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ABSTRACT
Background and purpose Previous studies, mostly 
focusing on the European population, have reported 
polygenic risk scores (PRSs) might achieve risk 
stratification of stroke. We aimed to examine the 
association strengths of PRSs with risks of stroke and its 
subtypes in the Chinese population.
Methods Participants with genome- wide genotypic data 
in China Kadoorie Biobank were split into a potential 
training set (n=22 191) and a population- based testing set 
(n=72 150). Four previously developed PRSs were included, 
and new PRSs for stroke and its subtypes were developed. 
The PRSs showing the strongest association with risks 
of stroke or its subtypes in the training set were further 
evaluated in the testing set. Cox proportional hazards 
regression models were used to estimate the association 
strengths of different PRSs with risks of stroke and its 
subtypes (ischaemic stroke (IS), intracerebral haemorrhage 
(ICH) and subarachnoid haemorrhage (SAH)).
Results In the testing set, during 872 919 person- years of 
follow- up, 8514 incident stroke events were documented. 
The PRSs of any stroke (AS) and IS were both positively 
associated with risks of AS, IS and ICH (p<0.05). The HR for 
per SD increment (HRSD) of PRSAS was 1.10 (95% CI 1.07 
to 1.12), 1.10 (95% CI 1.07 to 1.12) and 1.13 (95% CI 1.07 
to 1.20) for AS, IS and ICH, respectively. The corresponding 
HRSD of PRSIS was 1.08 (95% CI 1.06 to 1.11), 1.08 (95% 
CI 1.06 to 1.11) and 1.09 (95% CI 1.03 to 1.15). PRSICH 
was positively associated with the risk of ICH (HRSD=1.07, 
95% CI 1.01 to 1.14). PRSSAH was not associated with risks 
of stroke and its subtypes. The addition of current PRSs 
offered little to no improvement in stroke risk prediction 
and risk stratification.
Conclusions In this Chinese population, the association 
strengths of current PRSs with risks of stroke and its 
subtypes were moderate, suggesting a limited value for 
improving risk prediction over traditional risk factors in the 
context of current genome- wide association study under- 
representing the East Asian population.

INTRODUCTION
Stroke is one of the leading causes of death 
and disease burdens globally.1 Stroke includes 
two main subtypes, such as ischaemic stroke 

(IS) and haemorrhagic stroke (HS). The 
latter could further be divided into intracer-
ebral haemorrhage (ICH) and subarachnoid 
haemorrhage (SAH). With the accumulation 
of genomic data worldwide, the genetic back-
ground of stroke and its subtypes is gradually 
being revealed. Polygenic risk score (PRS), 
a method used to combine minor genetic 
effects across the whole genome, has been 
increasingly used in stroke research. Several 
studies based on European populations have 
developed PRSs for any stroke (AS) or IS 
and suggested their potential to improve risk 
prediction and risk stratification.2–9 The inci-
dence of stroke in China, especially ICH, is 
higher than in Western countries.1 Recently, 
a PRS for AS was developed based on the 
Chinese population and showed similar 

WHAT IS ALREADY KNOWN ON THIS TOPIC

 ⇒ Polygenic risk scores (PRSs) might achieve risk 
stratification of stroke.

 ⇒ Evidence from the East Asian population (including 
Chinese) is lacking.

WHAT THIS STUDY ADDS

 ⇒ The association strengths of current PRSs with risks 
of stroke and its subtypes were moderate in the 
Chinese population.

 ⇒ PRS for ischaemic stroke was positively associated 
with the risk of intracerebral haemorrhage.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ In the Chinese population, current PRSs might have 
limited value for improving stroke risk prediction 
over traditional risk factors.

 ⇒ Further studies are warranted to assess whether 
new PRSs based on larger genome- wide associa-
tion study or other developing methods have con-
siderable potential to translate into population health 
benefits.
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association strength in predicting the risk of IS and HS.10 
However, IS and HS might have different aetiological 
mechanisms.11–13 Different stroke subtypes also have their 
specific genetic loci.14 No study has specifically developed 
PRSs for subtypes of stroke in the Chinese population.

The present study was based on a subcohort with 
genomic data from the China Kadoorie Biobank (CKB). 
We aimed to examine the association strengths of PRSs 
with risks of stroke and its subtypes in the Chinese 
population.

METHODS
Participants
CKB is an ongoing prospective study with 512 724 partici-
pants aged 30–79 enrolled from five urban and five rural 
regions in China between 2004 and 2008. Details of the 
study have been described elsewhere.15

Among all CKB participants, there are 100 639 
participants with genome- wide genotypic data. Of 
them, 24 657 participants were selected based on a 

case–control design nested within the cohort with the 
primary aim of studying CVD (‘case–control samples’), 
which formed four matched- case- control training sets 
(figure 1A, online supplemental methods, tables 1 
and 2). The other 75 982 participants were randomly 
selected from the entire CKB cohort (‘population- 
based samples’); after excluding participants with self- 
reported coronary artery disease or stroke or transient 
ischaemic attack at baseline (n=3832), the remaining 
participants were used as a ‘testing set’ (n=72 150) 
(figure 1A, online supplemental methods).

Study design
The current study can be divided into four parts 
(figure 1B). (1) Validation of previous PRSs. Four previ-
ously reported stroke- related PRSs were selected for vali-
dation.2 4 5 10 (2) Development of new PRSs. Clumping 
and thresholding (‘C+T’) and LDpred16 were used to 
develop new PRSs for stroke and its subtypes based on 
two genome- wide association studies with large sample 

Figure 1 Overview of the present study. (A) Flow chart for the study population; (B) Study design. The current study can be 
divided into four parts: (1) validation of previous PRSs, (2) development of new PRSs, (3) identification of the optimal PRS 
for each outcome and (4) validation and evaluation of the optimal PRS for each outcome. aParticipants who had a first or 
second- degree relative in the sample (kinship coefficient φ>0.125) were removed by using PLINK 1.9. bPlease refer to online 
supplemental methods for detailed procedures of case- control matching. cSee online supplemental methods and table 
3 for details. dSee online supplemental methods and table 4 for details. AS, any stroke; C+T, clumping and thresholding; 
CAD, coronary heart disease; CKB, China Kadoorie Biobank; GWAS, genome- wide association study; ICH, intracerebral 
haemorrhage; IS, ischaemic stroke; PRS, polygenic risk score; SAH, subarachnoid haemorrhage; SSF, summary statistics file; 
TIA, transient ischaemic attack.
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sizes.14 17 (3) Identification of the optimal PRS for 
each outcome. The performances of different PRSs in 
predicting each outcome were compared in the corre-
sponding training sets. (4) Validation and evaluation 
of the optimal PRS for each outcome. We prospectively 
examined the associations between optimal PRSs and 
risks of stroke and its subtypes. We evaluated the impact 
of PRSs on the risk prediction improvement by adding 
the optimal PRS to traditional risk prediction models in 
the testing set.

Assessment of traditional stroke risk factors
The baseline questionnaire collected information on 
sociodemographic characteristics, lifestyle behaviours, 
dietary habits, and personal and family medical history.15 
Traditional stroke risk factors considered in the present 
study included sex, age, systolic and diastolic blood pres-
sure (SBP and DBP), smoking, body mass index (BMI), 
waist circumference, hypertension, diabetes and family 
history of stroke. Details on the collection and definition 
of these variables have been described in our previous 
work.18 19

Genetic data
At baseline, a 10 mL random blood sample was collected 
from each participant. Genotyping and imputation in 
this study were centrally conducted, with details provided 
in our previous study.19 20 Briefly, two custom- designed 
single nucleotide polymorphism (SNP) arrays (Affyme-
trix Axiom CKB array) were used for genotyping. Imputa-
tion was performed based on haplotypes derived from the 
1000 Genomes Project Phase 3. There were 9.54 million 
genetic variants with high reliability (online supple-
mental figure 1).

Polygenic risk scores
We searched the PGS Catalogue,21 PubMed and 
Embase. Four previous stroke PRSs were selected for 
validation analyses (online supplemental methods 
and table 3).2 4 5 10 Meanwhile, we ran gwasfilter 
to filter genome- wide association studies (GWAS) 
from the GWAS Catalogue (https://www.ebi.ac.uk/ 
gwas/).22 23 Based on ethnicity, sample size and acces-
sibility of the summary statistics file (SSF), we finally 
included one AS SSF, two SAH SSFs, two ICH SSFs 
and two IS SSFs from two large- scale GWAS (online 
supplemental methods and table 4).14 17 Similar to 
our latest research,19 we developed new PRSs by using 
two methods: clumping and thresholding (‘C+T’) and 
LDpred16 (online supplemental methods).

Ascertainment of stroke outcomes
All participants were followed up for morbidity and 
mortality since their baseline enrolment. Incident 
events were identified by linking with local disease 
and death registries and the national health insurance 
database and supplemented by active follow- up.15 In 
the testing set, only 653 (0.91%) were lost to follow- up 
before censoring on 31 December 2018. Trained staff 

blinded to baseline information coded all events 
using the International Classification of Diseases, 
10th Revision (ICD- 10). Incident stroke events during 
the follow- up were defined as I60–I64, including SAH 
(I60), ICH (I61), other nontraumatic intracranial 
haemorrhage (I62), IS (I63) and unspecified stroke 
(I64). In the testing set, the events coded as I62 and 
I64 accounted for only 0.9% (n=76) and 3.5% (n=302) 
of all incident stroke events.

Since 2014, medical records of incident stroke cases 
have been retrieved and reviewed by qualified cardio-
vascular specialists blinded to baseline information. 
According to a previous study,24 by October 2018, the 
reporting accuracy was 91.7%, 90.4% and 82.7% for IS, 
ICH and SAH24; the corresponding diagnostic accuracy 
was 93.1% (including silent lacunar infarction), 98.2% 
and 98.1%, respectively.24

Identification of the optimal PRS in the training set
In each training set, we used the conditional logistic 
regression model to measure the association of 
each PRS with the risk of the corresponding stroke 
outcome, stratified by the case–control pair, with 
the top 10 principal components of ancestry (PCA) 
and array versions as the covariates. We defined the 
optimal PRS as the PRS with the highest OR per SD, 
as our previous study did.19

Validation and evaluation of the optimal PRS in the testing set
In the testing set, we used the Cox regression model 
to measure the association of optimal PRSs with risks 
of stroke and stroke subtypes. The model was stratified 
by sex and ten study regions, with age as the time scale 
and adjusting for the top 10 PCA and array versions. We 
further adjusted for SBP, BMI and family history of stroke 
in sensitivity analyses. We evaluated the proportional 
hazards assumptions by examining Schoenfeld residuals. 
Either non- existent or minimal deviations were observed. 
In subgroup analyses, the tests for multiplicative inter-
action were performed using likelihood ratio tests by 
comparing models with and without cross- product terms 
between the stratifying variable and PRS.

To evaluate the impact of PRS on risk prediction 
improvement, we defined the ‘CKB- CVD models’ as 
the traditional risk prediction models, as our previous 
study did.19 The ‘CKB- CVD models’ distinguish risks of 
IS and haemorrhagic stroke and have good discrimina-
tion without relying on blood lipids.18 We added the PRS 
to traditional models to get a ‘PRS- enhanced model’. 
We assessed the discrimination performance by using 
Harrell’s C.25 We used the net reclassification improve-
ment (NRI) and integrated discrimination improvement 
to evaluate model reclassification before and after the 
addition of PRS.26

The study adhered to the PRS Reporting Standards and 
statement Strengthening the reporting of observational 
studies in epidemiology for cohort studies simultaneously 
(online supplemental file 2).27 28 Analyses were done with 

https://dx.doi.org/10.1136/svn-2023-002428
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Stata (V.17.0, StataCorp) and R (V.4.0.3). All statistical 
tests were two sided with α=0.05.

RESULTS
Selection of the optimal PRSs in the training sets
In this study, four 1:1 matched training sets were 
defined to identify the optimal PRS for AS (7412 
pairs), IS (3844 pairs), ICH (4296 pairs) and SAH 
(359 pairs) (figure 1, online supplemental methods). 
Among the training sets, 72.7%, 61.6%, 77.9% and 
63.8% of the participants were from rural areas in 
China; 51.9%, 50.5%, 53.4% and 38.4% of the partic-
ipants were men, respectively. Among the cases, the 
median age of disease onset (25th–75th percentile) 
was 65.3 (57.0–72.0), 64.1 (56.1–70.6), 65.9 (57.7–
73.0) and 61.0 (53.8–69.2) years, respectively. Among 
all training sets, the proportion of the control group 
using the first version of the SNP array was lower 
than that of the case group (p<0.001) (online supple-
mental table 2). The performance of PRS for AS and 
IS developed in previous studies was not better than 
that of the newly developed PRS in the present study 
(table 1, online supplemental table 5). The optimal 
PRS for AS came from the LDpred method, and the 
optimal PRS for IS, ICH and SAH came from the C+T 
method. The ORSD (95% CI) of the optimal PRSs was 
1.14 (1.10 to 1.18) for AS, 1.18 (1.13 to 1.24) for IS, 
1.10 (1.05 to 1.15) for ICH and 1.25 (1.06 to 1.47) for 
SAH (table 1, online supplemental table 5).

Associations of PRSs with stroke and its subtypes in the 
testing set
The testing set included 72 150 Chinese participants, 
of which 59.8% were women. The median age was 50.6 
years in women and 51.9 years in men. During 872 919 
person- years of follow- up (over 12 years on average), 8514 
incident stroke events were documented, including 7507 
IS, 1193 ICH and 132 SAH (table 2). The correlations 
among the optimal PRSs were weak (all correlation coef-
ficients<0.2) (online supplemental figure 2).

The PRSAS and PRSIS were both positively associated with 
risks of AS, IS and ICH (p<0.05). The HRSD (95% CIs) of 
PRSAS was 1.10 (1.07 to 1.12), 1.10 (1.07 to 1.12) and 1.13 
(1.07 to 1.20) for AS, IS and ICH, respectively. The corre-
sponding HRSD (95% CIs) of PRSIS was 1.08 (1.06 to 1.11), 
1.08 (1.06 to 1.11) and 1.09 (1.03 to 1.15) (figure 2, online 
supplemental table 6). PRSICH was positively associated 
with the risk of ICH in the whole testing set (HRSD=1.07), 
though it was not statistically significant in women (p for 
sex interaction=0.056) (figure 2C). PRSSAH was not associ-
ated with risks of any outcomes (figure 2). A strong asso-
ciation of PRSAS with the risk of SAH (HRSD=1.38, 95% CI 
1.03 to 1.87) was observed in men but not in women (p 
for sex interaction=0.055) (figure 2D).

In sensitivity analyses, the associations of PRSs with risks 
of stroke and its subtypes did not change significantly after 
additional adjustment for SBP, BMI and family history of 
stroke (online supplemental table 6). In subgroup anal-
yses, there was no strong evidence supporting a different 
association strength across subgroups for IS and ICH after 

Table 1 The optimal PRSs associated with risks of stroke and its subtypes in the training sets

Outcomes Method PRS source* No of variants ORSD (95% CI) P value Note

Any stroke (N=7412 pairs)

Previous study PGS002259 448 1.13 (1.09 to 1.16) 1.44×10–11

C+T GCST005838 (p=1×10-6, r2=0) 38 1.11 (1.07 to 1.14) 1.90×10–9

LDpred GCST005838 (ρ=0.01, Ref=1KGP- EAS) 1 017 531 1.14 (1.10 to 1.18) 3.38×10–14 Optimal

Ischaemic stroke (N=3844 pairs)

Previous study PGS000039 1 563 569 1.07 (1.01 to 1.12) 0.012

C+T GCST90018864 (p=0.02, r2=0.8) 32 158 1.18 (1.13 to 1.24) 3.55×10–11 Optimal

LDpred GCST90018864 (ρ=0.01, Ref=1KGP- EUR) 1 017 672 1.17 (1.11 to 1.23) 1.46×10–9

Intracerebral haemorrhage (N=4296 pairs)

C+T GCST90018870 (p=0.001, r2=0.2) 1326 1.09 (1.04 to 1.14) 1.37×10–4

LDpred GCST90018870 (ρ=0.1, Ref=1KGP- EUR) 1 017 664 1.10 (1.05 to 1.15) 3.09×10–5 Optimal

Subarachnoid haemorrhage (N=359 pairs)

C+T GCST90018703 (p=0.4, r2=0) 7899 1.25 (1.06 to 1.47) 9.21×10–3 Optimal

LDpred GCST90018923 (ρ=0.01, Ref=1KGP- EUR) 1 017 665 1.15 (0.98 to 1.35) 0.096

The current table only displays the optimal PRS obtained from different strategies (previous study, C+T and LDpred) for each disease 
outcome. The detailed results of all PRSs can be found in online supplemental table 7.
*'PGS’ indicates the index in the PGS Catalogue. ‘GCST’ indicates the index in the GWAS Catalogue. The information in brackets is the 
parameter used for developing the PRS.
C+T, clumping and thresholding; EAS, East Asian; EUR, European; 1KGP, 1000 Genomes Project (Phase 3); PRS, polygenic risk score; 
Ref, reference population.
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considering multiple testing (p for interaction>0.05/8) 
(online supplemental figures 3 and 4).

Addition of the optimal PRS to traditional risk prediction 
models
Based on the traditional models defined in this study, 
the addition of the PRS did not improve or only slightly 

improve the discrimination performance of the models. 
For IS, the addition of PRSAS increased Harrell’s C by 
0.0010 in men (p=0.002). For haemorrhagic stroke, the 
addition of PRSs did not influence Harrell’s C signif-
icantly (p>0.05) (figure 3). The addition of the PRS 
offered little to no improvement in stroke risk stratifica-
tion. For example, the categorical NRIs at the 10% high- 
risk threshold for ischaemic and haemorrhagic stroke 
were all not significant in both sexes (p>0.05) (online 
supplemental table 7).

DISCUSSION
Based on the largest biobank in the Chinese popula-
tion, only moderate associations were observed between 
PRSs and risks of stroke and its subtypes in this Chinese 
population, with an HRSD of about 1.10. The addition of 
current PRSs offered little to no improvement in stroke 
risk prediction and risk stratification. We also found that 
the PRSs developed from GWAS summary statistics of IS 
were positively associated with the risk of ICH.

In the present study, the associations of PRSs with risks 
of stroke and its subtypes were moderate, suggesting a 
limited value for improving risk prediction over tradi-
tional risk factors. The HRSD for PRS was usually greater 
than 1.20 in previous studies of the general population. 
A PRS for IS (PGS000039) that was developed with the 
metaGRS method and combined PRSs of 5 stroke subtypes 
and 14 stroke- related traits had an HRSD of 1.26 (95% CI 
1.22 to 1.31) in the European population.5 Another PRS 
for stroke (PGS002259) was also developed using the 
metaGRS method in a Chinese population, with the HRSD 
for stroke being 1.28 (95% CI 1.21 to 1.36).10 However, 
these two PRSs showed much weaker associations with the 
risk of stroke or IS in the present study than in previous 
studies. Since both PRSs were developed using the elas-
tic- net logistic regression, a machine learning approach, 
the potential overfitting may undermine their generalisa-
tion performance.

Table 2 Characteristics of the testing set

Women Men

No of participants 43 170 28 980

Baseline characteristics

  Age, years 50.6 (42.5–58.3) 51.9 (43.2–60.3)

  Rural areas 22 449 (52.0) 15 772 (54.4)

  Array 1 5948 (13.8) 4503 (15.5)

  Primary school and below 23 605 (54.7) 11 882 (41.0)

  Daily smokers 915 (2.1) 16 317 (56.3)

  Body mass index, kg/m2 23.6 (21.4–26.0) 23.3 (21.1–25.7)

  Waist circumference, cm 78.0 (72.0–84.5) 81.5 (74.5–88.5)

  Hypertension 14 062 (32.6) 10 653 (36.8)

  Diabetes 2477 (5.7) 1553 (5.4)

  Family history of stroke 7619 (17.6) 5075 (17.5)

Follow- up

  Follow- up time, years 12.6 (11.7–13.4) 12.4 (11.4–13.3)

  Total person- years* 529 498 343 421

  Incident events†

  Any stroke 4763 (11.0) 3751 (12.9)

  Ischaemic stroke 4254 (9.9) 3253 (11.2)

  Intracerebral haemorrhage 600 (1.4) 593 (2.0)

  Subarachnoid haemorrhage 87 (0.2) 45 (0.2)

Data are presented as n (%) or median (25th–75th percentile) unless 
otherwise specified.
*Person- years were calculated as the time from the baseline date 
to the first of the following: death, lost to follow- up or the global 
censoring date (31 December 2018).
†Only the first event was counted.

Figure 2 Associations of PRSs with risks of stroke and its subtypes. (A) AS, (B) IS, (C) ICH, (D) SAH. The PRSs reported here 
are the optimal PRSs for stroke and its subtypes in the training sets (see table 1), which were standardised (0 mean, unit SD) 
in the testing set. Cox models were stratified by sex and 10 study regions and adjusted for the top 10 principal components of 
ancestry and array versions, with age as the time scale. The number above the closed square represents the HR. The number 
of stroke events in women and men has been reported in table 2. The vertical lines indicate 95% CIs. AS, any stroke; ICH, 
intracerebral hemorrhage; IS, ischaemic stroke; PRS, polygenic risk score; SAH, subarachnoid haemorrhage.
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The incidence rate of ICH is much higher in Chinese 
than in European populations. However, non- European 
populations are under- represented in GWAS, which 
serves as the basis for PRS development. The largest 
GWAS for ICH included only 3400 ICH cases, with most 
of them from European populations.17 The present study 
attempted to develop PRS for ICH based on summary 
statistics from this GWAS. The weak associations observed 
in the present study are either explained by the difference 
in genetic background between ethnic groups or suggest 
that this GWAS may be underpowered. The stronger 
association estimate between PRS and HS risk reported 
in the previous study was likely due to the inclusion of 
PRSs for risk factors of HS (such as blood pressure) in the 
metaGRS method.10 It is worth mentioning that, in the 
present study, the PRSs directly developed from GWAS 
summary statistics of IS were also positively associated 
with the risk of ICH. Although there are differences in 
aetiology and risk factor profile between IS and ICH,11–13 
they might also have some partially shared aetiological 
mechanisms like the cerebral small- vessel disease.29

This study has the following strengths. The large sample 
size and a large number of stroke events (including IS and 
ICH) enabled us to separate powerful training sets and 
the testing set and to conduct subgroup analyses. The lost 
to follow- up rate was less than 1% at an average follow- up 
period of over 12 years in CKB. The main subtypes of 

stroke (ie, IS, ICH and SAH) were well classified, and the 
reporting and diagnostic accuracy of stroke events were 
high.24 The genotyping and imputation of genetic data 
in this study were centrally conducted through a standard 
quality control process. Genetic variants with high reli-
ability covered the whole genome well.

However, several limitations merit consideration. 
First, we did not further consider the subtypes of IS (eg, 
large- atherosclerotic stroke, cardioembolic stroke and 
small vessel stroke) as over 75% of the incident IS events 
were coded as unspecified IS (ICD- 10: I63.9), which 
precluded us from conducting more detailed analyses. 
Previous studies have suggested that there are differences 
in genetic loci of different IS subtypes.14 30 Subsequent 
studies can explore whether distinguishing IS subtypes 
can further improve the predictive ability of PRS for IS. 
Second, compared with IS and ICH, the number of SAH 
events was relatively small. Therefore, it is difficult to 
exclude chance factors for the positive results observed in 
the present study. Further studies with more SAH events 
are warranted to examine our findings. Third, the genetic 
variants with ambiguous SNP (ie, A/T, C/G) and those 
that were not found in CKB or had low imputation quality 
scores were removed during the standard quality control 
process of PRSs. This might weaken the associations 
of previous PRSs with stroke and its subtypes. Fourth, 
because information on blood lipids was not available for 

Figure 3 C statistics evaluating the performance of PRS. The traditional risk prediction models (traditional models) were 
defined as sex- specific Cox models stratified by 10 study regions, with time on study as the time scale, including models for 
ischaemic stroke (ICD- 10: I63) and models for haemorrhagic stroke (ICD- 10: I60–I62).18 Predictors included in traditional models 
were the same as the ‘CKB- CVD models’, including age, systolic and diastolic blood pressure, use of antihypertensives, current 
daily smoking, self- reported diabetes and waist circumference. Interactions between age and the other six predictors were 
also included. The 95% CIs of Harrell’s C and Harrell’s C changes were calculated by 100 bootstrap replications using the BCa 
method in Stata. CKB, China Kadoorie Biobank; CVD, Cardiovascular disease; ICD, International Classification of Disease; PRS, 
Polygenic risk score.
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the current study population, we were unable to compare 
the impacts of blood lipids and PRS on traditional 
stroke risk prediction model improvement. However, 
the addition of blood lipids may enhance the traditional 
non- laboratory- based models, as previous studies have 
shown.31 32 Therefore, adding PRS to a ‘lipid- enhanced 
model’ might lead to a more minor improvement than 
what we have observed in the present study.

CONCLUSIONS
In this Chinese population, the associations of optimal 
PRSs with risks of stroke and its subtypes were moderate, 
suggesting a limited value for improving risk prediction 
over traditional risk factors in the context of current 
GWAS under- representing the East Asian population. 
As GWAS of stroke and its subtypes progress among East 
Asians, further studies are warranted to assess whether 
new PRSs have considerable potential to translate into 
precision public health and population health benefits 
and, if so, to determine the appropriate context for their 
use.
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