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�
 ABSTRACT 

Purpose: Understanding resistance to selective FGFR inhibi-
tors is crucial to improve the clinical outcomes of patients with 
FGFR2-driven malignancies. 

Experimental Design: We analyzed sequential ctDNA, ± whole- 
exome sequencing, or targeted next-generation sequencing on tissue 
biopsies from patients with tumors harboring activating FGFR2 
alterations progressing on pan-FGFR–selective inhibitors, collected 
in the prospective UNLOCK program. FGFR2::BICC1 Ba/F3 and 
patient-derived xenograft models were used for functional studies. 

Results: Thirty-six patients were included. In chol-
angiocarcinoma, at resistance to both reversible inhibitors (e.g., 
pemigatinib and erdafitinib) and the irreversible inhibitor futibati-
nib, polyclonal FGFR2 kinase domain mutations were frequent (14/ 
27 patients). Tumors other than cholangiocarcinoma shared the 
same mutated FGFR2 residues, but polyclonality was rare (1/9 pa-
tients). At resistance to reversible inhibitors, 14 residues in the 
FGFR2 kinase domain were mutated—after futibatinib, only the 

molecular brake N550 and the gatekeeper V565. Off-target alter-
ations in PI3K/mTOR and MAPK pathways were found in 11 pa-
tients, often together with on-target mutations. At progression to a 
first FGFR inhibitor, 12 patients received futibatinib or lirafu-
gratinib (irreversible inhibitors), with variable clinical outcomes 
depending on previous resistance mechanisms. Two patients with 
TSC1 or PIK3CA mutations benefited from everolimus. In cell vi-
ability assays on Ba/F3 and in pharmacologic studies on patient- 
derived xenografts, irreversible inhibitors retained better activity 
against FGFR2 kinase domain mutations, with lirafugratinib active 
against the recalcitrant V565L/F/Y. 

Conclusions: At progression to FGFR inhibitors, FGFR2-driven 
malignancies are characterized by high intra- and interpatient 
molecular heterogeneity, particularly in cholangiocarcinoma. 
Resistance to FGFR inhibitors can be overcome by sequential, 
molecularly oriented treatment strategies across FGFR2- 
driven tumors. 

Introduction 
Molecular alterations of FGFR family members (FGFR1/2/3/4) 

are frequent across cancers (1, 2). FGFR amplifications are the most 
frequent alterations observed, yet their inconsistent oncogenic 
potential raises questions about their suitability as targets for se-
lective inhibition (3). FGFR2 gene fusions occur in 10% to 15% of 
intrahepatic cholangiocarcinoma cases, whereas activating muta-
tions in the extracellular domain account for only a minor fraction 
of this malignancy (4–6). Recent research has highlighted the im-
portance of deletions in the extracellular domain and truncations 
in the intracellular C-terminal domain of FGFR2 as key drivers 
and therapeutic targets in intrahepatic cholangiocarcinoma (6, 7). 

Of note, the same molecular alterations can be found, with a 
lower incidence, across a variety of solid tumors, of almost any 
histology (7). 

The development and availability of selective FGFR inhibitors for 
treating FGFR2-driven intrahepatic cholangiocarcinoma are trans-
forming the therapeutic landscape for patients with this molecular 
subtype (8–10). Selective FGFR inhibitors can be categorized into 
reversible (e.g., infigratinib, pemigatinib, erdafitinib, derazantinib, 
zoligratinib, and fexagratinib) and irreversible (e.g., futibatinib and 
lirafugratinib), based on their binding to the tyrosine kinase domain. 
Erdafitinib has demonstrated effectiveness in inhibiting FGFR3 in 
urothelial cancer (11, 12) and shows activity across various FGFR2- 
driven tumors, reflecting the concept of molecularly driven, tumor- 

1Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France. 
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agnostic targeted therapy (13). Similarly, pemigatinib and the two 
irreversible FGFR inhibitors, initially developed for FGFR2-driven 
intrahepatic cholangiocarcinoma, have shown efficacy across multi-
ple tumor types in dose-expansion cohorts of phase I/II clinical trials 
(14–17). 

Studies have identified frequent on-target, polyclonal mutations 
in the tyrosine kinase domain of FGFR2 as common mechanisms of 
resistance to selective FGFR inhibitors in FGFR2-driven chol-
angiocarcinoma (18, 19). These findings are supported by functional 
validation of specific FGFR2 kinase domain mutations that confer 
resistance, with irreversible FGFR inhibitors designed to be effective 
against these mutations (20–26). Recently, off-target resistance mech-
anisms have been explored; pathogenic variants in the MAPK and 
PI3K/mTOR pathways have been detected at progression on selective 
FGFR inhibitors in patients with cholangiocarcinoma (21, 23, 27). 

Importantly, resistance to FGFR inhibitors in the setting of FGFR2- 
driven disease has been predominantly reported in cholangiocarcinoma, 
except in four cases of FGFR2-driven tumors that progressed on 
pemigatinib (15, 28). The broader application of FGFR inhibitors across 
different histologies underscores the need to identify and address resis-
tance mechanisms in non-cholangiocarcinoma tumors, potentially of-
fering universal strategies to counteract resistance. 

In this study, we report on- and off-target resistance mechanisms 
to reversible and irreversible FGFR inhibitors across FGFR2-driven 
tumor types, validated through functional studies. Furthermore, the 
outcomes from sequential molecular treatments, applied to one- 
third of the patients with longitudinal monitoring of molecular al-
terations, provide insights into strategies to overcome resistance 
across a spectrum of FGFR2-driven solid tumors. 

Materials and Methods 
Patients and treatments 
UNLOCK is an institutional program which aims to decipher 
mechanisms of action and resistance to innovative drugs 

To be included in this cohort of the UNLOCK program, patients 
had to satisfy the following criteria: (i) diagnosis of an advanced 

solid tumor requiring systemic treatment; (ii) molecular detection of 
an activating alteration (i.e., fusions/rearrangements and mutations) 
in the FGFR2 gene; (iii) having received a selective FGFR inhibitor, 
either reversible (pemigatinib, erdafitinib, infigratinib, derazantinib, 
zoligratinib, rogaratinib, and fexagratinib) or irreversible (futibati-
nib or lirafugratinib); and (iv) having postprogression molecular 
analyses performed on ctDNA and/or tissue biopsies. In two cases 
showing primary resistance to futibatinib (ST4455 and MR719), in 
the lack of the availability of postprogression samples, pretreatment 
tissue biopsy and ctDNA were analyzed. 

The molecular analyses were performed within four institutional 
studies at Gustave Roussy, whose aim is the molecular character-
ization of tumors: MATCH-R (NCT02517892; ref. 29), MOSCATO 
(NCT01566019; ref. 30), STING (NCT04932525), and CTC 
(NCT02666612). 

Patients were treated in the setting of clinical trials or compas-
sionate use programs allowing treatment with FGFR inhibitors on 
the basis of molecular selection. Disease response was measured 
according to RECIST 1.1, and progression-free survival (PFS) was 
calculated from the date of targeted inhibitor start to the day of 
radiologic evidence of progression. 

All patients participating in the mentioned studies were fully 
informed and signed a written informed consent. The studies have 
been approved by ethics committees in France (French National 
Agency for Medicines and Health Products Safety) and are being 
conducted in accordance with the Declaration of Helsinki. 

Molecular analyses 
Postprogression tissue biopsies, when possible, underwent whole- 

exome sequencing (WES), with or without concomitant RNA se-
quencing (RNA-seq). The lower limit for WES performance was a 
proportion of tumor cells ≥30% in the tissue sample. In cases with a 
proportion of tumor cells between 10% and 30%, molecular analyses 
with targeted next-generation sequencing panels (Mosc-4, Onco-
mine v3) were performed. For WES, the mean coverage was 140�. 

With regard to ctDNA analyses, they were performed with 
Guardant Health, Illumina, Foundation Medicine, or IntegraGen 
liquid biopsy panels. For each patient with longitudinal ctDNA 
assessment, only analyses performed with the same platform were 
reported. 

Among the findings of the molecular reports, only molecular 
events potentially implicated in resistance were reported in the 
present study. FGFR2 kinase domain mutations were reported 
according to reference transcript NM_001144913.1, as previously 
reported by our group and others (20, 21, 31, 32). 

Site-directed mutagenesis 
Lentiviral vectors expressing FGFR2:BICC1 fusions were created 

using the pLenti6/V5 directional TOPO Cloning Kit (#K495510, 
Thermo Fisher Scientific) according to the manufacturer’s instruc-
tions. Point mutations in the FGFR2 kinase domain of the FGFR2:: 
BICC1 fusion were introduced using the QuickChange XL Site- 
Directed Mutagenesis Kit (#200516, Agilent) according to the 
manufacturer’s protocol. 

Cell lines 
Ba/F3 cells were infected with lentiviral constructs, as reported 

previously (33), to express the FGFR2::BICC1 fusion, this latter with or 
without FGFR2 kinase domain mutations. Ba/F3 cells harboring the 
fusion were selected in the presence of blasticidin (14 μg/mL) and IL3 
(0.5 ng/mL) until recovery, and a second selection by culturing the 

Translational Relevance 
The clinical benefit generated by selective FGFR inhibitors in 

patients with FGFR2-driven cancer is hampered by the inevitable 
occurrence of resistance. We analyzed postprogression ctDNA 
and tissue biopsies from 36 patients suffering from FGFR2-driven 
cholangiocarcinoma or other tumor types, at resistance to FGFR 
inhibitors. We were therefore able to recognize molecular traits 
and characteristics of resistance to reversible inhibitors versus the 
irreversible agent futibatinib, especially in terms of variety of 
FGFR2 kinase domain mutations involved in resistance. Com-
pared with FGFR2-driven cholangiocarcinomas, polyclonal 
FGFR2 kinase domain mutations were less frequent in other tu-
mor types. Twelve patients were treated with an additional FGFR 
irreversible inhibitor (futibatinib or lirafugratinib), and two de-
rived benefit from everolimus. We integrated longitudinal mo-
lecular data with the clinical outcomes on these sequential targeted 
treatments, with functional evidence using Ba/F3 cellular models 
and patient-derived xenografts, aiming to propose molecular 
treatment strategies to overcome resistance. 
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cells in the absence of IL3. FGFR2 fusion and FGFR2 kinase 
domain mutations were confirmed on the established cell lines 
by Sanger sequencing. The cells were not tested for Mycoplasma 
contamination, but cells were not maintained in culture for 
more than 2 months after establishment or thawing. 

Cell viability assays were performed in 96-well plates using the 
CellTiter Glo Luminescent Cell Viability Assay (G7570, Promega). 
We seeded 4,000 cells/well, and we treated cells for 48 hours. IC50 
values were derived using GraphPad Prism software. 

Reagents 
Lirafugratinib was provided by Relay Therapeutics. Erdafitinib, 

infigratinib, fexagratinib, zoligratinib, derazantinib, and futibatinib 
were purchased from Selleck Chemicals. Pemigatinib and rogar-
atinib were purchased from MedChemExpress. 

Development of patient-derived xenografts and in vivo 
pharmacologic studies 

All animal procedures and studies have been approved by the 
French Ministry of “Enseignement supérieur, de la Recherche et 
de lʼInnovation” (APAFIS#2790-2015112015055793 and APA-
FIS#2328-2015101914074846). Fresh tumor fragments were 
implanted in the subrenal capsule of 6-week-old female NOD/ 
SCID gamma mice obtained from Charles River Laboratories. 
Patient-derived xenograft (PDX)–bearing NOD/SCID gamma 
mice were treated with the indicated doses of pemigatinib, 
erdafitinib, futibatinib, and lirafugratinib. Eight mice per group 
were treated for up to 50 days, and tumor volume and mouse 
weight were measured twice weekly. 

Data availability 
WES/RNA-seq raw data files from this study are deposited at the 

European Genome–phenome Archive (EGA) using the accession code 
EGAD50000000439. Access to this shared dataset is controlled by the 
institutional Data Access Committee, and requests for access can be sent 
to the corresponding author. Further information about EGA can be 
found at https://ega-archive.org/. Any additional information required 
to reanalyze the data reported in this article is available upon request 
from the corresponding author. 

Results 
Patient population and molecular treatments 

We studied 36 patients with advanced solid tumors driven by 
FGFR2, all of whom were progressing on selective FGFR in-
hibitors (Supplementary Table S1). This cohort included 27 
patients with intrahepatic cholangiocarcinoma and nine pa-
tients with various other tumor types: two with high-grade se-
rous ovarian cancer, and one each with lung adenocarcinoma, 
urothelial cancer, triple-negative breast cancer, duodenal can-
cer, pancreatic ductal adenocarcinoma, adrenocortical carci-
noma, and cancer of unknown primary. The majority, 31 
patients, had tumors harboring FGFR2 fusions, whereas five had 
tumors driven by FGFR2 mutations located in the extracellular 
domain (specifically, three with FGFR2 C383R, one with FGFR2 
S267P, and one with FGFR2 Y376C). FGFR2 fusion partners 
included BICC1 in five cases (all in intrahepatic chol-
angiocarcinomas), TACC2 in three cases (n ¼ 1 intrahepatic 
cholangiocarcinoma, n ¼ 2 other tumor types), and STRN4 and 
CCSSER2 in two cases, one from each cohort. Other unique 

fusion partners were found in the remaining 19 tumors, detailed 
in Supplementary Tables S2 and S3. 

Twenty-three patients received a reversible FGFR inhibitor (n ¼
13 pemigatinib, n ¼ 8 erdafitinib, n ¼ 1 derazantinib, n ¼ 1 zoli-
gratinib), and 13 the irreversible inhibitor futibatinib (Supplemen-
tary Table S1). In the cholangiocarcinoma group, patients treated 
with reversible inhibitors and futibatinib showed 61% and 67% 
objective response rate, with median PFS of 8.7 and 11.1 months, 
respectively (Supplementary Table S4). Given the diversity in tumor 
origin, detailed clinical data of the non-cholangiocarcinoma patients 
are provided in Supplementary Table S3. 

All patients underwent postprogression ctDNA analysis. Twenty- 
one of them had further molecular analyses performed on post-
progression tissue biopsies, 16 via WES with or without RNA-seq, 
and five via targeted next-generation sequencing. 

After disease progression on the first FGFR inhibitor, 12 patients 
received sequential targeted treatments. Eight patients with chol-
angiocarcinoma received futibatinib following a reversible inhibitor, 
with three receiving the mTOR inhibitor everolimus based on 
molecular findings. Two patients with cholangiocarcinoma and two 
with other tumor types, progressing respectively on pemigatinib and 
futibatinib, were switched to the FGFR2-selective inhibitor lirafu-
gratinib (Supplementary Table S1). 

Molecular alterations observed at resistance to selective FGFR 
inhibitors 

In order to better approach the specificities of resistance mech-
anisms to reversible inhibitors versus the irreversible inhibitor 
futibatinib, and between intrahepatic cholangiocarcinoma and other 
tumor types, we separated below the different groups of patients 
analyzed at progression after a first FGFR inhibitor. 

Intrahepatic cholangiocarcinoma on reversible inhibitors 
The molecular alterations detected in 17 patients with intra-

hepatic cholangiocarcinoma progressing on reversible inhibitors are 
reported in Fig. 1A. Polyclonal kinase domain mutations 
(≥2 FGFR2 mutations in the same blood sample) were detected in 
10 of these patients (59%). 

In three additional patients, a single FGFR2 mutation was detected 
either in the tissue biopsy (MR408 and MR313) or in ctDNA (MR822; 
FGFR2 N550T). Specifically, FGFR2 D651H was detected in both pre- 
and posttreatment biopsies of one patient (MR313). Another unique 
case (MR488) had two concurrent FGFR2 kinase domain mutations in 
a single tissue biopsy (E566A and K642R). Concurrent pathogenic al-
terations in the MAPK and PI3K/mTOR pathways, suggesting off-target 
resistance mechanisms, were observed in five patients. 

Other tumor types on reversible inhibitors 
Five patients with non-cholangiocarcinoma FGFR2-driven tu-

mors exhibited diverse resistance patterns after initial tumor 
shrinkage (Fig. 1B). 

FGFR2 kinase domain mutations were detected in three of these 
patients, with one exhibiting polyclonal mutation. The latter (patient 
ST1056) was a FGFR2::TACC2 rearranged lung adenocarcinoma that 
progressed on erdafitinib with FGFR2 N550K, V565L/F, C632Y, D651Y 
mutations, as well as KRAS G12A (Fig. 1C; Supplementary Fig. S1). 

In two patients, no FGFR2 kinase domain mutations aroused at 
progression to erdafitinib (MR1035, cancer of unknown primary; 
ST238, triple-negative breast cancer, Fig. 1D), but KRAS/PIK3CA 
and HRAS/KRAS mutations were detected in ctDNA at progression, 
respectively (Fig. 1B). 
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Intrahepatic cholangiocarcinoma on futibatinib 
Among nine patients with intrahepatic cholangiocarcinoma 

progressing on futibatinib, fewer FGFR2 kinase domain muta-
tions were observed than in those on reversible inhibitors, in-
volving key regions like the molecular brake (N550) and 
gatekeeper (V565; Fig. 2A). Only three patients had polyclonal 
mutations, which were limited to N550K and V565F/L/Y. 

One patient (MR553) showed pretreatment FGFR2 kinase do-
main mutations that disappeared during response and re-emerged 
at progression (Fig. 2B; Supplementary Fig. S2). 

Interestingly, the patient MR332 first experienced an isolated 
bone progression, whose biopsy revealed a FGFR2 V565L mutation 
(not detectable in blood), followed by a hepatic progression har-
boring a FGFR2 V565F mutation (Fig. 2C). 

Other tumor types on futibatinib 
Four patients with various tumor types showed resistance 

mechanisms to futibatinib (Fig. 2D), including a patient with 

duodenal cancer (MR1271) who exhibited a monoclonal FGFR2 
V565L mutation concurrent with progression in the lung and liver 
(see Fig. 5C). 

Global analysis of candidate resistance mechanisms 
Comparing the spectrum of putative resistance mechanisms oc-

curring in FGFR2-driven cholangiocarcinoma or other tumor types, 
we hypothesized that the two entities converged toward overlapping 
ways to escape targeted FGFR2 inhibition. We therefore pooled the 
molecular data of the two populations to allow a global view on 
resistance to a first FGFR inhibitor among FGFR2-driven tumor 
types (Fig. 3). 

Across the 36 patients, 14 residues in the FGFR2 kinase domain 
(K527, G543, I549, N550, L551, A568, S569, V565, E566, L618, 
C623, K642, D651, and K660) were found mutated at progression. 
For six of them (N550, V565, E566, L618, D651, and K660), at least 
two possible substitutions were observed, thus representing 24 
possible mutations (Fig. 3A). FGFR2 C623Y and L551F were the 
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Figure 1. 
Molecular findings at resistance to reversible FGFR inhibitors. A, Patients suffering from intrahepatic cholangiocarcinoma. (Continued on the following page.) 
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only mutations found exclusively in non-cholangiocarcinoma cases 
(Fig. 1B). FGFR2 C623Y has not previously been reported, whereas 
L551F has been described in the setting of cholangiocarcinoma 
progressing on infigratinib (19). 

Polyclonal kinase domain mutations were detected in half 
(11/22) of the patients progressing on reversible inhibitors, al-
most exclusively with cholangiocarcinoma, whereas only three 
patients (23%) revealed polyclonal FGFR2 mutations after futi-
batinib (Fig. 3B and C). When assessable due to amplicon sizes, 
the polyclonal FGFR2 kinase domain mutations were always 
detected in trans (i.e., on different alleles). 

Overall, 61 FGFR2 kinase domain mutations were detected after 
reversible inhibitors, whereas only nine mutations were observed 
after futibatinib (Fig. 3A). The most frequently mutated residues 
were the molecular brake N550 and the gatekeeper V565. 

In 13/22 (59%) of the patients progressing on reversible inhibi-
tors, at least one mutation affecting either of these two residues was 

found, whereas the two residues were comutated in eight cases 
(36%). N550 and V565 were also the residues with the highest 
number of different substitutions, as N550D/H/K/T and V565F/I/L. 
L618V/M occurred in nine cases, followed by E566 (E566A/G) that 
was mutated in six patients. 

In contrast, the N550 and V565 residues were the unique sites of 
FGFR2 kinase domain mutations found at progression to futibati-
nib, namely N550K (n ¼ 2), V565F (n ¼ 2), V565L (n ¼ 4), and 
V565Y (n ¼ 1; Figs. 2A and 3A). Of note, the mentioned molecular 
brake and gatekeeper mutations have been previously reported, with 
the exception of FGFR2 V565Y (34). This mutation is a novel entity, 
emerging from a double-base substitution in the corresponding 
valine codon GTT, for which we hypothesize the sequential oc-
currence of single-nucleotide substitutions, from V565F (F being 
coded by the codon TTT) to V565Y (Y being coded by TAT). 

Off-target mutations that are potentially implicated in resis-
tance, such as those affecting the MAPK (i.e., HRAS, KRAS, 
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(Continued.) B, Patients suffering from other tumor types. C, Molecular findings of patient ST1056, suffering from a lung adenocarcinoma harboring a FGFR2:: 
TACC2 fusion, at acquired progression to erdafitinib. D, Clinicoradiologic and molecular evolution of patient ST238, suffering from a FGFR2 C383R–driven triple- 
negative breast cancer. The ctDNA findings are reported, and ctDNA findings are reported as VAF (%). BOR, best objective response; CR, complete response; 
CUP, cancer of unknown primary; Dera, derazantinib; Erda, erdafitinib; HGSOC, high-grade serous ovarian cancer; LUAD, lung adenocarcinoma; PD, progressive 
disease; Pemi, pemigatinib; PR, partial response; SD, stable disease; TBNC, triple-negative breast cancer. 
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NRAS, and MEK) and PI3K/mTOR pathways (i.e., PIK3CA, 
PTEN, and TSC1), were found in 8/22 (36%) and 3/13 (23%) 
cases progressing on reversible inhibitors and futibatinib, re-
spectively (Figs. 1A, B, 2A, 3B, and C). In eight patients (23%), 

these mutations co-occurred with FGFR2 kinase domain muta-
tions. In two patients with other tumor types progressing on 
erdafitinib, they emerged without concomitant on-target alter-
ations (Fig. 1B). 
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Pooling the molecular data obtained at progression, we observed 
molecular candidates for resistance in 77% and 38% of the patients 
progressing on reversible inhibitors and futibatinib, respectively 
(Fig. 3B and C). 

Sequential treatment strategies 
Within our study cohort, 33% of the patients (n ¼ 12, including 

10 with intrahepatic cholangiocarcinoma and one each from pan-
creatic and duodenal cancers) underwent sequential targeted ther-
apy regimens (with longitudinal sampling) that included irreversible 
FGFR inhibitors and the mTOR inhibitor everolimus. 

Sequential treatments including futibatinib and everolimus 
After progressing on reversible inhibitors, three patients with 

intrahepatic cholangiocarcinoma received a sequential treatment 
with futibatinib and everolimus based on specific molecular findings 
(Fig. 4A). 

Patient MR379 suffered from a tumor harboring both FGFR2:: 
BICC1 fusion and a TSC1 frameshift mutation in the baseline tissue 
sample. At progression to pemigatinib, the two alterations were 
found in ctDNA together with 13 different FGFR2 kinase domain 
mutations, KRAS and MEK1 mutations (Fig. 4B). Futibatinib did 
not induce any clinical benefit (stable disease; PFS 2.7 months), 
whereas everolimus, administered due to the TCS1 loss-of-function 
alteration, led to stable disease with a PFS of 7.6 months. The 
clinical benefit was accompanied by the reduction of the allele fre-
quencies of all the alterations in ctDNA (Fig. 4B). 

Patient MR422 experienced oligo-progression while on pemiga-
tinib. A liver biopsy revealed a new FGFR2 V565I mutation 
alongside the preexisting FGFR2::PNX fusion and PIK3CA H1047R 
mutation (Fig. 4A and C). Despite continued progression, pemi-
gatinib treatment was extended, resulting in increased variant allele 
frequency (VAF) of PIK3CA H1047R, FGFR2 V565I, N550H, and 
N550K mutations. Everolimus, initiated due to the PIK3CA muta-
tion, provided stable disease for 11 months, corresponding to a 
decrease in the VAF of the documented mutations. Their VAF in-
creased again at everolimus progression, and subsequent futibatinib 
administration allowed the achievement of disease stabilization with 
a PFS of 7.8 months. 

Patient MR408 progressed to pemigatinib with an isolated lung 
nodule showing a FGFR2 N550K mutation and PTEN loss. Al-
though everolimus showed no clinical activity, subsequent futiba-
tinib treatment led to tumor shrinkage and a PFS of 7.2 months, 
despite the baseline documentation of a FGFR2 L618V mutation 
(Supplementary Fig. S3). 

Sequential treatments with reversible FGFR inhibitors 
followed by futibatinib 

Five additional patients with FGFR2-driven cholangiocarcinoma 
were treated with futibatinib after experiencing resistance to re-
versible FGFR inhibitors (Fig. 4D). 

Two patients showed clinical benefit from futibatinib (MR586 
and ST1748). Upon progression on futibatinib, FGFR2 V565F/L 
mutations were identified in patient ST1748, consistent with mu-
tations typically seen in FGFR inhibitor–naı̈ve patients. Three other 
patients experienced primary resistance to futibatinib after acquired 
resistance to reversible inhibitors. Of notice, FGFR2 N550D/K and 
V565L were present at futibatinib baseline in MR174, and could 
explain its lack of benefit (Fig. 4E). 

Sequential treatments with lirafugratinib 
Four patients received lirafugratinib after progressing on a pre-

vious inhibitor (pemigatinib or futibatinib), without other inter-
vening therapies (Fig. 5A). 

Lirafugratinib outcomes were divergent among the two 
patients with FGFR2-rearranged cholangiocarcinoma 
progressing on pemigatinib 

Patient MR822, with a prolonged initial response to pemigatinib, 
developed an FGFR2 N550T mutation along with a persistent driver 
fusion FGFR2::WAC. Lirafugratinib treatment resulted in another 
prolonged response, highlighting its effectiveness against this spe-
cific mutation (Supplementary Fig. S4A). Patient ST3470 encoun-
tered primary progression on lirafugratinib despite no detectable 
FGFR2 kinase domain mutations in ctDNA, suggesting an alterna-
tive resistance mechanism (Fig. 5B). Importantly, three FGFR2 
mutations V565L, E566G, and K660M present before lirafu-
gratinib were lost at progression, suggesting their sensitivity to 
lirafugratinib. 

Two other patients suffering from tumors other than chol-
angiocarcinoma also benefited from lirafugratinib after futibatinib 
progression (Fig. 5A). 

Patient MR1271 suffered from a FGFR2::NEK1–driven duodenal 
carcinoma, who progressed on futibatinib with the acquisition of 
FGFR2 V565L in ctDNA, and the major disease response was ob-
served with lirafugratinib (Fig. 5C). 

Patient MR1154 suffered from a pancreatic carcinoma harboring 
FGFR2::CCSER2 fusion. No molecular events potentially implicated 
in resistance to futibatinib were detected, but FGFR2::CCSER2 VAF 
was no longer detectable 3 weeks after lirafugratinib initiation 
(Supplementary Fig. S4B). 

FGFR2 kinase domain mutations exert a differential spectrum 
of resistance according to selective FGFR inhibitors 

To explore how specific FGFR2 kinase domain mutations affect 
resistance to FGFR inhibitors, we used 18 Ba/F3 cell lines, engi-
neered to express the FGFR2::BICC1 fusion with various secondary 
mutations. FGFR2::BICC1 was chosen, being the most frequent fu-
sion observed in our cohort and in other series (35). We exposed 
each Ba/F3 cell line to increasing concentrations of seven selective, 
reversible FGFR inhibitors and to the irreversible agents futibatinib 
and lirafugratinib, in order to establish their IC50 values (Fig. 6A 
and B; Supplementary Fig. S5). 

In our experiments, erdafitinib emerged as the most potent in-
hibitor across all mutants, followed closely by infigratinib and 
futibatinib, achieving sub-nanomolar IC50 values against the wild- 
type FGFR2::BICC1 Ba/F3 cell line (Fig. 6A and B). 

The profiles of sensitivity and resistance conferred by individual 
FGFR2 kinase domain mutations matched with the spectrum of 
mutations emerging in patients treated with either reversible agents 
or futibatinib, respectively (Figs. 3A, 6A, and B). FGFR2 D651H did 
not confer resistance to any of the inhibitors, suggesting its role as a 
passenger event in patient MR313. 

A significant finding from our study was the variable resis-
tance patterns conferred by mutations at key residues within 
FGFR2, notably the molecular brake N550 and the gatekeeper 
V565. Mutations at these sites—N550K and V565F/L/Y—broadly 
conferred resistance across several reversible inhibitors, casting 
doubt on the effectiveness of using these drugs sequentially in 
patients with these mutations. However, other mutations like 
N550T and V565I seemed to result in a lesser degree of 
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resistance. Interestingly, zoligratinib demonstrated relatively 
lower IC50 values against V565F/Y mutations than those against 
V565I/L, indicating specific interactions between the inhibitor 
and variant amino acids at this site. 

The irreversible inhibitors generally showed superior activity 
compared with reversible agents in our Ba/F3 models. Both futi-
batinib and lirafugratinib exhibited efficacy within the 2 to 20 
nmol/L range against various mutations, although they displayed 
slight differences in activity against certain mutations. Notably, 
lirafugratinib was particularly effective against FGFR2 V565F/Y 
mutations, in which futibatinib showed reduced activity due to 
steric hindrances from bulky amino acids like phenylalanine and 
tyrosine (IC50 > 200 nmol/L; refs. 25, 36). In contrast, the two 
irreversible inhibitors showed an opposite profile of activity against 
FGFR2 V565I and V565L mutants, with futibatinib being more 
active on V565I and lirafugratinib on V565L. The slight difference 
in the tridimensional structure between leucine (V565L) and iso-
leucine (V565I) likely explains the activity of the two inhibitors. In 
addition, FGFR2 V565I is known to increase basal activity of the 
kinase domain (37), and the higher potency of futibatinib could 
prevail in this setting. 

The two irreversible inhibitors maintained an IC50 in the 10 to 20 
nmol/L range for FGFR2 N550K, the most common mutation 
arising after a reversible inhibitor. Because FGFR2 N550K occurred 
in two patients progressing on futibatinib, and in five patients the 
gatekeeper FGFR2 V565L emerged (Figs. 2A and 4D), we suppose 
that these two mutations cannot be overcome with clinically 
achievable concentrations of the agent. 

In order to further validate our in vitro preclinical analyses on 
more clinically relevant models in vivo, we established PDXs from 
biopsies of patients with cholangiocarcinoma, collected at the time 
of acquired resistance to FGFR inhibitors. We treated three PDX 
models with pemigatinib, erdafitinib, futibatinib, and lirafugratinib 
(Fig. 6C). The FGFR2 N550D mutation in MR174 PDX, established 
at progression to erdafitinib, could be overcome by futibatinib and 
lirafugratinib. In addition, a dose effect was noticed for lirafu-
gratinib, with tumor growth abrogated only at the dose of 60 mg/kg 
(and not 20 mg/kg), which is in line with the IC50 observed in the 
Ba/F3 models. MR369 PDX, established at progression to pemiga-
tinib, harbored a FGFR2 V565L mutation, whereas MR332 PDX, 
established at futibatinib resistance, harbored FGFR2 V565F (see 
Fig. 2C). In both cases, only lirafugratinib (even at low doses) was 
able to prevent tumor growth in this in vivo model, confirming our 
suggestion that gatekeeper mutations FGFR2 V565L/F can be dif-
ficult to overcome with futibatinib in the clinical setting, while 
retaining sensitivity to lirafugratinib. 

Of note, two of the PDX models (MR174 and MR369) were 
established from patients progressing with polyclonal FGFR2 kinase 
domain mutations detected in ctDNA, but only one mutation was 
found in the corresponding tissue biopsy and PDX (Fig. 6C). These 
observations underscore the limitation of tissue biopsies to fully 
recapitulate the molecular spectrum of heterogeneity observed in 
patients at resistance. 

Discussion 
FGFR inhibition in FGFR2-driven malignancies marks a sig-

nificant advance in precision oncology, emphasizing the need to 
understand molecular mechanisms behind drug resistance to de-
velop new treatment strategies. Our study integrates extensive 
clinical and molecular data, along with in vitro and in vivo 

validation assays, to explore resistance mechanisms in patients 
with FGFR2-driven cancers, including cholangiocarcinoma and 
other tumor types. 

Our findings confirm that polyclonality of FGFR2 kinase do-
main mutations is commonly observed in ctDNA from patients at 
progression on reversible inhibitors, particularly in chol-
angiocarcinoma (18–20). Indeed, FGFR2 kinase domain mutations 
were undetectable or found as isolated entities in tissue analyses, 
compared with multiple alterations in ctDNA, highlighting the 
“polyclonal” nature of tumor progression and the fundamental 
role of liquid over tissue biopsy. Interestingly, such mutations 
were less common after treatment with the irreversible inhibitor 
futibatinib, which primarily affected the molecular brake N550 
and gatekeeper V565 residues. 

Recently, Wu and colleagues (21) gathered data on resistance 
mechanisms in patients with FGFR2-driven cholangiocarcinoma, 
pooling evidence from published articles and meeting abstracts. In 
our study, we were able to differentiate between resistance to re-
versible inhibitors and futibatinib, providing clinical proof to their 
functional observations. As predicted by their evaluation of clin-
ically achievable doses of futibatinib, in our cohort, FGFR2 N550K 
frequently emerged at progression to the irreversible agent. In-
terestingly, we did not detect any mutation in the binding site for 
irreversible inhibitors (FGFR2 C492), in line with the reduced 
cellular fitness caused by these mutations, which somehow sug-
gests their limited frequency of occurrence, such as the FGFR2 
C492F found in the patient reported by Berchuck and colleagues 
(32). On the other hand, FGFR2 V565L, labeled by Wu and col-
leagues as sensitive to futibatinib, was the mutation most fre-
quently observed at progression to the irreversible inhibitor in our 
cohort. 

Similarly, resistance mechanisms in tumors other than chol-
angiocarcinoma mirrored those observed in cholangiocarcinoma, 
involving known FGFR2 residues and off-target resistance mecha-
nisms. If considering the nine patients with other tumor types in 
our cohort, together with the report from Nicolò and colleagues (ref. 
28; FGFR2 V565L detected at pemigatinib progression in a patient 
with breast cancer), the emergence of polyclonal FGFR2 mutations 
was limited to only one patient with a lung adenocarcinoma pro-
gressing on erdafitinib (Fig. 1C). More recently nevertheless, Rodón 
and colleagues (15) detected polyclonal FGFR2 mutations in two 
patients with non-cholangiocarcinoma tumors progressing on 
pemigatinib. Nevertheless, the overall small number of patients 
with FGFR2-driven other tumor types evaluated at resistance 
challenges the conclusion that the propensity of developing 
polyclonal FGFR2 mutations is a feature more common in 
FGFR2-driven cholangiocarcinoma. 

Furthermore, in concomitance with FGFR2 kinase domain mu-
tations or not, alterations in genes of the PI3K/mTOR pathway were 
frequently present at progression to reversible inhibitors and futi-
batinib. Interestingly, in three patients, clinical benefit was obtained 
from reversible FGFR inhibitors or futibatinib, despite the presence 
of PI3K/mTOR alterations at baseline (MR379, MR422, and 
MR553), which were maintained at progression (Figs. 1A and 2A). 
In line with our clinical observations, Wu and colleagues (21) re-
cently reported that the PI3KCA E545K mutation does not impact 
futibatinib sensitivity in the context of FGFR2-driven chol-
angiocarcinoma cell lines. 

Here, the mTOR inhibitor everolimus provided clinical benefit 
in two patients with alterations in TSC1 or PIK3CA at progression 
to FGFR inhibition. The reduction in VAF of concomitant FGFR2 
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kinase domain mutations during everolimus treatment suggests 
that the on-target alterations probably emerged as an early event 
in a tumor clone already harboring the corresponding TSC1 or 
PI3KCA mutations (Fig. 4B and C). It therefore seems that the loss 
of function of TSC1 and the activation of PIK3CA do not represent 
the bona fide molecular mechanisms responsible for resistance to 
FGFR inhibitors, still explaining the clinical benefit from 
everolimus. 

The enrichment in MAPK pathway alterations in a setting similar 
to ours has been recently reported by DiPeri and colleagues (27) in 
cholangiocarcinoma. Whether these mutations can be overcome by 
combination treatments in the clinical setting is still to be proven, as 
according to their data, only an in vitro synergistic effect of FGFR/ 
MEK inhibition was achieved, with no meaningful effect in the in 
vivo model. 

In the present study, irreversible inhibitors were also adminis-
tered after progression to reversible ones in one third of the patients. 
We integrated the case-by-case analysis of the clinical response in 
the presence of precise FGFR2 kinase domain mutations, with the 
dynamics of resistance mutations in ctDNA during treatment se-
quencing, and exploring functional data in Ba/F3 cellular models 
and matched PDX models. Nevertheless, the unique complexity of 
FGFR2-driven tumors at progression to reversible inhibitors, in 
terms of high levels of molecular heterogeneity, hampers the defi-
nition of precise patterns of resistance suitable for the sequential 
treatment with an irreversible agent. This is in contrast with single 
on-target mutations in EGFR- and ALK-driven lung cancer, over-
come by the respective third generation inhibitors in the clinical 
setting (38, 39). In our cohort and in line with other reports (6, 40), 
in case of progression to a first FGFR inhibitor (reversible or 
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futibatinib) mediated by a unique FGFR2 kinase domain mutation, 
the clinical activity profiles of futibatinib and lirafugratinib corre-
sponded well to our functional assessment. We were indeed able to 
overcome resistance to reversible inhibitors and futibatinib due to 
mutations occurring in the FGFR2 gatekeeper residue (FGFR2 
V565F/L). In line with the initial proofs from Subbiah and col-
leagues (25), the FGFR2-selective inhibitor lirafugratinib was active 
in our Ba/F3 cellular models, PDX, and in patient MR1271 (FGFR2 
V565L). 

On the other hand, objective responses to futibatinib and lir-
afugratinib were observed even in cases with polyclonal FGFR2 
kinase mutations (20, 25). The relative abundance of each individual 
resistance mutation at the baseline of the irreversible inhibitors is 
suspected to influence the clinical response on a systemic scale. 
Emblematic in this sense is the evolution of our patient ST3470, 
experiencing primary resistance to lirafugratinib despite clearance of 
three FGFR2 kinase domain mutations (Fig. 5B). Considering their 
better on-target activity, it is possible that progression to irreversible 
FGFR inhibitors occurs without detectable FGFR2 kinase domain 
mutations or off-target alterations, suggesting the implication of 
additional mechanisms, as indicated by the resistance study to 
futibatinib in our cohort (Fig. 3C). 

Given the unpredictability of resistance mechanisms and the 
corresponding activity of irreversible inhibitors administered in a 
sequential way, their administration as first anti-FGFR agents seems 
appropriate, particularly considering the outcomes of clinical ac-
tivity reported in clinical trials in this setting (9, 10). As shown here 
in two cases (Fig. 5), switching from an irreversible inhibitor to 
another can also be a suitable therapeutic option. 

This study, however, is not without limitations. Primarily, it relies 
on genomic analyses, potentially overlooking nongenetic factors like 
epithelial–mesenchymal transition or activation of alternate resis-
tance pathways, as recently reported for EGFR in FGFR2-driven 
cholangiocarcinoma (41, 42). Moreover, our focus is mainly on on- 
target resistance mechanisms, with less emphasis on proving the 
role of off-target events such as MAPK and PI3K/mTOR alterations. 
The lack of systematic tissue biopsy and ctDNA analysis at multiple 
timepoints for all patients may also have constrained the depth of 
our insights into resistance mechanisms. Finally, the lack of clinical 
data of resistance to lirafugratinib limits our observations of resis-
tance to irreversible FGFR inhibitors. 

In summary, the present work provides a global approach to 
apprehend resistance mechanisms to FGFR inhibitors across 
FGFR2-driven diseases, a clinical entity of major current interest 
given the development of active targeted agents. Our clinical and 
molecular findings are corroborated by functional analyses of 
FGFR2 kinase domain mutations in conferring resistance to dif-
ferent FGFR inhibitors. The additional clinical experience with se-
quential treatment with FGFR inhibitors or everolimus, together 
with the concomitant longitudinal study on resistance mechanisms, 
provides further valuable information both on the potential clinical 
management of patients and on the molecular correlates of resis-
tance in this setting. 
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