
Received: 1 June 2023 Revised: 18 August 2023 Accepted: 5 September 2023

DOI: 10.1111/jmi.13227

TH EMED IS SUE ART ICLE

ModularImageAnalysis (MIA): Assembly of modularised
image and object analysis workflows in ImageJ

Stephen J. Cross1 Jordan D. J. R. Fisher2,3 Mark A. Jepson1

1Wolfson Bioimaging Facility, University
of Bristol, Bristol, UK
2Department of Computer Science,
University of Warwick, Coventry, UK
3Vivedia Ltd., Unit 29, Sheffield, UK

Correspondence
Stephen J. Cross, Wolfson Bioimaging
Facility, University of Bristol, Bristol BS8
1TD, UK.
Email: stephen.cross@bristol.ac.uk

Funding information
Elizabeth Blackwell Institute for Health
Research, University of Bristol; Wellcome
Trsut ISSF, Grant/Award Number:
105612/Z/14/Z

[Correction added on 13 October 2023,
after first online publication: Grant code
added.]

Abstract
ModularImageAnalysis (MIA) is an ImageJ plugin providing a code-free graph-
ical environment in which complex automated analysis workflows can be
constructed and distributed. The broad range of included modules cover all
stages of a typical analysis workflow, from image loading through image process-
ing, object detection, extraction of measurements, measurement-based filtering,
visualisation and data exporting.MIAprovides out-of-the-box compatibilitywith
many advanced image processing plugins for ImageJ including Bio-Formats,
DeepImageJ, MorphoLibJ and TrackMate, allowing these tools and their outputs
to be directly incorporated into analysis workflows. By default, modules sup-
port spatially calibrated 5D images, meaning measurements can be acquired in
both pixel and calibrated units. A hierarchical object relationship model allows
for both parent-child (one-to-many) and partner (many-to-many) relationships
to be established. These relationships underpin MIA’s ability to track objects
through time, represent complex spatial relationships (e.g. topological skeletons)
and measure object distributions (e.g. count puncta per cell). MIA features dual
graphical interfaces: the ‘editing view’ offers access to the full list of modules
and parameters in the workflow, while the simplified ‘processing view’ can be
configured to display only a focused subset of controls. All workflows are batch-
enabled by default, with image files within a specified folder being processed
automatically and exported to a single spreadsheet. Beyond the included mod-
ules, functionality can be extended both internally, through integration with the
ImageJ scripting interface, and externally, by developing third-party Java mod-
ules that extend the core MIA framework. Here we describe the design and
functionality of MIA in the context of a series of real-world example analyses.

KEYWORDS
automated analysis, bioimage analysis, image analysis, ImageJ,modular analysis, reproducible
analysis

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2023 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.

J. Microsc. 2023;1–11. wileyonlinelibrary.com/journal/jmi 1

https://orcid.org/0000-0003-3565-0479
mailto:stephen.cross@bristol.ac.uk
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/jmi


2 CROSS et al.

1 INTRODUCTION

In the field of bioimage analysis, few tools have gained
the widespread popularity of ImageJ and commonly used
variants such as Fiji.1–3 This prolific uptake can in a large
part be attributed to ImageJ’s open-source nature and easy
extensibility viamacros and plugins. Over the past 25 years,
the catalogue of available plugins has endowed the ImageJ
ecosystem with a vast and comprehensive functional-
ity, covering features as diverse as object detection and
tracking,4,5 tiled image stitching and drift correction,6–8
morphometric analysis,9 3D rendering10,11 and, recently,
integration with deep-learning frameworks.12,13 By provid-
ing a singular environment in which these tools can work
together, ImageJ very much becomes more than a sum of
its parts.
Despite ImageJ’s versatility, construction and distribu-

tion of reproducible and automated workflows remains
challenging, as users generally interact with plugins via
either graphical user interfaces or programmatically with
macros and scripts. While graphical user interfaces may
offer a user-friendly manner of operation, manually work-
ing through a series of steps can be prohibitive to analysis
of datasets containing a large number of image stacks.
Workflow reproducibility under this environment is also
of concern, as it relies solely on accurate documentation
of every step down to the tiniest detail.14 Conversely, the
need for, at minimum, a rudimentary understanding of
programming to assemble macros and scripts can be off-
putting to newcomers. ImageJ’s integrated macro recorder
certainly lowers the barrier to assembly of suchworkflows;
however, macros created in this manner often require
refinement and the code needed to run some plugins
cannot be fully captured via the recorder.
Tomake bioimage analysis with ImageJ more accessible

to a wider community, we present ModularImageAnalysis
(MIA), an ImageJ plugin for code-free assembly of complex
image and object analysis workflows. With MIA, images
and objects (3D regions) are passed between self-contained
modules, where each module performs a distinct oper-
ation in an analysis workflow, such as image filtering,
object detection, measurement of object properties and
visualisation of results. By utilising a standardised format
for storing object coordinates and measurements, objects
detected in one module can be immediately passed to
downstream modules without the need for conversion or
translation.
At present, MIA offers approximately 200 modules,

many of which integrate advanced image processing
plugins for ImageJ such as Bio-Formats,15 TrackMate,4
Trainable Weka Segmentation,16 MorphoLibJ9 and
DeepImageJ.12 Workflows are assembled in a modularised
manner which will be familiar to users of similar tools

such as CellProfiler,17 Icy18 and KNIME,19 while adding
several novel features not found elsewhere. Notably, the
early development of MIA was inspired by CellProfiler,
where the intention was to offer similar functionality (for
example, module-based design and parent-child relation-
ships), but directly within ImageJ, thus providing access to
the latest plugins. Going beyond this, MIA was designed
to offer native support for spatially calibrated image stacks
with up to 5 dimensions (XYZ, channel and time) and
extended object relationship hierarchies – features that
at the time were not available within CellProfiler. With
this capability to process higher dimensionality image
stacks, MIA was developed with memory efficiency in
mind, offering the ability to store object coordinates in
a variety of forms as well as update image stacks rather
than create duplicates at all stages. Additionally, with a
focus on nonexpert end users, MIA introduced a separate
‘processing view’, which presents workflow end users
(specifically, those who may not have created the work-
flow) with a simplified interface from where only a subset
of parameters are visible. MIA also tackles the issue of
workflow reproducibility and documentation, by storing
workflows in an easy to distribute text-based format,
which has been designed with the FAIR Data Principles
in mind.20
MIA is designed for anyone already accustomed with

basic image analysis principles and who is looking to
create workflows based around familiar ImageJ plugins,
but in a code-free environment. This could be users who
are relatively new to image analysis; after all, ImageJ/Fiji
is a common entry point into the world of bioimage
analysis for many researchers, due in part to it being
a favourite training tool in many introductory bioimage
analysis courses. Conversely, it could be more experienced
workflow creators, looking to rapidly prototype workflows
either for themselves or others. Indeed, MIA was ini-
tially developed as an in-house tool to facilitate easier
reuse of common workflow steps such as image loading,
results exporting, graphical user interface (GUI) genera-
tion and batch processing when creating workflows for
bioimaging facility users. In the years since MIA’s incep-
tion, the automated workflow space has been bestowed
with a range of other fantastic tools such as JIPipe21 and
the napari platform,22 which can be augmented to offer
MIA-like functionality using third-party plugins such as
napari-assistant23 and napari-zelda.24 MIA is intended to
sit among this venerable collection of tools, both new and
old, by offering a potentially easier route to automation
of linear workflows than its more complex graph-based
counterparts.
Here we will describe the core concepts behind MIA,

such as its dual user interfaces, one for workflow cre-
ators and the other for end users, its compatibility with



CROSS et al. 3

a wide range of multidimensional image formats and
the strategies employed to ensure optimal computational
performance. This will be presented in the context of a
range of real-world examples spanning multiple imaging
modalities.

2 MIAWORKFLOW STRUCTURE

Workflows in MIA comprise a sequence of modules, with
each module handling a specific task, such as image load-
ing, object detection or calculation of measurements. Each
module can output items, including images, objects and
measurements, to a common data store referred to as the
‘workspace’. The items in this workspace are assigned
user-defined names, allowing subsequent modules in the
workflow access to them. The workspace is unique to a
single analysis run; as such, when processing multiple
images (batch mode), multiple noninteracting workspaces
are created. At the end of an analysis run, measurements
associated with images and objects are written to .xlsx
Excel files and the contents of the workspace are deleted.
To permanently store images or objects, modules such as
‘Save image’ can be included in the workflow.
A simple example workflow is shown in Figure 1 and

depicts the segmentation of cell nuclei from a fluorescence
microscopy image (workflow file adapted from example
archived at Zenodo25). In this example, the first module
(‘Load image’) reads an image from file and stores it in
the workspace with the name ‘Raw’. This image is then
accessed by the next module (‘Apply threshold’), which
applies an automatically calculated intensity threshold
and stores the resulting binarised image in the workspace
as a new image called ‘Binary’. In this instance, the origi-
nal ‘Raw’ image was unaltered by execution of the ‘Apply
threshold’ module; however, theremay be instances where
the input image is no longer required in its original form, as
is the casewith the ‘Fill holes’module in Figure 1.Here, the
input image can simply be updated within the workspace,
eliminating unnecessary memory usage. This is especially
useful when dealing with large, multidimensional image
stacks. To further reduce the memory requirement of
workflows, MIA allows images and objects that are no
longer required, to be removed from the workspace with
the use of ‘Remove images’ and ‘Remove objects’ modules.
In addition to images, modules can also read and write

objects to the workspace. In the workflow shown in
Figure 1, the ‘Identify objects’ module applies connected
components labelling to identify individual objects in the
‘Binary’ image, then stores these as the object set, ‘Nuclei’.
Both images and objects can have measurements associ-
ated with them. Here, the ‘Measure object shape’ module
calculates the spatial area of the objects stored as ‘Nuclei’

and the subsequent ‘Filter objects’ module uses these val-
ues, along with a user-defined threshold, to exclude any
small objects likely arising from noise in the original
image. A suite of visualisation modules can be used to,
among other operations, add ImageJ-compatible overlays
to images. In Figure 1, random colours are assigned to the
identified objects to distinguish them and the outlines of
these objects are added to the ‘Raw’ image, which is then
written to file using the ‘Save image’ module.
In MIA, workflows are batch processing-enabled by

default. By setting the input file path to a folder, rather than
a single file,MIAwill detect all valid files within that folder
(and subfolders) and process them as independent ‘jobs’.
An arbitrary number of filters based on file, folder and
series names can be applied to provide selective process-
ing of files during batch operation. Furthermore, through
its fundamental integration of the Bio-Formats library,15
MIA is capable of reading a wide array of open and pro-
prietary imaging formats. This includes multiseries files
(for example, Leica LIF and Olympus VSI), from which
all, or a subset of, series can be automatically processed as
a batch. MIA gives the flexibility to store results accord-
ing to preferred experimental design. Chiefly, all output
measurements are optional, simple measurements statis-
tics (mean, minimum, maximum, etc.) can be calculated
on a per-image basis, and the results from a single batch
run can be combined into a single .xlsx Excel file or stored
individually.
The modules included with MIA can be broadly placed

into the nine categories shown in Figure 2. Many of these
modules interact with popular ImageJ plugins, allowing
these tools to be seamlessly integrated into automated
workflows without the need for additional scripts or data
manipulation. This interoperability is facilitated by MIA’s
use of a single object format, which stores pixel coordinates
for each object alongwithmeasurements and object-object
relationships.
Workflows are stored as text files (with the .mia exten-

sion), thus allowing for easy sharing and reuse as well as
going some way to addressing the often-challenging issue
of workflow reproducibility. Moreover, the full workflow
configuration is also stored in each exported .xlsx Excel
file, meaning workflows can be recalled in cases where the
original .mia workflow file has been lost or altered.

3 USER INTERFACE

MIA offers two user interfaces, a fully featured ‘Edit-
ing view’ and a simplified ‘Processing view’ (Figure 3).
For workflow creators, ‘Editing view’ provides an envi-
ronment in which to assemble modules into workflows.
Modules are arranged into an execution-ordered list, with



4 CROSS et al.

F IGURE 1 Schematic of a simple workflow for segmentation of cell nuclei. Workflow is depicted with each module on a separate row.
To the left of the module list are the input images, objects and measurements for that module. Likewise, outputs are shown to the right of the
module list. On the far right is a list of all images, objects and measurements available in the workspace at each stage. New or updated items
in the workspace are highlighted in red.

parameters for each module displayed upon clicking a
module’s name.
To facilitate easy workflow design and troubleshooting,

modules can be executed one-by-one using arrow buttons
to the right of each module name. The output from amod-
ule (for example, an image showing detected objects) can
be visualised by enabling the eye button to the left of that
module’s name. Modules can also be enabled and disabled
using power icons to the left of each module name. Since
workflows are reactive, disabling a module will automati-

cally disable any downstreammodules which relied on the
outputs of the disabled module. Likewise, a collection of
‘workflow handling’ modules can be used to skip modules
or terminate workflow execution entirely based on user-
defined conditions (skipped modules shown in orange in
Figure 3).
The ‘Processing view’ is designed for end users and

day-to-day running of workflows; this view displays the
subset of parameters required to run a workflow on new
images, such as input file/folder locations. It may also be



CROSS et al. 5

F IGURE 2 Example modules showcasing the range of functionality within MIA. The nine main module categories with examples for
each. Many modules interact and utilise existing ImageJ plugins such as DeepImageJ,12 Trainable Weka Segmentation,16 Bleach Correction,26

Colour Deconvolution,27 MorphoLibJ,9 TrackMate,4 Ridge Detection,5 StarDist,13 Analyze Skeletons,28 BoneJ,29 TrakEM2,6 bUnwarpJ,7 Stack
Focuser30 and Bio-Formats.15

configured to show controls for fine-tuning workflows,
for example, object size filters or data exporting options.
By making these controls accessible in a simplified view,
nonexpert users can configure key parts of the workflow
without needing to delve into the potentially complex
workings of the full workflow otherwise available via ‘Edit-
ing view’. The controls visible in ‘Processing view’ can be
selected in ‘Editing view’ by enabling the eye button to the
right of each parameter (for example, the ‘Classifier file
path’ parameter shown in Figure 3).

4 OBJECT RELATIONSHIPS

Individual objects in MIA are stored in the three spatial
dimensions (XYZ); however, there are instances where
it is necessary to consider their existence along addi-

tional axes. Examples include tracking objects across
multiple timeframes or cases where the same object is
identified in different channels of an image stack. To cap-
ture these relationships, MIA supports both parent-child
(one-to-many)17,19 and partner (many-to-many) relation-
ships. In the parent-child relationship example shown
in Figure 4, nuclei are first detected in individual time
frames, then tracked between these frames using the
‘Track objects’ module, which utilises TrackMate’s Jaqa-
man linker algorithm.4,31 Each track is stored as a new
‘Track’ object, which itself contains no spatial (coordinate)
information; instead, each ‘Track’ object acts as a parent
to the child ‘Nuclei’ objects in that track. With objects
tracked between frames, it becomes possible to measure
temporal characteristics, such as velocity, directionality
and total path length using the ‘Measure track motion’
module.



6 CROSS et al.

F IGURE 3 Screenshots of the MIA user interface. Editing view (left) is designed for creating and editing workflows and offers access to
all modules and parameters in a workflow. Processing view (right) is intended for running preassembled workflows and is typically
configured (via Editing view) to display a small subset of parameters required to run an analysis on new images.

Importantly, the coordinate-less ‘linking’ behaviour of
tracks is not the sole purpose of parent-child relationships.
In an alternative example, ‘Cell’ and intracellular ‘Vesicle’
object sets could be detected from different fluorescence
channels of an image stack. Based on their distance from
the cell surface, vesicles could be assigned as children of a
parent cell. Such relationships would yield measurements
for both per-cell vesicle counts and per-vesicle distances to
the parent cell surface.
Objects can also be engaged in multiple parent-child

relationships. The implication of this being that while
child objects can only have one parent of a given class, they
may have multiple parents across many different classes.
MIA also supports hierarchical (multi-level) relationships,
whereby children of one object may themselves be parents
to other objects. This effectively facilitates grandparent-
grandchild relationships and beyond. By combining the
two aforementioned examples of object tracking and spa-
tial relationships, we could have a scenario where the
vesicles, which themselves are children of the cells, would
also be grandchildren of the track objects. This would give
the opportunity to measure properties such as the number
of vesicles per track across all timepoints.
Partner relationships are used in cases where objects in

both associated classes may be linked to multiple other
objects. Figure 5 shows one such example, with grain
boundaries in SEM images being represented as ‘Edge’ and

‘Junction’ objects. Here, edges will be related to up to two
junctions and each junction will have multiple associated
edges. This allows complex relationships to be captured.
In the given example, it would be possible to remove
edges connected to only one junction (i.e. branches of the
skeleton). As with parent-child relationships, objects can
be engaged in partner relationships with multiple object
classes.

5 MEMORY EFFICIENT COORDINATE
STORAGE

Object handling necessitates the storage of pixel coordi-
nates in a form that can be easily accessed by downstream
modules. In the case of small objects (for example, foci
detected by spot detecting modules), the most practi-
cal solution is simply to record these as lists of XYZ
pixel locations (henceforth referred to as ‘pointlists’); how-
ever, for storage of large regions, this approach can be
inefficient and memory-limiting. In commonly occurring
instances where large regions comprise significant con-
tiguous and hole-free areas, efficient coordinate storage
can be achieved using quadtrees.34,35 Quadtrees recur-
sively subdivide an area into four nodes (quadrants), with
subdivision ending once a node entirely contains either
foreground (object) or background coordinates. As such,



CROSS et al. 7

F IGURE 4 Schematic diagram showing parent-child object
relationships in the context of object tracking. In this example,
nuclei from three frames of a fluorescent image timeseries (top row)
are detected and stored as ‘Nuclei’ objects, each of which is given a
unique ID number (middle row). These individual ‘Nuclei’ objects
are tracked across each frame and assigned as children to newly
created ‘Track’ objects. These ‘Track’ objects simply act as linking
objects and themselves contain no spatial (coordinate) information.
The relationships are depicted by both colour-coding and as dashed
lines between the track and nuclei objects (bottom row).
Fluorescent images are of yolk syncytial layer (YSL) nuclear
movements cropped from.32

large contiguous regions can be summarised by relatively
few nodes and in extreme cases reduce memory require-
ments by orders of magnitude compared to the equivalent
pointlist structure (Figure 6).
Figure 6 shows a performance comparison between

pointlists and quadtrees when storing three example
objects with differing morphologies. Here, the ‘Memory’
metric relates to the memory required to store the object
and the ‘Time’ metric is the time taken to convert the bina-
rised image to the final data structure (reported as the
average of 30 measurements with standard deviation). For
storage of a single pixel (‘Bacterium’ sample in Figure 6),
pointlists offer both amemory and speed advantage, due to
the need of quadtrees to subdivide the image region down
to the single pixel level. When storing single pixel objects,
this performance difference will increase with image size,
as more subdivisions are required. Likewise, for skele-
tonised objects (‘DNA’ sample in Figure 6), the necessary

F IGURE 5 Schematic diagram showing partner object
relationships applied to grain boundary analysis of a deformed
quartzite. Binarised grain boundaries are skeletonised, with the
skeleton fragments stored as either ‘Junction’ (shown with assorted
colours) or ‘Edge’ (shown in grey) objects. These objects are
assigned partner relationships, where each ‘Junction’ or ‘Edge’ can
be linked to multiple instances of the other object. Raw images are
band contrast maps from electron backscatter diffraction (EBSD)
analysis.33 Image courtesy of A. Cross (Woods Hole Oceanographic
Institution, Massachusetts, USA).

subdivision to the pixel level yields similar performance.
Quadtrees begin to outperform pointlists for solid regions
(‘Nucleus’ sample in Figure 6), where the large number of
coordinates in the centre of the object can be simplified by
relatively few nodes. In such samples, subdivision to the
pixel level is only required on the edge of the object; there-
fore, the number of nodes used can be a fraction of the total
pixel count.
MIA also includes an octree storage option, with octrees

behaving as the 3D counterpart to quadtrees, albeit with
image stack subdivision into octants. Octrees perform
best with image stacks acquired using isotropic spa-
tial resolution, as is typically the case with micro-CT.
For modules outputting objects where a specific coor-
dinate storage method will always be most efficient
(for example, pointlists for spot detection and skele-
tonisation), that method is used exclusively. Conversely,



8 CROSS et al.

F IGURE 6 Comparison of coordinate storage methods. Performance of storing object coordinates as pointlists and quadtrees for three
different object morphologies. Shown for each example are the raw image, binarised form of the object and quadtree representation. The two
storage methods are evaluated on the time taken to create the coordinate store and the memory it occupies. Time taken is reported as the
average of 30 measurements with standard deviation. For each sample, the most efficient memory storage method is highlighted in red. All
three raw images have a resolution of 256 pixels × 256 pixels.

general purpose object detection modules offer the user
the choice of object storage method. All coordinate stor-
age approaches provide the same core functionality (by
extending the same Java class), so their use is interchange-
able with no difference to the end-user beyond memory
performance.

6 EXTENSIBILITY

Beyond the included modules, MIA’s functionality can be
extended both internally, through integration with Fiji’s
scripting interface, and externally, by developingnewmod-
ules that extend the core MIA framework. At the simplest
level, the ‘Run single command’ module, allows individ-
ual ImageJ macro commands of the form run(command,
parameters) to be applied to images in the workspace.
For more complex applications, the ‘Run script’ mod-
ule can be used to run scripts with full access to the
current analysis workspace. This module supports any
language compatible with ImageJ’s scripting interface,
includingBeanshell, Groovy, Javascript and Jython. Scripts
have the ability to create new images and object col-
lections, add image and object-associated measurements
and assign new object relationships. Using MIA’s applica-
tion programming interface (API), these actions can each
be achieved from a script with a couple of commands.
An example where such functionality may be useful is

in calculating custom measurements for objects detected
earlier in a workflow. Finally, custom code that may be
routinely used across multiple workflows can be pack-
aged as entirely new modules, which are distributed as
MIA plugins. SinceMIA uses SciJava’s ‘Plugin’ interface,36
any Java classes extending MIA’s ‘Module’ class will be
automatically available for inclusion in workflows in the
same manner as standard integrated modules. Indeed,
MIA plugins already exist for operations that require large
additional libraries that are impractical to bundle with
the main MIA distribution. Examples include the ‘Load
videos’ module, which requires platform-specific bina-
ries, and ‘Fit alpha surface’, which requires the MATLAB
Compiler Runtime to be installed. The MIA source code
and a link to the Javadoc are available at https://github.
com/mianalysis/mia. Both a fully-documented template
module and example custom module are available in
the ‘DeveloperExamples’ folder of the https://github.com/
mianalysis/mia-examples repository.
In addition to incorporating new functionality into MIA

workflows via scripting, MIA offers a suite of macro
commands allowing the functionality of MIA to be incor-
porated into macro-based workflows. These commands
provide a route to run workflows directly from standard
ImageJ macros, that is, outside of the MIA graphical
user interface. Furthermore, and irrespective of whether
the workflow was initially run via the MIA interface or
from a macro, these commands give macros access to the

https://github.com/mianalysis/mia
https://github.com/mianalysis/mia
https://github.com/mianalysis/mia-examples
https://github.com/mianalysis/mia-examples


CROSS et al. 9

individual images and objects within each analysis
workspace, as well as to all their associated measure-
ments and relationships. Workflows can also be run from
command line without opening an ImageJ graphical envi-
ronment, thus facilitating processing on terminal-only
systems such as compute clusters. Instructions on config-
uring MIA for such an application can be found in the
guides available at https://mianalysis.github.io.

7 DISCUSSION

To date, MIA has been used in a wide variety of bioimage
analyses, including 3D detection of fluorescent puncta,37
quantification of immune cell behaviour in response to
cancer,38 morphometric analysis of extracellular DNA,39
analysis of cell morphology in epithelial tissue,40 detec-
tion of cellular membrane tubules41 and 3D assessment
of zebrafish vertebrae from micro-CT image stacks.42
Through these examples, we can observe the flexibility
and versatility of MIA; by providing an environment in
which the strengths present in the extensive catalogue of
ImageJ plugins can be combined, it is possible to create
workflows that leverage a wide variety of image processing
functionality.
As with the ImageJ ecosystem itself, MIA is under con-

stant development in response to advancements in the
field of image processing and analysis. Modules support-
ing both new ImageJ plugins and custom functionality
are added in response to the needs of users and ongoing
analyses. In particular, recent developments have seen the
inclusion ofmodules implementing popular deep-learning
plugins such as DeepImageJ12 and StarDist.13
More fundamentally, the increasing prevalence of imag-

ing modalities generating very large image volumes (taken
here to be 10s of GB and greater), such as lightsheet and
serial block face SEM, are being addressed by changes to
MIA’s image handling and storage framework. Currently,
MIA utilises ImageJ’s ImagePlus Java class for handling
images,1 which relies on first loading images into RAM.
This provides fast response times when accessing pixel
information, but places limits on the size of image volume
that can be processed at one time. Ongoing development
sees a transition from ImagePlus to the newer ImgLib2
format which also powers ImageJ2.2,43 With ImgLib2’s
disk-cached image formats, when an image would exceed
the available memory, pixel data can be read directly
from a computer’s filesystem without the need to preload
it into RAM. Similarly, new images with sizes exceed-
ing the available memory can be written to a new disk
cache, effectively removing the upper limit on the size
of image volumes, albeit with a performance penalty
based on the speed of the available storage. For images

capable of fitting in the available RAM, performance
should be equivalent to the original ImagePlus-based
system.
MIA started life in 2017 as a basic in-house tool for

easy reuse of code for common workflow operations such
as batch processing, measurement handling and results
exporting. As new functionality was added, including the
dual graphical user interfaces (processing and editing
views) and deeper integration with common ImageJ plu-
gins, it became apparent MIA may be of more widespread
benefit within the bioimage analysis community. To this
end, we began developing full module and parameter
descriptions, user guides and tutorial videos, such that any-
one with an interest in using MIA could do so with ease.
These can be found at https://mianalysis.github.io/guides.
Looking to the future, there remains a wealth of

untapped potential in the ImageJ ecosystem that wewould
love to better integrate. This ranges from individual plu-
gins that could be wrapped as additional modules, to
entire image processing libraries, such as ImageJOps44 and
CLIJ,45 which could be automatically implemented. To
expedite the growth and evolution of MIA, we welcome
involvement from the wider image analysis community.
This involvement could be anything from the afore-
mentioned module development to simply submitting
issues indicating what functionality users would find use-
ful. Further information on getting involved with MIA’s
development is provided at https://mianalysis.github.io/
getinvolved.
Through its ongoing development and with the built-in

capacity for extension via user-driven scripts, MIA has the
potential to be employed for an increasingly diverse range
of bioimage analyses. Furthermore, by offering a graph-
ical environment in which to assemble workflows, MIA
democratises the use of ImageJ for state-of-the-art analy-
sis in an era where the acquisition and handling of images
is becoming a fundamental part of many experimental
designs.

ACKNOWLEDGEMENTS
The authors would like to thank all users of the Wolfson
Bioimaging Facility (Bristol) who have worked with and
provided invaluable feedback on MIA. Special thanks to
Dominic Alibhai for several years of testing and feature
suggestions and toGemmaFisher for preparing automated
tests of many modules. Finally, thanks to Ana Stojiljković,
Alin Achim and Andrew Cross for manuscript proofread-
ing and feedback. Stephen Cross was part funded by the
Elizabeth Blackwell Institute, through its Wellcome Trust
ISSF Award (105612/Z/14/Z).

ORCID
Stephen J.Cross https://orcid.org/0000-0003-3565-0479

https://mianalysis.github.io
https://mianalysis.github.io/guides
https://mianalysis.github.io/getinvolved
https://mianalysis.github.io/getinvolved
https://orcid.org/0000-0003-3565-0479
https://orcid.org/0000-0003-3565-0479


10 CROSS et al.

REFERENCES
1. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH

image to ImageJ: 25 years of image analysis. Nature Methods,
9(7), 671–675.

2. Rueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B. E.,
Walter, A. E., Arena, E. T., & Eliceiri, K. W. (2017). ImageJ2:
ImageJ for the next generation of scientific image data. BMC
Bioinformatics [Electronic Resource], 18(1), 529.

3. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V.,
Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S.,
Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein, V., Eliceiri,
K., Tomancak, P., & Cardona, A. (2012). Fiji: An open-source
platform for biological-image analysis. Nature Methods, 9(7),
676–682.

4. Tinevez, J.-Y., Perry, N., Schindelin, J., Hoopes, G. M., Reynolds,
G. D., Laplantine, E., Bednarek, S. Y., Shorte, S. L., & Eliceiri,
K. W. (2017). TrackMate: An open and extensible platform for
single-particle tracking.Methods (San Diego, Calif.), 115, 80–90.

5. Wagner, T., Hiner, M., & Xraynaud, (2017). thorstenwagner/ij-
ridgedetection: Ridge Detection 1.4.0.

6. Cardona, A., Saalfeld, S., Schindelin, J., Arganda-Carreras, I.,
Preibisch, S., Longair, M., Tomancak, P., Hartenstein, V., &
Douglas, R. J. (2012). TrakEM2 software for neural circuit
reconstruction. PLoS ONE, 7(6), e38011.

7. Arganda-Carreras, I., Sorzano, C. O. S., Marabini, R., Carazo, J.
M., Ortiz-de-Solorzano, C., & Kybic, J. (2006). Consistent and
elastic registration of histological sections using vector-spline
regularization. In R. R. Beichel & M. Sonka (Eds.), Computer
vision approaches tomedical image analysis (vol. 4241, pp. 85–95).
Springer Berlin Heidelberg.

8. Preibisch, S., Saalfeld, S., & Tomancak, P. (2009). Globally
optimal stitching of tiled 3D microscopic image acquisitions.
Bioinformatics, 25(11), 1463–1465.

9. Legland, D., Arganda-Carreras, I., & Andrey, P. (2016). Mor-
phoLibJ: Integrated library and plugins for mathematical mor-
phology with ImageJ. Bioinformatics, 32(22), 3532–3534.

10. Schmid, B., Tripal, P., Fraaß, T., Kersten, C., Ruder, B.,
Grüneboom, A., Huisken, J., & Palmisano, R. (2019). 3Dscript:
Animating 3D/4D microscopy data using a natural-language-
based syntax. Nature Methods, 16(4), 278–280.

11. Schmid, B., Schindelin, J., Cardona, A., Longair, M., &
Heisenberg,M. (2010). Ahigh-level 3D visualizationAPI for Java
and ImageJ. BMCBioinformatics [Electronic Resource], 11(1), 274.

12. Gómez-de-Mariscal, E., García-López-de-Haro, C., Ouyang, W.,
Donati, L., Lundberg, E., Unser, M., Muñoz-Barrutia, A., &
Sage, D. (2021). DeepImageJ: A user-friendly environment to run
deep learning models in ImageJ. Nature Methods, 18(10), 1192–
1195.

13. Schmidt, U., Weigert, M., Broaddus, C., & Myers, G. (2018). Cell
detection with star-convex polygons. In Medical Image Com-
puting and Computer Assisted Intervention—MICCAI 2018 (vol.
11071, pp. 265–273). Springer International Publishing.

14. Miura, K., & Nørrelykke, S. F. (2021). Reproducible image
handling and analysis. Embo Journal, 40(3), e105889.

15. Linkert, M., Rueden, C. T., Allan, C., Burel, J.-M., Moore, W.,
Patterson, A., Loranger, B., Moore, J., Neves, C., Macdonald, D.,
Tarkowska, A., Sticco, C., Hill, E., Rossner, M., Eliceiri, K. W., &
Swedlow, J. R. (2010). Metadatamatters: Access to image data in
the real world. Journal of Cell Biology, 189(5), 777–782.

16. Arganda-Carreras, I., Kaynig, V., Rueden, C., Eliceiri, K. W.,
Schindelin, J., Cardona, A., & Sebastian Seung, H. (2017).
Trainable weka segmentation: A machine learning tool for
microscopy pixel classification. Bioinformatics, 33(15), 2424–
2426.

17. Stirling, D. R., Swain-Bowden, M. J., Lucas, A. M., Carpenter,
A. E., Cimini, B. A., & Goodman, A. (2021). CellProfiler 4:
Improvements in speed, utility and usability. BMC Bioinformat-
ics [Electronic Resource], 22(1), 433.

18. De Chaumont, F., Dallongeville, S., Chenouard, N., Hervé, N.,
Pop, S., Provoost, T., Meas-Yedid, V., Pankajakshan, P., Lecomte,
T., Le Montagner, Y., Lagache, T., Dufour, A., & Olivo-Marin,
J.-C. (2012). Icy: An open bioimage informatics platform for
extended reproducible research. Nature Methods, 9(7), 690–696.

19. Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R., Kötter, T.,
Meinl, T., Ohl, P., Sieb, C., Thiel, K., & Wiswedel, B. (2008).
KNIME: The Konstanz information miner. In C. Preisach, H.
Burkhardt, L. Schmidt-Thieme, & R. Decker (Eds.), Data anal-
ysis, machine learning and applications (pp. 319–326). Springer
Berlin Heidelberg.

20. Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton,
G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., Da Silva
Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark,
T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T.,
Finkers, R., . . . Mons, B. (2016). The FAIR guiding principles
for scientific datamanagement and stewardship. Scientific Data,
3(1), 160018.

21. Gerst, R., Cseresnyés, Z., & Figge, M. T. (2023). JIPipe: Visual
batch processing for ImageJ. Nature Methods, 20(2), 168–169.

22. napari contributors. (2023). napari: A multi-dimensional image
viewer for Python.

23. Haase, R., Savill, R., Sobolewski, P., & Lee, D. (2023).
haesleinhuepf/napari-assistant: 0.4.6.

24. D’Antuono, R., & Pisignano, G. (2022). ZELDA: A 3D image
segmentation and parent-child relation plugin for microscopy
image analysis in napari. Frontiers of Computer Science, 3,
796117.

25. Cross, S. J. (2023). mianalysis/mia-examples (version 1.0.3).
26. Miura, K. (2020). Bleach correction ImageJ plugin for

compensating the photobleaching of time-lapse sequences.
F1000Research, 9, 1494.

27. Landini, G., Martinelli, G., & Piccinini, F. (2021). Colour decon-
volution: Stain unmixing in histological imaging. Bioinformat-
ics, 37(10), 1485–1487.

28. Arganda-Carreras, I., Fernández-González, R.,Muñoz-Barrutia,
A., & Ortiz-De-Solorzano, C. (2010). 3D reconstruction of
histological sections: Application to mammary gland tissue.
Microscopy Research and Technique, 73(11), 1019–1029.

29. Domander, R., Felder, A. A., & Doube, M. (2021). BoneJ2
– Refactoring established research software. Wellcome Open
Research, 6, 37.

30. Umorin, M. (2006). Stack focuser. https://imagej.nih.gov/ij/
plugins/stack-focuser.html

31. Jaqaman, K., Loerke, D., Mettlen, M., Kuwata, H., Grinstein,
S., Schmid, S. L., & Danuser, G. (2008). Robust single-particle
tracking in live-cell time-lapse sequences. Nature Methods, 5(8),
695–702.

32. D’Amico, L. (2011). CIL_11813, Danio rerio, yolk syncytial layer
cell.

https://imagej.nih.gov/ij/plugins/stack-focuser.html
https://imagej.nih.gov/ij/plugins/stack-focuser.html


CROSS et al. 11

33. Cross, A. J., Prior, D. J., Stipp,M., &Kidder, S. (2017). The recrys-
tallized grain size piezometer for quartz: An EBSD-based cali-
bration: EBSD-based quartz grain size piezometer. Geophysical
Research Letters, 44(13), 6667–6674.

34. Cheeseman, B. L., Günther, U., Gonciarz, K., Susik, M., &
Sbalzarini, I. F. (2018). Adaptive particle representation of flu-
orescence microscopy images. Nature Communications, 9(1),
5160.

35. Finkel, R. A., & Bentley, J. L. (1974). Quad trees a data structure
for retrieval on composite keys. Acta Informatica, 4(1), 1–9.

36. Rueden, C., Schindelin, J., Hiner, M., & Eliceiri, K. (2021).
SciJava Common.

37. McCaughey, J., Stevenson, N. L., Cross, S., & Stephens, D. J.
(2019). ER-to-Golgi trafficking of procollagen in the absence of
large carriers. Journal of Cell Biology, 218(3), 929–948.

38. López-Cuevas, P., Cross, S. J., & Martin, P. (2021). Modulat-
ing the inflammatory response to wounds and cancer through
infection. Frontiers in Cell and Developmental Biology, 9,
676193.

39. Serrage, H. J., FitzGibbon, L., Alibhai, D., Cross, S., Rostami, N.,
Jack, A. A., Lawler, C. R. E., Jakubovics, N. S., Jepson, M. A.,
& Nobbs, A. H. (2022). Quantification of extracellular DNA net-
work abundance and architecture within Streptococcus gordonii
biofilms reveals modulatory factors. Applied and environmental
microbiology, 88(13), e0069822.

40. Olenik, M., Turley, J., Cross, S., Weavers, H., Martin, P.,
Chenchiah, I. V., & Liverpool, T. B. (2023). Fluctuations of cell
geometry and their nonequilibrium thermodynamics in living
epithelial tissue. Physical Review E, 107(1), 014403.

41. Stan, G. F., Shoemark, D. K., Alibhai, D., & Hanley, J. G. (2022).
Ca2+ regulates dimerization of the BAR domain protein PICK1
and consequent membrane curvature. Frontiers in Molecular
Neuroscience, 15, 893739.

42. Kague, E., Turci, F., Newman, E., Yang, Y., Brown, K. R., Aglan,
M. S., Otaify, G. A., Temtamy, S. A., Ruiz-Perez, V. L., Cross, S.,
Royall, C. P., Witten, P. E., & Hammond, C. L. (2021). 3D assess-
ment of intervertebral disc degeneration in zebrafish identifies
changes in bone density that prime disc disease. Bone Research,
9(1), 39.

43. Pietzsch, T., Preibisch, S., Tomančák, P., & Saalfeld, S. (2012).
ImgLib2—Generic image processing in Java. Bioinformatics,
28(22), 3009–3011.

44. Rueden, C., Dietz, C., Horn, M., Schindelin, J., Northan, B.,
Berthold, M., & Eliceiri, K. (2021). ImageJ Ops. https://imagej.
net/Ops

45. Haase, R., Royer, L. A., Steinbach, P., Schmidt, D., Dibrov, A.,
Schmidt, U., Weigert, M., Maghelli, N., Tomancak, P., Jug, F., &
Myers, E.W. (2020). CLIJ: GPU-accelerated image processing for
everyone. Nature Methods, 17(1), 5–6.

How to cite this article: Cross, S. J., Fisher, J. D. J.
R., & Jepson, M. A. (2023). ModularImageAnalysis
(MIA): Assembly of modularised image and object
analysis workflows in ImageJ. Journal of
Microscopy, 1–11. https://doi.org/10.1111/jmi.13227

https://imagej.net/Ops
https://imagej.net/Ops
https://doi.org/10.1111/jmi.13227

	ModularImageAnalysis (MIA): Assembly of modularised image and object analysis workflows in ImageJ
	Abstract
	1 | INTRODUCTION
	2 | MIA WORKFLOW STRUCTURE
	3 | USER INTERFACE
	4 | OBJECT RELATIONSHIPS
	5 | MEMORY EFFICIENT COORDINATE STORAGE
	6 | EXTENSIBILITY
	7 | DISCUSSION
	ACKNOWLEDGEMENTS
	ORCID
	REFERENCES


