
ARTICLE OPEN

Nutrition during the early life cycle

Prediction of fat-free mass in young children using bioelectrical
impedance spectroscopy
Jaz Lyons-Reid 1, Leigh C. Ward 2, José G. B. Derraik1,3,4,5, Mya Thway-Tint 6,7, Cathriona R. Monnard8, J. Manuel Ramos Nieves8,
Benjamin B. Albert1, Timothy Kenealy1,9, Keith M. Godfrey 10,11, Shiao-Yng Chan6,12 and Wayne S. Cutfield 1,13✉

© The Author(s) 2023

BACKGROUND: Bioimpedance devices are practical for measuring body composition in preschool children, but their application is
limited by the lack of validated equations.
OBJECTIVES: To develop and validate fat-free mass (FFM) bioimpedance prediction equations among New Zealand 3.5-year olds,
with dual-energy X-ray absorptiometry (DXA) as the reference method.
METHODS: Bioelectrical impedance spectroscopy (SFB7, ImpediMed) and DXA (iDXA, GE Lunar) measurements were conducted on
65 children. An equation incorporating weight, sex, ethnicity, and impedance was developed and validated. Performance was
compared with published equations and mixture theory prediction.
RESULTS: The equation developed in ~70% (n= 45) of the population (FFM [kg]= 1.39+ 0.30 weight [kg]+ 0.39 length2/
resistance at 50 kHz [cm2/Ω]+ 0.30 sex [M= 1/F= 0]+ 0.28 ethnicity [1= Asian/0= non-Asian]) explained 88% of the variance in
FFM and predicted FFM with a root mean squared error of 0.39 kg (3.4% of mean FFM). When internally validated (n= 20), bias was
small (40 g, 0.3% of mean FFM), with limits of agreement (LOA) ±7.6% of mean FFM (95% LOA: –0.82, 0.90 kg). Published equations
evaluated had similar LOA, but with marked bias (>12.5% of mean FFM) when validated in our cohort, likely due to DXA differences.
Of mixture theory methods assessed, the SFB7 inbuilt equation with personalized body geometry values performed best. However,
bias and LOA were larger than with the empirical equations (–0.43 kg [95% LOA: –1.65, 0.79], p < 0.001).
CONCLUSIONS:We developed and validated a bioimpedance equation that can accurately predict FFM. Further external validation
of the equation is required.
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INTRODUCTION
There is increasing evidence that body composition in early life is
related to later health outcomes [1–8]. However, as early child-
hood is characterized by rapid growth and changes to body
composition, gaining an understanding of the changes that occur
to fat and fat-free masses (FM and FFM) can be challenging [9].
Several longitudinal studies have described the evolution of body
composition throughout infancy, but there are limited data
describing changes from 2 to 5 years [10, 11].
At this age, few tools are capable of measuring body

composition and most are unsuitable for field use. Although
quantitative magnetic resonance (i.e., EchoMRI) is suitable for use
across the age span, it is highly specialized and costly equipment,

available at few research centers globally [12]. Other techniques,
such as air displacement plethysmography and dual-energy X-ray
absorptiometry (DXA), are more widely available but are impacted
by movement [13, 14]. At this age, compliance can be proble-
matic. There is a need for an easy-to-use technique with a short
measurement time. Bioelectrical impedance analysis (BIA), which
involves measurement of the opposition to a small alternating
electrical current as it passes through the body, offers promise as a
useful field tool [15]. However, the technique relies on the
availability of a prediction equation appropriate for the population
being studied. Bioelectrical impedance spectroscopy (BIS), which
measures impedance across a range of frequencies, can determine
body composition without prediction equations by fitting
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measured impedances to a Cole model of resistance versus
reactance to estimate resistance at zero (i.e., very low) and infinite
(i.e., very high) frequencies. Body water volumes are predicted
using a biophysical model-based approach (i.e., mixture theory)
which accounts for the non-conducting compartments of the
human body (i.e., cells) [16]. Nonetheless, population-specific
coefficients are required for this approach.
Few bioimpedance equations exist for use in early childhood

(2–5 years) [17–24]. Rush et al. [18] developed prediction
equations for FFM among a multi-ethnic cohort of New Zealand
2-year olds (n= 77) using DXA as a reference standard, but they
did not validate their equations. Ejlerskov et al. [17] developed and
validated prediction equations for FFM among 3-year olds
(n= 99); however, these equations were developed among Danish
children and may not be applicable to other ethnicities. Other
equations developed for use in early childhood include those
developed among wide age ranges [19–22] and those developed
among homogeneous Asian cohorts [23, 24]. A procedure for
adjustment of BIS coefficients has also been derived for use
among children aged over 4 years [25].
We aimed to evaluate bioimpedance in early childhood by

developing prediction equations for FFM based on DXA among
New Zealand preschool children. These equations were subse-
quently compared to the previously published equations by
Ejlerskov et al. [17] and Rush et al. [18]. Furthermore, we evaluated
whether FFM could be accurately estimated with BIS using
mixture theory prediction.

METHODS
Participants were healthy children born between April 2016 and January
2019 to New Zealand mothers participating in the Nutritional Intervention
Preconception and During Pregnancy to Maintain Healthy Glucose
Metabolism and Offspring Health (NiPPeR) study [26]. Procedures involving
human participants were approved by the Northern A Health and Disability
Ethics Committee New Zealand (15/NTA/21/). Written informed consent
was obtained from the mothers of the participants. The NiPPeR trial was
registered on 16 July 2015 (ClinicalTrials.gov NCT02509988; Universal Trial
Number U1111-1171-8056).
Comprehensive inclusion criteria for the NiPPeR study are reported in

Supplementary Table S1. Only children without congenital anomalies that
may impact body composition were included in this study, who had
weight, height, and valid BIS and DXA data collected on the same occasion
at 3.5 years (n= 65).

Anthropometry
Standing height was measured in triplicate to the nearest 0.1 cm using a
calibrated SECA 213 portable stadiometer (SECA, Hamburg, Germany).
Weight was obtained while lightly clothed using calibrated SECA 899 scales
and was measured to the nearest 100 g.

Dual-energy X-ray absorptiometry
Children were measured by trained research staff according to a
standardized procedure on a GE Lunar iDXA (enCORE v17, pediatric
mode) as detailed previously [27]. Briefly, median height and weight were
entered into the calibrated DXA machine to inform scan mode selection
and the length of the area to be scanned. The coefficient of variation from
daily block phantom calibrations over the duration of the study was 0.23%
for bone mineral density. Children were measured in light clothing,
without metal, lying supine on the measurement bed. Scans with
movement artifact were graded, with scans affected by considerable
movement artifact excluded from analyses. Else, limb reflection was used
when there was missing or duplication in either the left or right arm/leg
[28]. All body composition values are reported as whole-body estimates.

Bioelectrical impedance spectroscopy
BIS measurements were obtained using the ImpediMed SFB7 (ImpediMed,
Brisbane, Australia) as described previously [29]. Briefly, electrodes were
used to attach sense leads to the dorsum of the wrist and ankle, and
source leads to the palm at the metacarpal heads and the sole at the

metatarsal heads on the same side of the body. Most children (90%) were
measured on the left side of the body. There were no differences in mean
impedance parameters between children measured on the left versus the
right (n= 58 vs 7; all p > 0.9).
Children were measured on an examination bed with legs apart and

arms separated from the torso at a 30–45° angle. The protocol required
children to be supine for 4 min prior to measurement. In lieu of requiring
the child to fast and void their bladder prior to measurement, which would
not have been feasible, the time of last meal and last bladder void were
also recorded. Measurements were made in triplicate using the continuous
setting of the device (coefficient of variation for resistance at 50 kHz,
R50= 0.17%). Cole plots were examined to ensure data quality, and
measurements were repeated if movement occurred or if the Cole plots
were poorly fitted [30].
We considered multiple parameters for inclusion in the equations (R50;

resistance at zero kHz, R0; resistance at infinite kHz, R∞; and impedance at
the characteristic frequency, Zc); however, predictive ability was compar-
able. Therefore, we used R50 as most single-frequency BIA devices use this
frequency. This parameter was also used in the previously published
equations [17, 18]:
FFMEjlerskov gð Þ ¼ �2784:4þ 327:2L2=R50 þ 223:8Wtþ 76:8Htþ 417:6S
FFMRush kgð Þ ¼ �2:490þ 0:367L2=R50 þ 0:188Wtþ 0:077Htþ 0:273S
Abbreviations: L2/R50, impedance index at 50 kHz (cm2/Ω); Wt, weight

(kg); Ht, standing height (cm); S, sex (M= 1/F= 0).
BIS was also evaluated using mixture theory prediction. We evaluated

multiple approaches from the literature, including the default SFB7 adult
coefficients, the Moissl method [31], the original Xitron 4000B method [25],
and the Xitron Hydra method [16]. Additionally, we evaluated the SFB7
method using personalized body geometry (Kb) values, instead of the default
value (Kb= 4.3) [32]. FFM was then estimated from total body water (TBW) by
dividing TBW by age- and sex-specific hydration factors [10].

Data analyses
BIS prediction equations were developed in a manner similar to that used
among our cohort at 6 weeks and 6 months [33]. Children with valid data
were split into derivation (~70%) and validation (~30%) cohorts using a
random number generator stratifying by sex. Predictive regression
equations were developed using bi-directional stepwise multiple linear
regression analysis. Differences between the derivation and validation
cohorts were assessed using two-sample t-tests for continuous variables
and Fisher’s exact tests for categorical variables. Assumptions of multiple
linear regression were checked using scatterplots, correlation matrixes,
variance inflation factors, plots of standardized residuals against predicted
values, and Q-Q plots.
The equations were developed to predict FFM, using either simple

anthropometric equations (based on height, L [cm]) or equations based on
impedance (as the impedance index, L2/R [cm2/Ω]). In addition to height/
impedance index, weight, and sex, gestational age, birthweight z score
[34], ethnicity, time since last meal (<30min, 30 min–1 h, 1–2 h, >2 h), and
time since last bladder void (<15min, 15–30min, 30min–1.5 h, >1.5 h)
were assessed. However, with the exception of ethnicity (self-reported
maternal ethnicity—White Caucasian/Chinese/Indian/Other–collapsed into
Asian/non-Asian), the inclusion of these parameters did not improve the
predictive ability of the equations; therefore, they were disregarded.
Scale weights (Wtscale) were higher than DXA estimates of weight (+28 g

[95% CI: 0.23, 0.32], p < 0.001). Therefore, to enable the estimation of FM,
we also developed prediction equations for adjusted weight (Wtadj) using
simple linear regression [17]. FM was calculated as follows:

Wtadj ¼ 0:41þ 0:99Wtscale

FM ¼ Wtadj � FFMpred

The final anthropometry-based and impedance-based prediction
equations were applied to the validation cohort, with agreement between
estimated and reference body composition being assessed using mean
absolute percentage error (MAPE), Passing and Bablok regression
scatterplots [35], Pearson’s correlation coefficient (r), Lin’s concordance
coefficient (CCC) [36], and two one-sided tests of equivalence [37].
Bland–Altman plots were used to assess intra-individual differences [38].
Estimates of body composition from the published equations by Ejlerskov
et al. [17] and Rush et al. [18], as well as mixture theory prediction
estimates, were validated among the entire cohort using the
methods above.
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Descriptive statistics are presented as means ± SD for continuous
variables and n (%) for categorical variables. All statistical analyses were
conducted in R (version 4.3.0, R Foundation for Statistical Computing,
Vienna, Austria). Statistical significance was defined as p values <0.05.

RESULTS
Study population
Complete data were available from 65 children (Supplementary
Fig. S1): characteristics are detailed in Table 1. There were no
differences between the development (n= 45) and validation
(n= 20) cohorts (Supplementary Table S2).

Prediction of fat-free mass
Table 2 outlines the developed prediction equations for FFM and
associated model performance. Weight alone explained 73% of
the variance in FFM; however, the root mean squared error (RMSE)
was large at 0.61 kg, equivalent to 5.3% of mean FFM. The addition
of length increased the proportion of explained variance to 79%
and reduced the error to 0.53 kg. The substitution of length with
the impedance index further increased explained variance to 86%
and decreased the error to 0.42 kg (3.7% of mean FFM). The final
equations, which additionally contained sex and ethnicity,
explained 82 and 88% of the variation in FFM with errors of
0.47 and 0.39 kg (4.1 and 3.4% of mean FFM) for the
anthropometry and impedance equations, respectively.

Validation of fat-free mass equations
When the final equations were validated, the MAPE for FFM was
3.8% for the anthropometry-based equation (W+ L+ S+ E) and
was reduced to 2.8% when using the impedance-based equation
(W+ L2/R50+ S+ E). Similarly, concordance was improved for the
impedance equation (Fig. 1).
Bland–Altman analyses showed that the anthropometric

equation could predict FFM with a bias of 250 g (2.3% of mean
FFM), but with narrow limits of agreement that were equivalent to
±7.8% of mean FFM (Fig. 2). The impedance equation reduced the
bias by approximately 200 g (40 g, 0.3% of mean FFM); however,
limits of agreement were comparable at ±7.6% of mean FFM
(Fig. 2). Both equations showed no statistically significant
relationship between average FFM and the difference between
measured and predicted FFM (Fig. 2).
The equations were then used to predict FM by subtracting the

predicted FFM from the adjusted scale weight. The anthropometry
equation predicted FM with a MAPE of 10.4%, while the
impedance equation predicted FM with a lower error of 8.4%.
Concordance and correlation were also improved with the

Table 1. Characteristics of the study population.

Males Females

n (%) 25 (38.5%) 40 (61.5%)

Gestational age at birth (weeks) 39.4 ± 1.8 39.6 ± 1.4

Pre-terma 2 (8.0%) 2 (5.0%)

Term 23 (92.0%) 38 (95.0%)

Birthweight z-scoreb 0.34 ± 1.07 0.32 ± 0.99

Age at visit (days) 1244 ± 81 1225 ± 52

Scale weight (kg) 15.7 ± 2.0 15.3 ± 1.7

Weight z-scorec 0.28 ± 0.96 0.34 ± 0.84

Standing height (cm) 100.3 ± 3.4 98.6 ± 3.5

Height z-scorec 0.40 ± 0.78 0.26 ± 0.95

BMI (kg/m2) 15.5 ± 1.2 15.7 ± 1.0

BMI z-scorec 0.00 ± 0.97 0.26 ± 0.73

Fat-free massd (kg) 12.0 ± 1.4 11.1 ± 1.0

Fat massd (kg) 4.0 ± 0.9 4.5 ± 0.9

Fat massd (%) 25.1 ± 3.5 28.6 ± 3.5

Lean massd (kg) 11.4 ± 1.3 10.6 ± 1.0

Bone mineral contentd (g) 545 ± 65 517 ± 56

Resistance at 0 kHz (Ω) 786 ± 67 826 ± 76

Resistance at ∞ kHz (Ω) 597 ± 60 627 ± 64

Impedance at Fce (Ω) 694 ± 63 730 ± 69

Resistance at 50 kHz (Ω) 721 ± 65 757 ± 70

Ethnicity

White Caucasian 16 (64.0%) 30 (75.0%)

Chinese 4 (16.0%) 5 (12.5%)

South Asian 3 (12.0%) 2 (5.0%)

Other 2 (8.0%) 3 (7.5%)

Randomization group

Intervention 12 (48.0%) 20 (50.0%)

Control 13 (52.0%) 20 (50.0%)

Data are means ± SD for continuous variables and n (%) for categorical
variables.
aAverage gestational age 35.7 weeks (range: 35.0–36.4).
bINTERGROWTH-21st birthweight z-score.
cWorld Health Organization age- and sex-standardized z-score.
dWhole-body estimates from DXA.
eImpedance at the characteristic frequency (Fc).

Table 2. Multivariable linear regression analysis of weight (W), sex (S), and ethnicity (E) in combination with height (L) or the impedance index (L2/R50)
for predicting dual-energy X-ray absorptiometry fat-free mass (FFM) among the 3.5-year-old derivation cohort.

aR2 RMSE Standardized coefficients Prediction equation for FFM

W L or L2/R50 S E

All (n= 45)

W 0.726 0.609 (5.3%) 0.856*** 2.88+ 0.55W

W+ L 0.788 0.529 (4.6%) 0.501*** 0.438*** –9.19+ 0.32W+ 0.16L

W+ L+ S 0.822 0.479 (4.2%) 0.557*** 0.367*** 0.195** –7.41+ 0.36W+ 0.13L+ 0.47S

W+ L2/R50 0.864 0.423 (3.7%) 0.406*** 0.584*** 1.49+ 0.26W+ 0.44L2/R50

W+ L2/R50+ S 0.875 0.402 (3.5%) 0.458*** 0.515*** 0.122*** 1.55+ 0.30W+ 0.39L2/R50+ 0.30S

W+ L+ S+ E 0.822 0.474 (4.1%) 0.573*** 0.355** 0.200** 0.062 –7.16+ 0.37W+ 0.13L+ 0.48S+ 0.18E

W+ L2/R50+ S+ E 0.882 0.386 (3.4%) 0.464*** 0.519*** 0.125* 0.095 1.39+ 0.30W+ 0.39L2/R50+ 0.30S+ 0.28E

aR2 adjusted coefficient of determination, E ethnicity (Asian= 1, non-Asian= 0), FFM fat-free mass (kg), L standing height (cm), L2/R50 impedance index
(cm2/ Ω), RMSE root mean squared error, S sex (M= 1, F= 0), W weight (kg).
*p < 0.05, **p < 0.01, ***p < 0.001 for statistically significant standardized regression coefficient from multivariable linear regression.
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impedance compared to the anthropometry equation (Fig. 1).
Likewise, bias was reduced from –6.4% to –1.2% of mean FM, and
limits of agreement narrowed (–0.27 kg [95% LOA: –1.20, 0.67] vs
–0.05 kg [95% LOA: –0.94, 0.84]) (Fig. 2). There was no evidence of
a proportional bias, with no statistically significant relationship
between average FM and the difference between measured and
predicted FM (Fig. 2).
Two one-sided tests of equivalence confirmed these findings.

Only impedance-based estimates of FFM were considered
equivalent to DXA estimates given equivalence bounds of
±250 g (–0.04 kg [90% CI: –0.21, 0.13], p= 0.022 vs +0.26 kg
[90% CI: –0.43, –0.08], p= 0.52, respectively). However, neither
impedance- nor anthropometry-based FM estimates were con-
sidered equivalent to DXA considering equivalence bounds of
±100 g (+0.05 kg [90% CI: –0.13, 0.23], p= 0.32 and +0.27 kg [90%
CI: 0.08, 0.45], p= 0.93, respectively).

Comparison to previously published equations
When the equations by Ejlerskov et al. [17] and Rush et al. [18]
were validated in our cohort, the MAPE were large at 12.6% and
14.7%, respectively. Passing–Bablok regression scatterplots
revealed that this error was due to the overestimation of FFM
(Supplementary Fig. S2). While concordances were poor at 0.565
and 0.488, correlations were comparable to our equations
(Supplementary Fig. S2). Bland–Altman analyses showed large
biases of 1.4 kg (12.5%) and 1.7 kg (14.6%), with limits of
agreement comparable to our equations at ±6.7% (Supplementary
Fig. S3). There was no evidence to suggest that the relationship

between measured and predicted FFM was influenced by body
size (i.e., average FFM; Supplementary Fig. S3).
FM estimates were derived by subtracting FFM from scale

weight (adjusted scale weight for Ejlerskov et al. [17]). MAPE were
large for estimates of FM; they were improved when using the
Ejlerskov equation compared to the Rush equation (38.5% vs
46.3%). Although correlations were comparable, concordance was
improved for the Ejlerskov equation (Supplementary Fig. S2). Both
equations underestimated FM, with the Rush equation doing so to
a greater extent (–37.6% vs –45.0%). Nonetheless, both equations
predicted FM with limits of agreement of approximately ±17% of
mean FM and with no proportional bias (Supplementary Fig. S3).

Mixture theory prediction
Each of the methods assessed predicted FFM with biases and
limits of agreement that were larger than those observed when
using the empirically derived equations (Table 3). Nonetheless, the
default SFB7 coefficients, when combined with personalized Kb
values, estimated FFM with a bias of less than 4% (–0.43 kg) and
limits of agreement that were ±10.7% of mean FFM; however, a
significant proportional bias was observed, with FFM being under-
and overestimated among those with low and high levels of FFM,
respectively (Table 3).

DISCUSSION
This study developed and validated prediction equations for FFM
using bioimpedance among a cohort of 3.5-year olds. Prediction

Fig. 1 Scatterplots of predicted and reference fat-free mass (FFM) and fat mass (FM). Scatterplots of 1 fat-free mass (kg) and 2 fat mass (kg)
of 3.5-year-old validation males (black) and females (red) (n= 20) measured with dual-energy X-ray absorptiometry and from prediction
equations based on weight (W), sex (S), ethnicity (E), and A standing height (L) or B impedance index (L2/R50). Dashed lines are the lines of
identity. Individual points below the line of identity indicate an underestimation, while those above are an overestimation. CCC is Lin’s
concordance correlation coefficient and r is Pearson’s correlation coefficient.
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equations incorporating bioimpedance performed better than
simple equations based on weight, height, sex, and ethnicity. The
final bioimpedance equation estimated FFM with a bias of 0.3%
and limits of agreement of ±7.6% of mean FFM. The performance
of our equations was similar to that of the previously published
equations. However, when validated in our cohort, there were
substantial biases for both published equations; FFM was
overestimated by more than +12.5% of mean FFM. Each of the
empirical equations assessed could more accurately estimate FFM

at the individual level (i.e., narrower limits of agreement) than
mixture theory prediction.
Rush et al. [18] developed the first bioimpedance prediction

equation for FFM among young children using single-frequency
BIA (ImpediMed BIM4) and DXA as the reference. The standard
error of the estimate for the equation was 0.5 kg (equivalent to
4.6% of mean FFM), although they did not internally validate the
equations. Nonetheless, the performance of their equation was
markedly improved in comparison to previously published

Fig. 2 Bland-Altman plots of predicted and reference fat-free mass (FFM) and fat mass (FM). Bland–Altman plots comparing 1 fat-free mass
(FFM) (kg) and 2 fat mass (FM) (kg) of 3.5-year-old validation males (black) and females (red) (n= 20) measured with dual-energy X-ray
absorptiometry (DXA) and from prediction equations based on weight (W), sex (S), ethnicity (E), and A standing height (L) or B impedance
index (L2/R50).

Table 3. Validation of mixture theory prediction of fat-free mass (FFM) against dual-energy X-ray absorptiometry (DXA) among a cohort of 3.5-year
olds (n= 65).

MAPE (%) CCC Bland–Altman analysis

Biasa SDa 95% LOA p

SFB7 default 7.00 0.777 (0.687, 0.843) 0.74 (6.5%) 0.67 (5.9%) –0.57, 2.05 <0.001

SFB7 and personalized Kb 5.55 0.857 (0.790, 0.904) –0.43 (–3.8%) 0.63 (5.5%) –1.65, 0.79 <0.001

Moissl 7.44 0.740 (0.636, 0.818) 0.77 (6.7%) 0.74 (6.5%) –0.68, 2.21 0.001

Xitron Hydra 18.23 0.404 (0.305, 0.494) –2.05 (–18.0%) 0.61 (5.3%) –3.25, –0.86 0.01

Xitron 4000B 12.55 0.567 (0.459, 0.658) –1.41 (–12.3%) 0.55 (4.9%) –2.49, –0.32 0.073

Xitron 4000B Ellis adjustments 13.55 0.541 (0.433, 0.633) –1.52 (–13.4%) 0.59 (5.2%) –2.69, –0.36 0.006

MAPE mean absolute percentage error, CCC Lin’s concordance correlation coefficient, LOA limits of agreement (±1.96 SD).
aValues are absolute (kg) and as a percentage of mean fat-free mass (11.4 kg) in parentheses.
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prediction equations [19, 21, 22], which each predicted FFM with
biases of ≥1 kg and limits of agreement greater than ±1 kg when
validated in their cohort [18]. Each of the published equations
validated was developed among cohorts with wide age ranges,
and varying associations between FFM and the impedance
index according to age have previously been described [20].
When the Rush equation was externally validated by Ejlerskov

et al. [17], the bias was low at 1.8% of mean FFM, and the limits of
agreement were narrow (±7.2% of mean FFM). However, the bias
was large for FM estimates (–12.3% of mean FM) and limits of
agreement wider (±29.4% of mean FFM) [17]. Results were broadly
comparable when Ejlerskov et al. [17] internally validated their
bioimpedance equations, with limits of agreement of ±7.0% for
FFM and ±28.8% for FM.
When we validated published equations in our cohort,

substantial bias was evident for FFM (>12.5% of mean FFM);
however, limits of agreement were narrow at approximately ±7%.
The bias may be reflective of the different DXA devices used by
the studies. Both Ejlerskov et al. [17] and Rush et al. [18] used a GE
Lunar Prodigy as the reference. In contrast, we used a GE Lunar
iDXA. Previously, we have reported substantial differences
between body composition estimates from the Prodigy and the
iDXA [27]. When examining limits of agreement, which reflect the
degree of variation at the individual level, results were largely
comparable. For example, when the NiPPeR equation was
internally validated, FFM was predicted with limits of agreement
that were ±7.6% of mean FFM. The Ejlerskov and Rush equations
both predicted FFM with comparable limits of agreement of
±6.7% of mean FFM.
Previously, mixture theory coefficients appropriate for adults have

been shown to be inapplicable for use in infancy [33, 39]; however,
mixture theory prediction has seldom been evaluated in a cohort of
healthy children. Ellis et al. [25] assessed the default Xitron 4000B
method among a cohort of children (4–18 years, n= 347) and found
that BIS estimates of TBW were inaccurate. Using a sub-set of their
data (n= 116), they developed adjusted constants for this age group;
although bias decreased, limits of agreement remained large at
±11–17% of mean TBW following recalibration. In our cohort, limits
of agreement were narrower than that previously reported, though
they were larger than was observed with the empirically derived
equations. Notably, the default equation built into the SFB7
overestimated FFM by 0.74 kg, with limits of agreement that were
±11.5% of mean FFM. The inclusion of personalized Kb factors only
marginally improved prediction.
Strengths of this study include the development of bioimpe-

dance prediction equations in young children using the GE Lunar
iDXA and the validation of published equations developed using
the GE Lunar Prodigy. Our results confirm that the equations have
similar performance, though differences exist in mean FFM
estimates according to the DXA model used as the reference.
We also evaluated whether the inclusion of additional covariates
(ethnicity, gestational age, birthweight z score, time since the last
meal, and time since the last bladder void) would improve the
prediction of FFM. While we did not assess whether additional
anthropometric measurements (e.g., skinfold thicknesses or
circumferences) would improve prediction, previous reports
showed minimal improvements [17, 33]. Further limitations
include a reduced sample size (after setting aside a third of
participants for validation) which may have impacted our ability to
assess the contribution of the aforementioned covariates. How-
ever, the final prediction equation explained 88% of the variance
in FFM, with weight and the impedance index explaining the
majority of the variance (β: 0.464 and 0.519, respectively). In
addition, the study is limited by the use of DXA rather than a
multicomponent model gold standard as the reference, which
may have led to the overestimation of FM [40].
In summary, our prediction equation based on weight, the

impedance index, and sex estimated FFM and FM with biases

of less than 2%. Limits of agreement were acceptably narrow at
less than ±8% of mean FFM, but wider for FM. Body
composition estimates were improved when using the impe-
dance compared to the anthropometry-based equations.
Although previously published equations had similar
individual-level performance, substantial bias was evident,
highlighting the importance of considering the reference
standard used, particularly when longitudinal analyses are
being conducted. Our equations provide an easy method for
estimating body composition in preschool children; however,
further external validation of the equations is recommended.

DATA AVAILABILITY
Data described in the manuscript, code book, and analytic code will not be made
available because the participants did not consent to open access data sharing and
this is an ongoing longitudinal study in which there will be further future analyses
conducted.

CODE AVAILABILITY
Codes for analyses are available on reasonable request from the corresponding
author.

REFERENCES
1. Simmonds M, Llewellyn A, Owen CG, Woolacott N. Predicting adult obesity from

childhood obesity: a systematic review and meta-analysis. Obes Rev.
2016;17:95–107.

2. Geserick M, Vogel M, Gausche R, Lipek T, Spielau U, Keller E, et al. Acceleration of
BMI in early childhood and risk of sustained obesity. N Engl J Med.
2018;379:1303–12.

3. de Fluiter KS, van Beijsterveldt IALP, Breij LM, Acton D, Hokken-Koelega ACS.
Association between fat mass in early life and later fat mass trajectories. JAMA
Pediatr. 2020;174:1141–8.

4. Wibaek R, Vistisen D, Girma T, Admassu B, Abera M, Abdissa A, et al. Body mass
index trajectories in early childhood in relation to cardiometabolic risk profile and
body composition at 5 years of age. Am J Clin Nutr. 2019;110:1175–85.

5. Berglund NR, Lewis JI, Michaelsen KF, Molgaard C, Renault KM, Carlsen EM.
Birthweight z-score and fat-free mass at birth predict body composition at 3
years in Danish children born from obese mothers. Acta Paediatr.
2022;111:1427–34.

6. van Beijsterveldt IALP, de Fluiter KS, Breij LM, van der Steen M, Hokken-Koelega
ACS. Fat mass and fat-free mass track from infancy to childhood: new insights in
body composition programming in early life. Obesity (Silver Spring).
2021;29:1899–906.

7. Ong YY, Tint MT, Aris IM, Yuan WL, Chen LW, Fortier MV, et al. Newborn body
composition and child cardiovascular risk markers: a prospective multi-ethnic
Asian cohort study. Int J Epidemiol. 2022;51:1835–46.

8. Pike KC, Inskip HM, Robinson SM, Cooper C, Godfrey KM, Roberts G, et al. The
relationship between maternal adiposity and infant weight gain, and childhood
wheeze and atopy. Thorax. 2013;68:372.

9. Toro-Ramos T, Paley C, Pi-Sunyer FX, Gallagher D. Body composition during fetal
development and infancy through the age of 5 years. Eur J Clin Nutr.
2015;69:1279–89.

10. Fomon SJ, Haschke F, Ziegler EE, Nelson SE. Body composition of reference
children from birth to age 10 years. Am J Clin Nutr. 1982;35:1169–75.

11. Henriksson H, Eriksson B, Forsum E, Flinke E, Henriksson P, Löf M. Longitudinal
assessment of body composition in healthy Swedish children from 1 week until 4
years of age. Eur J Clin Nutr. 2017;71:1345–52.

12. Chen LW, Tint MT, Fortier MV, Aris IM, Shek LP, Tan KH, et al. Body composition
measurement in young children using quantitative magnetic resonance: a
comparison with air displacement plethysmography. Pediatr Obes.
2018;13:365–73.

13. Fields DA, Allison DB. Air-displacement plethysmography pediatric option in 2-6
years old using the four-compartment model as a criterion method. Obesity
(Silver Spring). 2012;20:1732–7.

14. Koo WW, Hockman EM, Hammami M. Dual energy X-ray absorptiometry mea-
surements in small subjects: conditions affecting clinical measurements. J Am
Coll Nutr. 2004;23:212–9.

15. Orsso CE, Gonzalez MC, Maisch MJ, Haqq AM, Prado CM. Using bioelectrical
impedance analysis in children and adolescents: pressing issues. Eur J Clin Nutr.
2022;76:659–65.

J. Lyons-Reid et al.

877

European Journal of Clinical Nutrition (2024) 78:872 – 879



16. Ward LC, Isenring E, Dyer JM, Kagawa M, Essex T. Resistivity coefficients for body
composition analysis using bioimpedance spectroscopy: effects of body dom-
inance and mixture theory algorithm. Physiol Meas. 2015;36:1529–49.

17. Ejlerskov KT, Jensen SM, Christensen LB, Ritz C, Michaelsen KF, Molgaard C.
Prediction of fat-free body mass from bioelectrical impedance and anthro-
pometry among 3-year-old children using DXA. Sci Rep. 2014;4:3889.

18. Rush EC, Bristow S, Plank LD, Rowan J. Bioimpedance prediction of fat-free mass
from dual-energy X-ray absorptiometry in a multi-ethnic group of 2-year-old
children. Eur J Clin Nutr. 2013;67:214–7.

19. Schaefer F, Georgi M, Zieger A, Schärer K. Usefulness of bioelectric impedance
and skinfold measurements in predicting fat-free mass derived from total body
potassium in children. Pediatr Res. 1994;35:617–24.

20. Montagnese C, Williams JE, Haroun D, Siervo M, Fewtrell MS, Wells JCK. Is a single
bioelectrical impedance equation valid for children of wide ranges of age,
pubertal status and nutritional status? Evidence from the 4-component model.
Eur J Clin Nutr. 2013;67:S34–S9.

21. Kushner RF, Schoeller DA, Fjeld CR, Danford L. Is the impedance index (ht2/R)
significant in predicting total body water? Am J Clin Nutr. 1992;56:835–9.

22. Fjeld CR, Freundt-Thurne J, Schoeller DA. Total body water measured by 18O
dilution and bioelectrical impedance in well and malnourished children. Pediatr
Res. 1990;27:98–102.

23. Masuda T, Komiya S. A prediction equation for total body water from bioelectrical
impedance in Japanese children. J Physiol Anthropol Appl Human Sci. 2004;23:35–9.

24. Nguyen PH, Young MF, Khuong LQ, Ramakrishnan U, Martorell R, Hoffman DJ.
Development of population-specific prediction equations for bioelectrical
impedance analyses in Vietnamese children. Br J Nutr. 2020;124:1345–52.

25. Ellis KJ, Shypailo RJ, Wong WW. Measurement of body water by multifrequency
bioelectrical impedance spectroscopy in a multiethnic pediatric population. Am J
Clin Nutr. 1999;70:847–53.

26. Godfrey KM, Cutfield W, Chan SY, Baker PN, Chong YS, NiPPeR Study Group.
Nutritional Intervention Preconception and During Pregnancy to Maintain Heal-
thy Glucose Metabolism and Offspring Health ("NiPPeR"): study protocol for a
randomised controlled trial. Trials. 2017;18:131.

27. Lyons-Reid J, Kenealy T, Albert BB, Ward KA, Harvey N, Godfrey KM, et al. Cross-
calibration of two dual-energy X-ray absorptiometry devices for the measure-
ment of body composition in young children. Sci Rep. 2022;12:13862.

28. Shepherd JA, Sommer MJ, Fan B, Powers C, Stranix-Chibanda L, Zadzilka A, et al.
Advanced analysis techniques improve infant bone and body composition mea-
sures by dual-energy X-ray absorptiometry. J Pediatr. 2017;181:248–53.e3.

29. Lyons-Reid J, Ward LC, Tint M-T, Kenealy T, Godfrey KM, Chan S-Y, et al. The
influence of body position on bioelectrical impedance spectroscopy measure-
ments in young children. Sci Rep. 2021;11:10346.

30. Brantlov S, Ward LC, Jodal L, Rittig S, Lange A. Critical factors and their impact on
bioelectrical impedance analysis in children: a review. J Med Eng Technol.
2017;41:22–35.

31. Moissl UM, Wabel P, Chamney PW, Bosaeus I, Levin NW, Bosy-Westphal A, et al.
Body fluid volume determination via body composition spectroscopy in health
and disease. Physiol Meas. 2006;27:921–33.

32. Ward LC, Wells JCK, Lyons-Reid J, Tint MT. Individualized body geometry cor-
rection factor (KB) for use when predicting body composition from bioimpedance
spectroscopy. Physiol Meas. 2022;43.

33. Lyons-Reid J, Ward LC, Derraik JGB, Tint MT, Monnard CR, Ramos Nieves JM, et al.
Prediction of fat-free mass in a multi-ethnic cohort of infants using bioelectrical
impedance: Validation against the PEA POD. Front Nutr. 2022;9:980790.

34. Villar J, Ismail LC, Victora CG, Ohuma EO, Bertino E, Altman DG, et al. International
standards for newborn weight, length, and head circumference by gestational
age and sex: the Newborn Cross-Sectional Study of the INTERGROWTH-21st
Project. Lancet. 2014;384:857–68.

35. Passing H, Bablok W. A new biometrical procedure for testing the equality of
measurements from two different analytical methods. Application of linear
regression procedures for method comparison studies in clinical chemistry, Part I.
J Clin Chem Clin Biochem. 1983;21:709–20.

36. Lin LIK. A concordance correlation coefficient to evaluate reproducibility. Bio-
metrics. 1989;45:255–68.

37. Dixon PM, Saint-Maurice PF, Kim Y, Hibbing P, Bai Y, Welk GJ. A primer on the use
of equivalence testing for evaluating measurement agreement. Med Sci Sports
Exerc. 2018;50:837–45.

38. Bland JM, Altman DG. Statistical methods for assessing agreement between two
methods of clinical measurement. Lancet. 1986;1:307–10.

39. Collins CT, Reid J, Makrides M, Lingwood BE, McPhee AJ, Morris SA. Prediction of
body water compartments in preterm infants by bioelectrical impedance spec-
troscopy. Eur J Clin Nutr. 2013;67:S47–53.

40. Watson LPE, Carr KS, Orford ER, Venables MC. The importance of hydration in body
composition assessment in children aged 6-16 years. J Clin Densitom. 2020;24:481–9.

ACKNOWLEDGEMENTS
The authors would like to acknowledge Auckland NiPPeR research staff Christine
Creagh, Marysia Depczynski, and Sarah Wilkins for their contribution to this
study. JL-R was supported by a University of Auckland Doctoral Scholarship. KMG
was supported by the National Institute for Health Research (NIHR Senior
Investigator [NF-SI-0515-10042] and NIHR Southampton Biomedical Research
Center [IS-BRC-1215-20004]), British Heart Foundation (RG/15/17/3174) and the
European Union (Erasmus+ Programme ImpENSA 598488-EPP-1-2018-1-DE-
EPPKA2-CBHE-JP). S-YC was supported by a Singapore NMRC Clinician Scientist
Award (NMRC/CSA-INV/0010/2016; MOH-CSAINV19nov-0002).

AUTHOR CONTRIBUTIONS
KMG and S-YC conceptualized and designed the study, planned the statistical
analyses, and critically reviewed and revised the manuscript. LCW prepared the
bioimpedance data for analysis, planned the statistical analyses, and critically
reviewed and revised the manuscript. MT-T planned the statistical analyses, and
critically reviewed and revised the manuscript. TK, BBA, JMRN, and CRM contributed
to the statistical analyses and critically reviewed and revised the manuscript. JGBD
planned and contributed to the statistical analyses and wrote the manuscript with
input from all other authors. WSC conceptualized and designed the study, planned
and contributed to the statistical analyses, and wrote the manuscript with input from
all other authors. JL-R prepared the bioimpedance data for analysis, planned and
contributed to the statistical analyses, and wrote the manuscript with input from all
other authors. All authors approved the final manuscript as submitted and agree to
be accountable for all aspects of the work.

FUNDING
Public good funding for the investigator-led NiPPeR study is through the UK Medical
Research Council (as part of an MRC award to the MRC Lifecourse Epidemiology Unit
(MC_UU_12011/4)); the Singapore National Research Foundation, National Medical
Research Council (NMRC, NMRC/TCR/012-NUHS/2014); the National University of
Singapore (NUS) and the Agency of Science, Technology and Research (as part of the
Growth, Development and Metabolism Programme of the Singapore Institute for
Clinical Sciences (SICS) (H17/01/a0/005); and as part of Gravida, a New Zealand
Government Centre of Research Excellence. Funding for aspects of the NiPPeR study
has been provided by Société Des Produits Nestlé S.A under a Research Agreement
with the University of Southampton, Auckland UniServices Ltd, SICS, National
University Hospital Singapore PTE Ltd, and NUS. For the purpose of Open Access, the
author has applied a Creative Commons Attribution (CC BY) licence to any Author
Accepted Manuscript version arising from this submission. Open Access funding
enabled and organized by CAUL and its Member Institutions.

COMPETING INTERESTS
LCW provides consultancy services to ImpediMed Ltd (a manufacturer of devices for
bioelectrical impedance analysis). ImpediMed Ltd was not involved in the inception
and conduct of this research, or in the writing of this manuscript. CRM and JMRN are
employees of Société des Produits Nestlé SA. KMG, S-YC, and WSC are part of an
academic consortium that has received grants from Société Des Produits Nestlé S.A.
All other authors declare no conflicts of interest.

ETHICAL APPROVAL
Procedures involving human participants were approved by the Northern A Health
and Disability Ethics Committee New Zealand (15/NTA/21).

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41430-023-01317-4.

Correspondence and requests for materials should be addressed to Wayne S.
Cutfield.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

J. Lyons-Reid et al.

878

European Journal of Clinical Nutrition (2024) 78:872 – 879

https://doi.org/10.1038/s41430-023-01317-4
http://www.nature.com/reprints
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

J. Lyons-Reid et al.

879

European Journal of Clinical Nutrition (2024) 78:872 – 879

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Prediction of fat-free mass in young children using bioelectrical impedance spectroscopy
	Introduction
	Methods
	Anthropometry
	Dual-energy X-ray absorptiometry
	Bioelectrical impedance spectroscopy
	Data analyses

	Results
	Study population
	Prediction of fat-free mass
	Validation of fat-free mass equations
	Comparison to previously published equations
	Mixture theory prediction

	Discussion
	References
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Ethical approval
	ADDITIONAL INFORMATION




