclear. It would be useful to connect models of lexical access (e.g., 

Grainger, 2018; Houghton, 2018; McClelland and Rumelhart, 1981) to GCDF to shed light 

on this issue.

Apart from the unexpected word frequency effect on mean MT, EMG findings were 

remarkably consistent across experiments, suggesting that GCDF generalizes across 

cognitive domains. Both mean PMT and mean MT increased as choice difficulty increased. 

The increase of mean MT as choice difficulty increased was caused by a decrease in the 

rising slope of the neural drive, as suggested by our analysis of full-wave rectified EMG 

signals. This important aspect of the data was nicely captured by GCDF because the neural 

drive predicted by the model reflects evidence-dependent dynamics of the underlying motor 

preparation signal. Partial bursts were also observed in the EMG data of each subject of each 

experiment. The proportion of correct trials containing at least one partial EMG burst during 

PMT and the mean latency of the first partial burst increased as choice difficulty increased. 

Interestingly, the proportion of correct trials in which the first partial burst was located in the 

same EMG channel as the response was systematically larger than the proportion of correct 

trials in which the first partial burst was located in the opposite EMG channel. Within the 

framework of GCDF, this finding is explained by the same mechanism that captures the 

relative proportion of correct and incorrect responses. Putting aside between-trial variability 

in model components, errors are produced by noise in the evidence accumulated at each 

time step. Although part of this noise is flattened out during motor preparation, the predicted 

proportion of errors is smaller than the proportion of correct responses, so long as the drift 

rate is not null.
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Comparisons With GCD

As predicted, GCDF captured the data with a relatively low level of leakage, indicating that 

the evidence accumulation variable is smoothed at the motor preparation level. This finding 

suggests that the smoothing mechanism adds to a GCD description of the data. Model 

selection statistics (AIC and BIC) further showed that the additional complexity of GCDF 

was justified in light of the (large) improvement in fit quality. Both AIC and BIC statistics 

favored GCDF over GCD for 90/90 participants (raw models) and 89/90 (full models). 

These findings provide decisive evidence for GCDF. Interestingly, the difference in model 

selection statistics between raw and full models was much larger for GCD than for GCDF, 

suggesting that between-trial variability in GCD components has a major impact on the fit 

quality of the model, contrary to GCDF. Still, the AIC (BIC) statistic favored the raw GCDF 

over the full GCD for 67(70)/90 subjects. Although between-trial variability in processing 

components is plausible, we believe that a large contribution of between-trial variability to 

the fit quality of a model is problematic, as there is generally no explanation of why this 

variability occurs or why it has the parametric form researchers assume to represent it. In 

this view, between-trial variability essentially corresponds to adding a random component 

to the model without any strong theoretical motivation for it rather than to improve the fit 

quality (Evans, Tillman, and Wagenmakers, 2020). Consequently, we consider our findings 

regarding between-trial variability as additional evidence for GCDF.

In its raw form, GCD grossly overestimated the proportion of trials containing at least one 

partial EMG burst, especially when the first partial burst was located in the same EMG 

channel as the response. The full GCD provided a better account of these proportions by 

using a very small response threshold (Experiment 1) or by combining high drift rates with a 

high between-trial variability in drift rates (Experiments 2-4; see Tables 1 and 2). However, 

both processing schemes resulted in predicted MTs that were too fast compared to observed 

MTs. The model compensated this problem by increasing the contribution of residual motor 

latencies to predicted MTs (parameters Tr and sTr), but this compensation had two negative 

consequences. First, the model was not able to capture large effects of choice difficulty 

on mean MT, such as those observed in Experiment 1. Second, the model was not able 

to capture the right-skewed shape of MT distributions because between-trial variability in 

residual motor latencies added to predicted MTs is uniformly distributed, an (arbitrary) 

assumption inherited from the diffusion decision model (Ratcliff and Rouder, 1998).

Neurophysiological Implementation, Theoretical Limitations, and Possible Model 
Extensions

As detailed in the general introduction, properties of motor preparation and execution, 

uncovered by neurophysiological studies, are not accounted for by current RT models 

such as the diffusion model (Ratcliff, 1978; Ratcliff et al., 2016), the leaky competing 

accumulator (Usher and McClelland, 2001), the linear ballistic accumulator (Brown and 

Heathcote, 2008), racing diffusion models (Ratcliff et al., 2003; Tillman et al., 2020), and 

Poisson counter models (Ratcliff and Smith, 2004; Vickers, 1970). In this respect, we 

believe that the models proposed by Servant et al. (2015, 2021), Verdonck et al. (2021), and 

their development and integration through GCDF constitute a major theoretical advance in 

Dendauw et al. Page 26

Psychol Rev. Author manuscript; available in PMC 2024 August 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



the field, as they offer a mechanistic explanation to the interplay between decision and motor 

processes.

The diffusion decision process has been the object of several neurocomputational 

characterizations and has been hypothesized to arise from recurrent loops within neural 

networks (Smith and McKenzie, 2011; Wang, 2002; Wong and Wang, 2006). Interestingly, 

recurrent neural networks have also been used to approximate Kalman-Bucy filters (Denève 

et al., 2007), paving the way for a joint characterization of decision and motor preparation 

processes at the neural circuit level. At the systems level, we believe that future empirical 

tests of GCDF would benefit from a combination of EEG and EMG recordings. Although 

the application of a low-pass filter during EEG signal processing precludes a precise 

test of the Kalman-Bucy filter hypothesis at the motor preparation level, averaged model 

trajectories at decision making and motor preparation levels computed from best fitting 

parameters could be compared to CPP and effector-selective motor preparation EEG 

activities, respectively. Some parameters of the model could also be constrained to match 

corresponding electrical signatures (Kelly et al., 2021).

Additional constraints to GCDF could also arise from a more detailed analysis of partial 

EMG bursts at the motor execution level. Some trials contain more than one partial burst 

during PMT, and these additional bursts could be considered in the modeling. In particular, 

the co-occurrence of two partial bursts in left and right EMG channels would suggest 

some degree of independence between accumulators. We note, however, that more detailed 

EMG analyses entail an increased sensitivity to potentially artifactual electrical activities. In 

addition, partial EMG bursts might be followed by a refractory period. Consequently, the 

analysis and modeling of trials with multiple partial bursts represent an important challenge 

for future work.

Beyond the basic mechanisms that drive the time course of decision making, motor 

preparation, and motor execution processes, we believe that future developments of GCDF 

would benefit from model-based investigations of more complex relationships between 

decision and motor processes. For example, decisions are often taken well before being 

expressed behaviorally. This scenario is involved when voters have to choose a candidate. 

It is currently outside the scope of GCDF, as the model does not specify the relationship 

between memory and decision/motor processes. The choice might be categorically retrieved 

from memory and transmitted to the motor system. Consequently, effector-selective motor 

preparation EEG activities and EMG signals should not be modulated by the quality of 

evidence. However, this hypothetical processing scheme may vary as a function of the 

temporal delay between decision and motor processes and foreknowledge of the stimulus-

response mapping (Twomey et al., 2016).

Another scenario that deserves additional scrutiny concerns continuous movement reports. 

Similar to EMG findings, reaching trajectories are modulated by perceptual and cognitive 

factors (e.g., Buc Calderon et al., 2015; Kinder et al., 2022; Song and Nakayama, 2009; 

Sullivan et al., 2015). However, the application of GCDF to choice reaching tasks is not 

straightforward. Reaching movements engage a complex pattern of neuromuscular activity, 

making EMG recordings and analyses challenging. One way to reduce this complexity is to 
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model reaching movements at the level of kinematic motor primitives, hypothetical building 

blocks that can be combined to construct motion (for reviews, see Flash and Hochner, 

2005; Giszter, 2015; Latash, 2020). Despite their apparent continuity, reaching movements 

appear to be composed of discrete submovements. Friedman et al. (2013) hypothesized 

that an intermittent motor control process probes the state of accumulated evidence at 

discrete time points to determine submovements and showed good fits of this model to arm 

movement trajectories in a variant of the random dot motion task. The relationship between 

this intermittent motor control process, motor preparation, and EMG activity remains to be 

elucidated.

To conclude, the present EMG investigations in choice RT tasks add to a growing body 

of behavioral and neurophysiological evidence that suggests that the motor system can 

have systematic effects that are computationally related to central decision processes. These 

effects are important to complete the story of how our choices are reflected in our actions. 

The proposed GCDF offers a new framework to understand this relationship.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Architecture of the gated cascade diffusion model with a filtering mechanism at the 
motor preparation level (GCDF)
Note. In this trial, the model predicts a right response and a partial EMG burst in the right 

EMG channel. See text for details. EMG = electromyographic; PMT = premotor time; MT = 

motor time; RT = reaction time. See the online article for the color version of this figure.
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Figure 2. Partial EMG Burst Statistics in a Random Dot Motion Task With Varying Levels of 
Motion Coherence and Model Predictions
Note. (A) Proportion of correct trials containing at least one partial EMG burst during 

PMT (upper plot) and mean latency of the first partial burst (lower plot) averaged across 

subjects as a function of motion coherence. Observed data are shown as black dots, and 

GCD predictions are shown as red crosses. (B) GCDF simulations, with varying levels of 

leak λ and drift rate v. Apart from the leak parameter, simulations used the best fitting GCD 

parameters averaged across subjects reported by Servant et al. (2021) and 100,000 simulated 

trials per condition. GCD = gated cascade diffusion model; GCDF = gated cascade diffusion 

model with a filtering mechanism at the motor preparation level; PMT = premotor time; 

EMG = electromyographic. See the online article for the color version of this figure.
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Figure 3. Model Selection Statistics for Experiments 1–4
Note. Panels (A)–(D) correspond to Experiments 1–4. AIC = Akaike information criterion; 

BIC = Bayesian information criterion; GCD = gated cascade diffusion model; GCDF = 

gated cascade diffusion model with a filtering mechanism at the motor preparation level. See 

the online article for the color version of this figure.
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Figure 4. Trajectories of Decision Making x(t) and Motor Preparation y(t) Variables Computed 
From the Full GCDF Using Best Fitting Parameters Averaged Across Subjects From 
Experiments 1–4
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Figure 5. Data From a Random Dot Motion Task With Varying Levels of Motion Coherence 
(Black) Plotted Against Predictions From the Full GCDF (Red) and the Full GCD (Green)
Note. Model predictions are computed from best fitting parameters, using 100,000 simulated 

trials per condition. The six panels (A)–(F) display different aspects of the data. (A) Mean 

PMT (y-axis, upper plot) and mean MT (y-axis, lower plot) in correct trials as a function 

of motion coherence (x-axis) averaged across subjects. (B) Quantile probability functions 

averaged across subjects for each motion coherence condition, constructed by plotting PMT 

quantiles (.1, .3, .5, .7, .9; y-axis, upper plot) and MT quantiles (.1, .3, .5, .7, .9; y-axis, 

lower plot) of the distributions of correct and incorrect responses against the corresponding 

response type proportion (x-axis). The five PMT and MT quantiles for incorrect responses 

in a given condition are displayed if each subject made at least 10 errors (coherence 

conditions 0, .05, and .08 fulfilled this requirement). (C) Proportion of each of the six 

trial types described in the introduction section of this experiment (pureC = pure-correct 

trial, CC = correct-correct trial, IC = incorrect-correct trial, pureI = pure-incorrect trial, II 

= incorrect-incorrect trial, CI = correct-incorrect trial) for each condition averaged across 

subjects. (D) Proportion of correct trials featuring at least one partial EMG burst during 

PMT (y-axis, upper plot) and mean latency of the first partial burst (y-axis, lower plot) 

as a function of motion coherence (x-axis) averaged across subjects. (E) MT quantiles 

(y-axis) plotted against PMT quantiles (x-axis) from correct trials for each condition 

averaged across subjects. Quantiles are computed from nine decile points. (F) Between-trial 

Pearson correlation coefficient between PMT and MT in correct trials for each condition. 

Observed data and model predictions for each individual subject are shown as scattered dots 

and crosses. Observed data and model predictions averaged across subjects are shown as 
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horizontal lines. EMG = electromyographic; GCD = gated cascade diffusion model; GCDF 

= gated cascade diffusion model with a filtering mechanism at the motor preparation level; 

MT = motor time; PMT = premotor time. See the online article for the color version of this 

figure.
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Figure 6. Data From a Numerosity Judgment Task (Black) and Predictions From the Full GCDF 
(Red) and the Full GCD (Green)
Note. The structure of each panel is similar to that of Figure 5. Model predictions 

are computed from best fitting parameters, using 100,000 simulated trials per condition. 

Quantile probability functions, shown in Panel B, incorporate PMT and MT quantiles of 

incorrect responses in a given condition if each subject made at least 10 errors (numerosity 

conditions 48 and 53 fulfilled this requirement). Panel C shows the proportion of each of 

the six trial types (pureL = pure-less trial, LL = less-less trial, GL = greater-less trial, pureG 

= pure-greater trial, GG = greater-greater trial, LG = less-greater trial) for each numerosity 

condition averaged across subjects. MT = motor time; PMT = premotor time; EMG = 

electromyographic; GCD = gated cascade diffusion model; GCDF = gated cascade diffusion 

model with a filtering mechanism at the motor preparation level. See the online article for 

the color version of this figure.
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Figure 7. Data From a Recognition Memory Task (Black) and Predictions From the Full GCDF 
(Red) and the Full GCD (Green)
Note. Conditions "old 1", "old 2", and "old 4" refer to old words studied one time, two 

times, and four times, respectively. The structure of each panel is similar to that of Figure 

5. Model predictions are computed from best fitting parameters, using 100,000 simulated 

trials per condition. Quantile probability functions, shown in Panel (B), incorporate PMT 

and MT quantiles of incorrect responses in a given condition if each subject made at least 

10 errors (condition old words studied once fulfilled this requirement). Panel C shows the 

proportion of each of the six trial types (pureO = pure-old trial, OO = old-old trial, NO 

= new-old trial, pureN = pure-new trial, NN = new-new trial, ON = old-new trial) for 

each condition averaged across subjects. MT = motor time; PMT = premotor time; EMG = 

electromyographic; GCD = gated cascade diffusion model; GCDF = gated cascade diffusion 

model with a filtering mechanism at the motor preparation level. See the online article for 

the color version of this figure.
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Figure 8. Data From a Lexical Decision Task (Black) and Predictions From the Full GCDF (Red) 
and the Full GCD (Green)
Note. The structure of each panel is similar to that of Figure 5. Model predictions 

are computed from best fitting parameters, using 100,000 simulated trials per condition. 

Quantile probability functions, shown in panel (B), incorporate PMT and MT quantiles of 

incorrect responses in a given condition if each subject made at least 10 errors (condition 

very-low frequency words fulfilled this requirement). Panel (C) shows the proportion of 

each of the six trial types (pureW = pure-word trial, WW = word-word trial, PW = 

pseudoword-word trial, pureP = pure-pseudoword trial, PP = pseudoword-pseudoword trial, 

WP = word-pseudoword trial) for each condition averaged across subjects. VLF = very-low 

frequency words; LF = low frequency words; MF = medium frequency words; HF = high 

frequency words; pseudo = pseudowords; PMT = premotor time; MT = motor time; EMG = 

electromyographic; GCD = gated cascade diffusion model; GCDF = gated cascade diffusion 

model with a filtering mechanism at the motor preparation level. See the online article for 

the color version of this figure.
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Figure 9. Neural drive predicted by GCDF in correct trials and corresponding full-wave rectified 
EMG bursts for each condition of Experiment 1 and Experiment 2
Note. Panels (A) and (B) show GCDF predictions and EMG data, respectively, in the 

random dot motion task. Panels (C) and (D) show GCDF predictions and EMG data, 

respectively, in the numerosity judgment task. Insets represent the rising slope of signals 

in each condition, estimated by linear regression in the 0–50 ms window. See text for 

additional details. EMG = electromyographic; a.u = arbitrary units; GCDF = gated cascade 

diffusion model with a filtering mechanism at the motor preparation level. See the online 

article for the color version of this figure.
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Table 2
Between-trial variability parameters from the full GCD and GCDF models averaged 
across subjects for Experiments 1-4.

Exp Model sv 1 sv 2 sv 3 sv 4 sv 5 σ 1 η 0 sx 0 sTe sTr sλ

1 GCD 0.134 0.085 0.286 0.168

1 GCDF 0.117 0.074 0.203 0.076 29.423

2 GCD 0.007 0.050 0.098 0.422 0.133

2 GCDF 0.001 0.042 0.060 0.225 0.078 82.803

3 GCD 0.439 0.427 0.426 0.274 0.065 0.327 0.113

3 GCDF 0.335 0.313 0.263 0.163 0.052 0.204 0.065 86.538

4 GCD 0.522 0.435 0.372 0.312 0.267 0.071 0.456 0.107

4 GCDF 0.334 0.266 0.208 0.195 0.122 0.057 0.350 0.075 146.702

Note. Experiment 3 (recognition memory): parameters sv1 to sv4 correspond to between-trial variability in drift rate for conditions old words 

studied one time, old words studied two times, old words studied four times, and new words respectively. Experiment 4 (lexical knowledge): 
parameters sv1 to sv5 correspond to between-trial variability in drift rate for conditions very low frequency words, low frequency words, medium 

frequency words, high frequency words, and pseudowords respectively.
Experiment 3 (recognition memory): subscripts 1-4 for parameter sv correspond to conditions old words studied one time, old words studied two 
times, old words studied four times, and new words, respectively. Experiment 4 (lexical knowledge): subscripts 1-5 for parameter sv correspond to 
conditions very-low frequency words, low frequency words, medium frequency words, high frequency words, and pseudowords, respectively. GCD 
= gated cascade diffusion model; GCDF = gated cascade diffusion model with a filtering mechanism at the motor preparation level.

Psychol Rev. Author manuscript; available in PMC 2024 August 15.


	Abstract
	Introduction
	Deciding and Acting: Traditional Views and Challenges
	Modeling the Interplay Between Decision and Motor Systems
	An Integrated Theory of Decision Making, Motor Preparation, and Motor Execution
	Model Simulations

	Experiment 1: Motion Perception
	Method
	Models and Fit Procedure


	Results
	Experiment 2: Numerical Cognition
	Results
	Behavior and EMG
	Model Fits


	Experiment 3: Recognition Memory
	Results
	Behavior and EMG
	Model Fits


	Experiment 4: Lexical Knowledge
	Results
	Behavior and EMG
	Model Fits


	Comparison Between the Neural Drive to Muscle Fibers Predicted by GCDF and Full-Wave Rectified EMG Signals
	General Discussion
	Comparisons With GCD
	Neurophysiological Implementation, Theoretical Limitations, and Possible Model Extensions

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Table 1
	Table 2

