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Summary

Stabilizing new memories requires coordinated neuronal spiking activity during sleep. 

Hippocampal sharp-wave ripples (SWRs) in the Cornu Ammonis (CA) region, and dentate spikes 

(DSs) in the dentate gyrus (DG) are prime candidate network events for supporting this offline 

process. SWRs have been studied extensively but the contribution of DSs remains unclear. By 

combining triple-(DG-CA3-CA1) ensemble recordings and closed-loop optogenetics in mice we 

show that, like SWRs, DSs synchronize spiking across DG and CA principal cells to reactivate 

population-level patterns of neuronal coactivity expressed during prior waking experience. 

Notably, the population coactivity structure in DSs is more diverse and higher-dimensional than 

that seen during SWRs. Importantly, suppressing DG granule cell spiking selectively during 

DSs impairs subsequent flexible memory performance during multi-object recognition tasks, 

and associated hippocampal patterns of neuronal coactivity. We conclude that DSs constitute a 
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second offline network event central to hippocampal population dynamics serving memory-guided 

behavior.

Introduction

Memories are stabilized during periods of sleep and rest 1–4. Decades of work have provided 

important insights into the underlying brain network mechanisms and have identified offline 

hippocampal activity as essential for this process 5,6. Central to our current understanding 

are hippocampal sharp-wave ripples (SWRs) that feature an intermittent, high-frequency 

(100 – 250 Hz) network event detected in the local field potentials (LFPs) of the CA1 region 
7–10. During SWRs, the firing activity of CA1 principal cells is transiently modulated 11,12 

and reactivates the population-level firing patterns expressed in previous waking experience 
13. These offline spiking correlates have behavioral significance: suppressing CA1 neurons 

during SWRs impairs memory recall for recently acquired information 14–16. Conversely, 

prolonging SWRs or reinforcing the coordination between SWRs and neocortical activity 

promotes memory consolidation and subsequent behavioral performance 17,18. Hippocampal 

SWRs therefore constitute an offline network event important for memory-guided behavior. 

However, during sleep/rest periods the hippocampus exhibits another prominent network 

event: dentate spikes (DS), which are seen in the LFPs of the dentate gyrus (DG). To date, 

DSs have received little attention compared to SWRs. Accordingly, here we characterize the 

neuronal spiking dynamics nested in DSs with respect to SWRs and evaluate whether DSs 

constitute a second network event central to offline reactivation of waking firing patterns and 

subsequent memory-guided behavior.

The DG gates sensory information to the hippocampus, notably decorrelating these inputs 

into dissimilar neural patterns 19–21. This function may be crucial for the hippocampus 

to integrate multiple items in memory and to flexibly distinguish between stimuli with 

overlapping features. Within the DG, DSs represent intermittent, large amplitude network 

events recorded in the LFPs of the DG granule cell layer and are associated with increased 

spiking activity in dentate cells 22–24. However, across the literature both increased and 

suppressed spiking activity of CA principal cells have been reported 22,24–28, although, 

notably, some of these studies were in anesthetized 25,27 or head-fixed animals 24,28. Thus, 

here we further performed a systematic comparative assessment of DG and CA principal cell 

spiking activity during DSs versus SWRs in non-anesthetized, freely behaving mice.

To investigate the influence of DSs on hippocampal population activity and memory, we 

combined triple-(DG-CA3-CA1) site extracellular multichannel recordings and closed-loop 

optogenetic interventions in mice during active exploratory behavior and offline sleep/rest. 

We observed that during offline DSs, principal cell spiking transiently increased across 

the DG and CA regions of the hippocampus, nesting offline population-level activity 

patterns that are distinct from those in SWRs. Further, we report that the cell-to-cell 

coactivity seen during prior waking experience is reactivated during DSs (as well as SWRs). 

DS-nested neuronal activity is relevant to whole-hippocampus population dynamics and 

memory-guided behavior: closed-loop suppression of DG granule cell spiking selectively 

during offline DSs, but not SWRs, impairs subsequent flexible memory performance in 
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hippocampal-dependent, multi-object recognition tasks. We propose that DSs constitute a 

second hippocampus network event that plays a complementary role to that of SWRs by 

supporting the offline reactivation of diverse population patterns of neuronal coactivity in 

support of memory-guided behavior.

Results

Firing activity of hippocampal neurons synchronizes during DS events

We first used triple-(DG-CA3-CA1) site tetrode recordings to monitor network events in 

the LFPs and the spike trains of neuronal ensembles from the dorsal hippocampus of mice 

during sleep/rest (Figures 1A,B and S1A-C; n = 12 mice). From these LFPs, we detected 

DSs in DG and SWRs in CA1 to compare the spiking activity of principal cells between 

these two types of network event. Across mice and recording sessions DS waveforms 

were highly consistent (Figure S1D,E). Both DG DSs and CA1 SWRs were of short 

duration (Figure S1F; median (IQR) duration: DSs = 42.4 (40.0 – 46.4) ms; SWRs = 

47.5 (45.2 – 51.0) ms) and occurred intermittently (median (IQR) occurrence frequency: 

DSs = 0.40 (0.25 – 0.58) Hz; SWRs = 0.75 (0.26 – 1.26) Hz) during behavioral and LFP 

profiles indicative of sleep/rest (Figure S1G,H). These two network events rarely occurred 

simultaneously, consistent with previous reports 22,29, with the vast majority of DSs not 

expressed within ± 50 ms of a SWR (median (IQR): 92.5 (87.9 – 95.6) %; DS-SWR 

co-occurrence frequency: 0.03 (0.02 – 0.05) Hz; Figure S1I,J). We computed the firing 

responses of individual principal cells (n = 2,196 total recorded principal cells; CA1, 887; 

CA3, 388; DG, 921 cells; Figure S2A-F) with respect to the peak of either DSs or SWRs, 

excluding those temporal windows where both events co-occurred within ±50 ms. With the 

term “principal cells,” we refer to CA pyramidal cells and DG granule cells that constitute 

the dominant (hence “principal”) cell type in the hippocampus, exhibiting lower mean firing 

rates compared to local fast-spiking inhibitory cells (Figure S2E). In line with previous 

work, DG principal cells transiently increased their firing activity during DSs 22,25; and the 

activity of CA principal cells increased during SWRs (Figures 1C-G and S2G-P) 8,30. We 

further observed that DG principal cell firing increased during SWRs (Figures 1C,F,G and 

S2G-P); and that CA principal cells also increased their firing rate during DSs (Figures 

1D-G and S2G-P), which contrasted with some earlier reports that CA principal cell firing is 

suppressed during DSs 22,25.

To quantify the magnitude of neuronal activation during DSs and SWRs, we calculated the 

proportion of DG, CA3, and CA1 principal cells that increased their firing rate beyond 

a given significance threshold, using the z-scored peri-event time histograms obtained 

for each of these two network events (Figure 1G). During DSs, the majority of DG 

(91%), CA3 (56%), and CA1 (61%) principal cells increased their firing rate more than 

three standard deviations above baseline (z-score > 3, p < 0.003; Figure S2G-I). During 

SWRs, a comparable proportion of principal cells significantly increased their firing activity 

beyond this threshold (Figure S2G-I). Hippocampal CA principal cells exhibited preferential 

activation during SWRs whereas DG principal cells exhibited preferential activation during 

DSs (Figure S2I). DG principal cell population typically fired before CA principal cell 

populations during DSs (Figure S2J-N). While DG and CA principal cells exhibited such 
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a temporal relationship, both DSs and SWRs were associated with an overall transient 

increase in hippocampal spiking activity (Figure S2O,P).

Previous studies identified two types of DS event (DS1 and DS2), based on the laminar 

profile of the transmembrane currents associated with the LFP expression of these 

network events 22,24,26. Therefore, we next asked whether principal cell firing responses 

differed between DS1 and DS2. However, localizing sinks and sources of currents across 

hippocampal layers requires applying Current Source Density (CSD) analysis 31 to the LFPs 

measured at evenly spaced sites from the CA1 oriens layer to the DG granule cell layer. 

Such a laminar profile is not accessible with tetrode recordings. To distinguish between DS1 

and DS2 events, we therefore implanted linear silicon-probes spanning the somato-dendritic 

axis of CA1 principal cells and reaching the inferior blade of the DG in a separate group 

of mice (n = 3). Having performed silicon-probe recordings during sleep/rest, we applied 

CSD analysis to these LFPs measured over the radial extent of the hippocampus to identify 

DS1 versus DS2 according to their underlying profile of current sinks and sources (Figures 

2A and S3A). These CSD-validated DS1 and DS2 events exhibited distinct DG granule cell 

layer LFP waveforms (Figures 2B and S3B). We then trained a linear discriminant analysis 

classifier to identify these CSD-validated DS1 versus DS2 events using only their DG 

granule cell layer LFP signal. When tested on the silicon-probe LFP dataset, the classifier 

achieved over 85% accuracy (Figure 2C). When next applied to the tetrode LFP dataset, 

the classifier-identified DS1 and DS2 events also exhibited distinct granule cell layer LFP 

waveforms (Figures 2D and S3C,D), which were consistent with those obtained in silicon-

probe recordings (Figures 2B and S3B). In both (tetrode and silicon-probe) datasets, DS2 

represented two-thirds of the DS events (median (IQR): 66 (61 – 73) %), thus constituting 

the dominant type. Leveraging this cross-dataset approach, we found that the firing response 

of DG and CA principal cells was stronger for DS2 than DS1 (Figures 2E-G and S3E-J). 

A greater proportion of CA principal cells showed firing activity below baseline during 

DS1 compared to DS2 (35% versus 11%; Figures 2F and S3K,L), providing insights 

into the previously documented DS-suppressed firing in some CA principal cells 22,25,32. 

Nevertheless, the average activity of principal cells in DS1 (and DS2) was significantly 

higher than their baseline firing (calculated outside of any DS and SWR events) during 

sleep/rest (Figures 2G and S3G,H) and their overall mean firing rate calculated over the 

whole recording day (Figure S3I,J). These results show that DS events (both DS1 and DS2) 

constitute transient network states that are qualitatively distinct from the sleep/rest epochs 

outside these events in terms of their capacity to increase spiking activity of individual 

principal cells distributed across hippocampal regions.

DS events nest higher dimensional patterns of population coactivity

We next investigated how the hippocampus organizes the collective activity of its principal 

cells both within individual DS events and across events, comparing these population-level 

patterns to those expressed in SWRs. To proceed, we first considered the neuron-wise 

vectors formed by the instantaneous spike discharge of principal cells in DSs, SWRs, or 

duration-matched control windows (without any DSs or SWRs) of the same sleep/rest 

(Figures 3A and S4A; “population vector analysis”). This was conducted for all sleep/rest 

epochs (both those recorded before and those after active exploratory behavior). Using 
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the Gini index 33,34, we noted a marked decrease of the mean population sparsity in 

the spiking vectors nested in DSs and SWRs compared to baseline periods of duration-

matched control windows (Figure 3B), with equivalent population sparsity levels during 

DS2 versus SWRs (Figures 3C and S4B-C). A logistic regression classifier trained on a 

subset of these population firing vectors and iteratively tested on the remaining subset 

significantly distinguished between DS and SWR events but could not distinguish between 

their corresponding pre-event nor their post-event control epochs (Figure 3D). Successful 

classification was also obtained when using only DS2 events, which matched SWRs in the 

mean population sparsity per event (Figure S4D). When evaluating the pairwise similarity of 

DS-nested population vectors versus those of SWR-nested vectors (Figure 3E), we further 

observed that DSs contained a higher diversity (i.e., lower similarity) of firing vectors 

compared to those in SWRs, which in turn were more similar to one another (Figures 3F,G 

and S4E-H).

This difference in population vector similarity suggested that DSs and SWRs differ with 

respect to their neuronal motifs of transient coactivation. By examining the topological 

organization of peer-to-peer firing associations, we indeed observed that DS events contain 

stronger motifs of coactive principal cells than SWRs. For each cell pair (i, j), we trained 

a generalized linear model to predict the spike discharge of neuron j from that of neuron i 
while accounting for the activity of the remaining peers (Figure 3A; “peer-to-peer coactivity 

analysis”). We performed this procedure separately for DS and SWR events, which returned 

for each type of network event a matrix of β regression weights that represented the 

coactivity structure of the population (Figure 3H). With these matrices, for both DS and 

SWR events we constructed neuronal coactivity graphs (with no self-connections) where 

each node is a cell and the edge linking any two nodes represents the firing association of 

that cell pair (Figure 3I,J). This revealed that DS-based graphs contained stronger triads of 

coactive nodes compared to SWR graphs (Figures 3K and S4I,J). This remained the case 

when directly comparing DS2 and SWR events (Figure S4K), and when calculating the 

neuron-wise average coactivity strength (Figure S4L).

These findings showed that while both DS and SWR events synchronize hippocampal 

principal cells, population coactivity responses to DSs are more diverse. To further assess 

this, we applied principal component analysis to quantify and compare the variance 

explained by the activity patterns nested in DS1, DS2, and SWR. This revealed higher 

dimensionality of population vectors in DS events compared to SWRs (Figures 3L and Table 

S1). This was accounted for by DS2 firing vectors, with those nested in DS1 requiring fewer 

principal components to explain equivalent variance and exhibiting lower dimensionality 

than those in DS2 and SWRs (Figure S4M-P).

Waking theta coactivity patterns reactivate in offline DSs and support flexible memory

The DS-nested motifs of peer-to-peer firing associations could instantiate population 

patterns of neuronal coactivity undergoing offline reactivation to support memory-guided 

behavior. Notably, the link between hippocampal SWRs and memory reactivation was 

initially established through the observation that the neural patterns of joint spiking activity 

expressed during exploratory behavior are more strongly correlated with those nested 
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in post-exploration sleep/rest SWRs than those in SWRs before waking experience 8,13. 

Accordingly, we next determined whether DSs constitute another hippocampal timeframe 

for offline reactivation of waking coactivity patterns. To proceed, we used our peer-to-peer 

coactivity analysis (Figure 3A), applying it to DS versus SWR events of sleep/rest before 

and after exploration of open field arenas (Figures 4A and S5). Likewise, we obtained the 

waking patterns of population coactivity in theta cycles during exploration. With these, we 

computed DS and SWR reactivation by measuring the tendency of the peer-to-peer theta 

firing associations to reoccur in post-exploration sleep/rest DS (or SWR) events, while 

controlling for prior pre-exploration DS (or SWR) coactivity and mouse identity, using a 

linear mixed model. In line with previous work, offline patterns of SWR coactivity reflected 

those of theta coactivity significantly more during post-exploration than pre-exploration 

sleep/rest (Figure 4B, left panel; Figure S5B,D). This SWR reactivation was significantly 

higher than that obtained with a null distribution generated from models using randomly 

shuffled cell pair identities (Figure 4B, right panel). Importantly, we observed that theta 

coactivity patterns were also strongly reactivated in post-exploration DSs (Figures 4C, 

S5C,E and Table S2). The clustering coefficient was higher in DSs than SWRs, and also 

increased from pre- to post-exploration sleep in both SWRs and DSs (Figure S5F,G). 

Analyses of DS1 and DS2 separately showed evidence for reactivation during both types of 

post-exploration DS events (Figure S5H,I). By applying the same analytical framework to 

the neuronal ensembles tracked in SWRs and DSs, this result provided evidence for offline 

DS reactivation of hippocampal waking firing patterns.

The offline reactivation of waking population patterns in sleep/rest DSs (Figure 4C), which 

contain more diverse and higher-dimensional patterns of neuronal coactivation than those 

found in SWRs (Figure 3F,L), raised the question of their network contribution to memory-

guided behavior. We thus tested whether the offline population response during DSs was 

necessary to perform tasks that require integrating multiple items in memory to flexibly 

distinguish between familiar and novel stimuli. To this end, we transduced DG granule 

cells with the yellow (561-nm) light-driven optogenetic silencer Archaerhodopsin T (ArchT) 

in Grm2-Cre mice (Figure 5A,B). We then implanted these DGGrm2::ArchT mice for triple-

(DG-CA3-CA1) ensemble recordings combined with bilateral optic fibers for DG light 

delivery. In these experiments, DG light delivery was performed in a closed-loop manner 

during sleep/rest using the real time detection of either DSs (in the DG LFPs), or SWRs 

(in the CA1 LFPs; Figure 5A,C,D; “DS-Sync” or “SWR-Sync” conditions). We also used 

a within-subject control paradigm whereby, on different days, light was not synchronized 

to but instead delivered after each DS or SWR had elapsed (“DS-Delay” or “SWR-Delay” 

conditions). DS synchronized light delivery did not affect the amplitude of the DG or 

CA1 LFPs, nor CA1 ripple duration, occurrence probability, or power (Figure S6A-I). DS-

synchronized light delivery significantly reduced spiking activity in DG neurons compared 

to when laser-onset was DS-delayed (Figure 5E-G); and also reduced spiking activity in 

CA principal cells (Figure S6J,K). Paired analysis of the firing rates of dentate granule 

cells during DS events without light delivery versus those with light deliver (DS-Sync) 

also showed significantly reduced instantaneous spiking (15.0±0.7 versus 10.4±0.6 Hz). 

SWR-synchronized light delivery also significantly suppressed DG neuronal spiking (Figure 

5H-J).
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We applied these closed-loop light-delivery approaches during interposed sleep/rest sessions 

in three behavioral tasks (Figures 6 and S6L-T). The first, hippocampal-dependent task 

required mice to recognize previously encountered (familiar) versus novel objects 35. In this 

novel-object recognition task, mice repeatedly explored a square-walled arena containing 

four objects (Figure 6A,B). In the first session (‘Sampling’), mice encountered four distinct 

novel objects, each one placed beside a wall. On the subsequent sessions (‘Test’), one of 

the initially sampled objects was replaced by a different novel object so that the mouse 

could explore one completely novel object along with the three ‘familiar’ objects from the 

previous session that day. These exploration (sampling and test) sessions alternated with 

sleep/rest sessions where mice received DG-targeted light delivery, either synchronized or 

delayed with respect to either DS or SWR onset, thus yielding four distinct experimental 

conditions (DS-Delay, DS-Sync, SWR-Delay, SWR-Sync). In each test session n, we 

measured novelty preference using the proportion of time mice spent investigating the novel 

versus the familiar objects, thereby probing recognition memory for session n − 1. We found 

that novelty detection was not impaired in test sessions following sleep with DG granule 

cell suppression in either DS delayed, SWR delayed, or SWR synchronized conditions: 

mice subsequently expressed a stronger preference for novel over familiar objects under 

these three conditions (Figure 6C,D). This novel object preference was similar to that 

observed in control mice without any optogenetic intervention (Figure S6L). However, novel 

object preference was absent in test sessions following DS-synchronized suppression (Figure 

6C,D). The total object exploration time, number of laser pulses and number of SWRs did 

not differ between the DS-synchronized and DS-delayed conditions (Figure S6M-O).

We also tested the offline DS-informed suppression of DG granule cells after tone fear 

conditioning as a non-hippocampal-dependent task 36. Mice were trained with five tone-

shock pairings and, following DS-synchronized or DS-delayed suppression, we evaluated 

fear memory by measuring freezing behavior during a recall session in which tones were 

played but no shocks were given. Compared to baseline freezing (measured during the first 

tone of training, before any shocks were given), mice exhibited higher (and equivalent) 

freezing levels during recall regardless of whether they had received DS-synchronized or 

DS-delayed suppression (Figure S6P-S).

We finally tested whether DS-synchronized suppression affected performance in a novel-

position recognition task that is reportedly more sensitive to DG than CA1 lesions, whereas 

novel-object recognition requires both DG and CA1 37. This novel-position task is similar to 

the novel-object recognition task in that mice explore four novel objects during the sampling 

phase (Figure 6E). However, rather than introducing a new object in the test phase, the 

locations of two of the initially sampled objects are swapped for the subsequent session, 

leaving the other two objects in their original locations (Figure 6E). We found that mice 

preferentially explored the novel-positioned objects following DS-delayed suppression of 

DG granule cells but showed no such preference following DS-synchronized suppression 

(Figures 6F,G and S6T).

Recent work has identified that the continued integration of new items in memory 

is associated with increased neuronal coactivity patterns nested in hippocampal theta 

oscillations 38. In line with this, we found that the preserved object recognition memory 
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observed after offline DG cell suppression in the DS-delayed, SWR-delayed, and SWR-

synchronized conditions was accompanied by stronger theta coactivity (Figure 6H). This 

was not the case following DS-synchronized suppression (Figure 6H), indicating that DS 

silencing disrupts the integration of recently experienced information. Collectively, these 

results show that the hippocampal population response to offline DS events is required for 

flexible, memory-based recognition of previously encountered items and associated network 

gain in theta coactivity.

Discussion

Our findings establish that offline DSs activate neurons across the DG and CA regions. DSs 

are therefore a second hippocampal network event that hosts short timescale coactivation 

forming population-level neural patterns, like the well-established SWRs. However, the 

activity structure and neuronal content are distinct in DSs. Notably, we found that DSs 

nest stronger motifs of coactive neurons, yielding population patterns of higher diversity 

and dimensionality compared to those in SWRs. Like SWRs, DSs reactivate hippocampal 

population patterns expressed in prior waking experience. This offline reactivation is 

behaviorally significant: closed-loop suppression of DG granule cell spiking selectively 

during offline DS events is sufficient to disrupt downstream CA principal cell activity 

and impair flexible recognition memory for previously encountered items, as well as the 

associated network gain in theta-nested neuronal coactivity. Collectively, these findings 

identify a core contribution for DSs to hippocampal patterns of population activity and 

memory-guided behavior.

We started this investigation by observing that DSs increase spiking activity in principal 

cells across the DG, CA3, and CA1 regions of the hippocampus. This finding is consistent 

with previous reports of DS-evoked spiking activity in DG granule cells but contrasts with 

some earlier reports of DS-suppressed CA pyramidal cell spiking 22,24–26. Notably, Bragin 

and colleagues reported suppressed spiking in 3/14 CA3 principal cells and suppressed CA1 

multi-unit activity in 2/10 rats, showing some, rather than consistent, CA suppression. In 

addition, Penttonen et al. reported suppressed CA1 multi-unit activity and hyperpolarization 

of 4 intracellularly recorded CA1 neurons during DSs in anaesthetized rats. However, 

DS rates are ~10-fold lower and have smaller amplitude during anesthesia compared to 

DSs observed during natural sleep/rest 25. Other studies reported increased CA1 multi-unit 

activity 26 and increased CA3 single-unit spiking during DS events 24 in non-anaesthetized 

mice. Here, we report a variety of firing responses across individual CA neurons, ranging 

from strong activation to suppression during DS events (Figures 1G and 2F). However, our 

systematic study (including > 3,500 principal cells; Supplemental Table S3) shows that DSs 

do indeed drive increased mean population spiking activity in both DG and CA principal 

cells (Figure 2G).

Previous studies distinguished between two types of DS event (DS1 and DS2), based on the 

laminar profile of their transmembrane currents 22,24,26. Here, we found that DS2 are more 

effective than DS1 events at recruiting hippocampal principal cells, with higher spike rates 

per cell and more coactive cells per event. This result is consistent with a recent report that 

DS2 but not DS1 events reliably increase spiking in DG and CA3 principal cells 24. The 
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same report saw only a slight increase in CA1 spiking during DS2, and no effect of DS1 

events on either CA1 or CA3 principal cells. They also found that DG principal cell spiking 

was suppressed during DS1, in contrast to our study and previous reports 22. Here we found 

that both DS1 and DS2 events evoked significantly increased spiking activity in DG, CA3, 

and CA1 principal cells, but again would emphasize the diversity of CA cell responses, 

especially during DS1 events (Figure 2F). The observed differences between studies might 

reflect differences between DS events in head-fixed awake mice versus those in sleep/rest 
22,29. They could also indicate a moment-to-moment diversity across individual DSs, similar 

to that highlighted for individual SWRs 39 and theta cycles 40.

In this study, we directly compared patterns of population spiking activity in DSs versus 

SWRs. We found that population firing differed across these two types of network event; 

allowing a classifier to distinguish DSs versus SWRs based on their instantaneous vectors 

of principal cell spiking (Figure 3D). We also observed that population patterns in DSs 

are overall more diverse (less correlated) than those in SWRs, showing stronger triads of 

coactive neurons and higher dimensionality (Figures 3 and S4). DS1 and DS2 population 

patterns yet showed distinct trends with respect to SWRs: DS1 firing vectors exhibited 

less diversity (i.e., required fewer principal components to explain most of the variance; 

Figure S4O) and lower dimensionality (Figure S4P) than those in SWRs; DS2 firing vectors 

showed the opposite trend. Previous work has reported that DS1 and DS2 events relate to 

distinct entorhinal cortex inputs, with DS1 relying more on lateral entorhinal cortex while 

DS2 events rely more on the medial entorhinal cortex 24. This suggests a possible division 

of mnemonic labor where DS1 population patterns would favor non-spatial information 

streams while DS2 might favor spatial information 41. We also found that waking patterns 

of neuronal coactivity nested in theta oscillations reactivate in DSs of post-exploration sleep/

rest (Figures 4 and S5). Notably, the distributions of coactivity values in DSs indicate both 

positive and negative firing associations (Figure S5E). The coexistence of correlated and 

anti-correlated spiking activities in DSs could reflect a Hebbian learning rule as reported 

in SWRs 42 whereby positive and negative changes in hippocampal principal cell firing 

associations can shape offline DS reactivation as a function of recent waking experience. 

These findings provide important evidence for offline reactivation of hippocampal waking 

firing patterns outside of SWRs, stimulating new avenues for future work to explore.

To determine whether spiking activity observed during DS events was required for 

subsequent memory-guided behavior, we deployed a closed-loop optogenetic feedback 

approach to suppress DG granule cell activity selectively during DS events (Figures 5 

and S6). Real-time inhibition of the DG in Grm2-Cre mice did not yield a complete 

suppression of the spiking activity in dentate granule cells. This also did not alter the 

magnitude of dentate spikes, which powerful expression in the DG LFPs could reflect 

the high cellular density of the granule cell layer and its strong neural inputs. This DS-

synchronized suppression of DG principal cells reduced concomitant spiking activity in CA 

principal cells, but did not affect the expression of SWRs in CA1. When applied in sleep/rest 

following object-location exploration, this DS-synchronized neural suppression impaired 

subsequent memory performance in both novel-object and novel-position recognition tasks. 

Although ours is the first study to leverage a closed-loop optogenetic approach, these 

findings are consistent with previous behavioral studies using electrical stimulation to 

McHugh et al. Page 9

Neuron. Author manuscript; available in PMC 2024 October 16.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



disrupt hippocampal activity during DSs 32,43,44. While both approaches provide strong 

evidence for a central contribution of DS events in memory-guided behavior, it is important 

to recognize that optogenetic and electrical interventions do not recapitulate natural 

hippocampal activity patterns. Moreover, DS2 represents the dominant type of DS event 

that exhibit, in comparison to DS1, stronger firing rate increase of DG, CA3, and CA1 

principal cells (Figure 2G), neuronal recruitment (Figures S3E,F) and coactivity (Figure 

S4L) and lower dimensionality (Figure S4O,P). The major effect of DS activity on memory 

may be associated with DS2, a hypothesis that future technological (closed-loop controller) 

development for differential manipulation of DS1 versus DS2 would be able to test. We also 

found that increased theta coactivity was associated with recognition memory, and that this 

network gain in theta coactivity was absent following DS-synchronized neural suppression 

(Figure 6H). This finding is consistent with recent work showing that continual integration 

of new memory items across behavioral experiences increases neuronal coactivity 38. 

Altogether, these results support the idea that neuronal activity during DS events plays an 

important role in subsequent memory-guided behavior, as SWRs do.

Why does the hippocampus use more than one offline network mechanism to support 

memory? DSs and SWRs are driven by distinct neural circuits. SWRs depend on excitatory 

inputs from CA3 to the CA1 stratum radiatum, generating high-frequency ripples in the CA1 

pyramidal layer 7,45–47. DSs are non-oscillatory events associated with excitatory inputs 

from the entorhinal cortex to the DG molecular layers 22,24,29. Notably, entorhinal cortex 

lesions eliminate DSs but increase SWR incidence 22. Our structural analysis of DS versus 

SWR population patterns raises the intriguing possibility that SWRs may be more suited 

for lower-dimensional network coactivity serving robust information flow; whereas DSs 

may promote higher-dimensional activity, allowing diverse mnemonic patterns to coexist 

offline and support flexible, pattern separation for subsequent behavior. Collectively, these 

findings open important new avenues for future work to explore the interplay between DS 

versus SWR events as two distinct timeframes for the hippocampus to optimize offline 

computations serving memory-guided behavior.

STAR Methods

Resource Availability

Lead Contact—Further information and requests for resources and reagents 

should be directed to and will be fulfilled by the Lead Contact, David Dupret 

(david.dupret@bndu.ox.ac.uk).

Materials Availability—This study did not generate new unique reagents

Experimental Model and Study Participant Details

Animals—These experiments used adult (4–6 months old) wild-type C57Bl6/J mice 

(Charles River Laboratories, Kent, UK) or hemizygous Nestin-Cre mice (Jackson 

Laboratories; B6.Cg-Tg(Nes-Cre)1Kln/J, stock no. 003771, RRID: IMSR_JAX:003771) 

for the initial investigation of principal cell spiking in DSs and SWRs using tetrodes 

or silicon-probe recordings (Figures 1–4). To optogenetically target DG granule cells, 
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we used adult metabotropic-glutamate-receptor 2-Cre (Grm2-Cre) hemizygous male mice 

(Figures 5, 6). This Grm2-Cre mouse strain was obtained from the Mutant Mouse Resource 

and Research Center (MMRRC; Tg(Grm2-cre)MR90Gsat/Mmucd; stock no. 034611-UCD, 

RRID:MMRRC_034611-UCD) at University of California at Davis, an NIH-funded strain 

repository, and was donated to the MMRRC by Nathaniel Heintz, Ph.D., The Rockefeller 

University, GENSAT and Charles Gerfen, Ph.D., National Institutes of Health, National 

Institute of Mental Health. All mice were group housed with same-sex littermates until the 

start of the experiment and singly housed after surgery. Mice had free access to food and 

water throughout, in a dedicated housing room with a 12/12 h light/dark cycle (7 a.m.–7 

p.m.), 19–23 °C ambient temperature and 40–70 % humidity. This study used mice with 

good health/immune status, that were not involved in previous procedures, and were drug 

and test naïve at the start of the experiments. Mice were adult males and the influence (or 

association) of age and sex, or both on the results of the study was not tested. This represents 

a limitation to this research’s generalizability. All experiments were performed between 

8 a.m.–6 p.m. during the light-on period, that is when mice sleep more. Experiments 

were performed in accordance with the Animals (Scientific Procedures) Act, 1986 (United 

Kingdom), with final ethical review by the Animals in Science Regulation Unit of the UK 

Home Office.

Method Details

Viral vectors—An AAV carrying a double-floxed inverse open reading frame (DIO) Cre-

dependent opsin under the CAG promoter was used to deliver Archaerhodopsin (ArchT) 

(Han et al., 2011) into DG granule cells (AAV9-CAG-Flex-ArchT-GFP, titer: 8.3 × 1012 

TU / mL, University of North Carolina).

Surgical procedures—Mice received viral injections and microdrive implantations under 

gaseous isoflurane anaesthesia (~1% in 1 L / min O2), with systemic and local analgesia 

administered subcutaneously (meloxicam 5 mg / kg; buprenorphine 0.1 mg / kg; bupivacaine 

2 mg / kg). Viruses were injected bilaterally into the dorsal DG (3 × 200 nL per hemisphere; 

at the following stereotaxic coordinates from bregma: anterior-posterior: -1.6, -2.4, -2.4; 

mediolateral: ±1.0, ±1.2, ±1.5; dorsoventral: -1.7, -1.7, -1.7 mm, respectively), and delivered 

using a pulled glass micropipette (~16 μm i.d.) at a rate of 100 nL min−1, with an additional 

100 nL min−1 diffusion time with the pipette in situ. In a separate surgery, mice were 

implanted with a microdrive containing twelve- or fourteen-independently movable tetrodes 

bilaterally targeting DG, CA3, and CA1, and two optic fibers (Doric Lenses Inc., Quebec, 

Canada) positioned bilaterally above the dorsal DG. Tetrodes were constructed by twisting 

together four insulated tungsten wires (12.7 μm diameter, California Fine Wire, CA, USA) 

which were briefly heated to bind them together into a single bundle. Each tetrode was 

loaded in one cannula attached to a 6 mm long M1.0 screw to enable its independent 

depth manipulation. A separate group of mice were implanted with unilateral single-shank 

64-channel silicon-probe (model: ASSY-236 H3, 8 mm; Cambridge Neurotech, Cambridge, 

UK; stereotaxic coordinates from bregma: anterior-posterior: -2.0; mediolateral: -1.7 mm); 

these mice did not receive prior viral injections.
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Recording procedures—Following the implantation surgery, mice recovered for at least 

seven days before familiarization to the recording procedure. Mice were handled daily 

and exposed to the sleep-box for > 0.5 h per day for at least four days. During this 

period, tetrodes / silicon-probes were slowly lowered to the proximity of the cell layers. 

Once at the correct depth, silicon-probes were left in the same position for the rest of 

the experiment. Tetrodes were lowered into the CA1, CA3 pyramidal or DG granule cell 

layers on the morning of each recording day in search of multi-unit spiking activity, 

using the electrophysiological profile of the local field potentials including sharp-wave 

ripples, gamma oscillations, and dentate spikes to further guide placement. Tetrodes were 

left in position for ~1.5–2 h before recordings began on that day. At the end of each 

recording day, tetrodes were raised (~150 μm) to protect hippocampal the cell layers from 

potential mechanical damage overnight. We lowered again each individual tetrode on the 

next morning in search of cells, making it unlikely that the recorded units are the same 

neurons across days. During recording sessions, mice explored open-field environments (41 

cm diameter cylinder, or 41 × 41 cm square box, both with 30 cm high walls), or were 

placed in a sleep box containing sawdust bedding and nesting material (12 × 12 × 28 cm, 

length × width × height). The instantaneous speed and the theta-to-delta ratio profiles for DS 

and SWR events corresponded to those of sleep (Figure S1G,H). However, in the absence of 

electromyography signals or other additional signals in defining a sleep stage, we here refer 

to sleep/rest. Each open-field or sleep box recording session lasted ~15-30 min. Experiments 

were performed under dim light conditions (~20 lux) with low-level background noise (~50 

dB).

Light delivery—A 561 nm diode pumped solid-state laser (Crystal Laser, model 

CL561-100; distributer: Laser 2000, Ringstead, UK) was used to deliver green-yellow light 

bilaterally to the dorsal DG (~2-4 mW) via a 2-channel rotary joint (Doric Lenses Inc.).

Multichannel data acquisition—Electrode signals were amplified, multiplexed, and 

digitized using a single integrated circuit (headstage) located on the head of the animal 

(RHD2164, Intan Technologies, USA; http://intantech.com/products_RHD2000.html). The 

amplified and filtered (pass band 0.09 Hz to 7.60 kHz) electrophysiological signals were 

digitized at 20 kHz (RHD2000 Evaluation Board) and saved to disk with the synchronization 

signals from the positional tracking and laser activation. To track the location of the animal, 

three LEDs were attached to the headstage and captured at 25 frames per second by an 

overhead color camera.

Spike sorting and unit isolation—Spike sorting and unit isolation were performed via 

automatic clustering software Kilosort (Pachitariu et al., 2016, 2023) (https://github.com/

cortex-lab/KiloSort) followed by graphically based manual recombination using cross-

channel spike waveforms, auto-correlation histograms and cross-correlation histograms 

within the SpikeForest framework (https://github.com/flatironinstitute/spikeforest) (Magland 

et al., 2020). All sessions recorded on a given day were concatenated and cluster cut together 

to monitor cells throughout the day. Each unit used for analyses showed consistent spike 

waveforms and stable firing rates throughout the entire recording day. Tetrode location in the 

dorsal-ventral axis for each recording day (Figure S1C) was determined using laminar LFP 
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signatures, as described in detail in Lopes-dos-Santos et. al. (2023), and later confirmed in 

the ex vivo histology (Figure S1B).

Principal cell versus interneuron classification—Hippocampal principal cells were 

distinguished from interneurons by the trough-to-peak width of the spike waveform, as 

previously described 48. Briefly, to evaluate the waveform consistency for each unit, we used 

the waveform with the maximum amplitude across the tetrode channels for each cluster. 

We compared the prominence of a unit mean waveform amplitude to the standard deviation 

stemming from all its spikes by computing a waveform score:

wvscore = ∑
i = 1

n wi/σi
2

n

where wi is the value of the mean waveform at sample i, σi is the standard deviation 

at sample i across all spikes, and n is the number of waveform samples. This metric 

quantifies the relative magnitude of the mean waveform amplitude against the spike-to-spike 

variability. Clusters with a waveform score above 0.75 and a refractory period violation 

below 2% (quantified as the proportion of intervals shorter than 2 ms in the ISI distribution) 

were included for further analyses. We categorized units as either putative interneurons or 

principal cells based on the width of their waveform as indicated by the trough-to-peak 

latency. In a prior dataset of ~4,000 neurons, we noted a bimodal distribution in trough-

to-peak latency. Fitting this with a 1-dimensional, 2-component Gaussian Mixture Model 

(GMM), we set the classification threshold where the two Gaussian components intersect: 

units with latencies above were labeled as putative principal cells, and those below as 

putative interneurons. The same inclusion criteria and classification procedures were used 

for DG, CA3 and CA1 neurons. In total, this study includes 3,619 hippocampal principal 

cells (CA1, n = 1,322; CA3, n = 573; DG, n = 1,724; from 134 total recording days in 25 

mice).

Local field potential signals—LFP signals were processed by first applying an anti-

aliasing filter (8th-order Chebyshev type I filter) to the wide band signals sampled at 20 kHz. 

These signals were then down-sampled to 1,250 Hz using the decimate function from the 

signal submodule of Scipy (version 1.11.2).

Dentate spike detection—Dentate spikes were detected during sleep sessions from LFPs 

recorded from tetrodes located in the DG granule cell layer or silicon-probes with recording 

contacts in the DG granule cell layer. In silicon-probe recordings, we initially subtracted 

the LFP signals from all channels using a reference channel found in the stratum oriens. 

LFPs were band-pass filtered (1–200 Hz, using a 4th order Butterworth filter). The mean 

and standard deviation of the LFP amplitude were calculated across the entire sleep session 

and peaks that exceeded a threshold of six times the median absolute value of the filtered 

signals were designated as dentate spikes. The time bin with the largest local maximum 

was taken as the peak of the dentate spike, and this timestamp was recorded. If more than 

one peak appeared within a 50 ms frame, we retained only the highest amplitude peak. On 

recording days with several tetrodes in the DG, we used the tetrode with the largest mean DS 

McHugh et al. Page 13

Neuron. Author manuscript; available in PMC 2024 October 16.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



amplitude to select DS event timestamps. Across all tetrode recordings we detected 32,215 

DS events in total (mean ± SEM: 441.3 ± 29.2 per day, from 73 recording days in 12 mice); 

in silicon-probe recordings we detected 15,067 DS events in total (mean ± SEM: 1676.1. ± 

316.5 per day, from 8 recording days in 3 mice).

Sharp-wave ripple detection—For the LFPs of each pyramidal CA1 channel, we 

subtracted the mean across all channels (common average reference), band-pass filtered for 

the ripple band (80–250 Hz; 4th order Butterworth filter) and their envelopes (instantaneous 

amplitudes) were computed by means of the Hilbert transform. The peaks (local maxima) 

of the ripple band envelope signals above a threshold (5 times the median envelope of 

that channel) were regarded as candidate events. The onset and offset of each event were 

determined as the time points at which the ripple envelope decayed below half of the 

detection threshold. Candidate events passing the following criteria were determined as 

SWR events: (i) ripple band power in the event channel was at least twice the ripple band 

power in the common average reference (to eliminate common high frequency noise); (ii) 
each event had at least four ripple cycles (to eliminate events that were too brief); (iii) ripple 

band power was at least twice the supra-ripple band defined as 200-500 Hz (to eliminate 

high frequency noise, not spectrally compact at the ripple band, such as spike leakage 

artefacts). For events passing these criteria, the local maximum of each envelope was taken 

as the peak of the SWR, and these timestamps were recorded. On recording days with 

several tetrodes in the CA1 pyramidal layer, we used the tetrode with the largest mean ripple 

envelope amplitude to select SWR events. In tetrode recordings we detected 65,370 SWR 

events (mean ± SEM: 895.0 ± 82.3 per day, from 73 recording days in 12 mice).

Place maps—To generate place maps, we divided the horizontal plane of the recording 

enclosure into spatial bins of 1.4 × 1.4 cm to generate the spike count map (number of 

spikes fired in each bin) for each neuron and the occupancy map (time spent by the animal 

in each spatial bin) in each task session. All maps were then smoothed by convolution with 

a two-dimensional Gaussian kernel (s.d. = 1.2 bin widths). Finally, spatial rate maps were 

generated by normalizing the smoothed spike count maps by the smoothed occupancy map.

Spatial Information—The amount of spatial information conveyed by the spike train of a 

given cell was calculated using the formula proposed by Skaggs W. E. et al.49:

Information per spike = ∑
i = 1

N
pi

λi
λ log 2λi

λ

where i = 1, 2… N represents each spatial bin of the environment, pi is the probability of 

occupancy of bin i, λi is the mean firing rate in bin i, and λ is the mean firing rate of the cell 

over all spatial bins.

Peri-event time histograms (PETHs)—For analysis, we excluded all DS and SWR 

events that occurred within 50 ms of one another. We constructed PETHs over 400 ms 

windows, 200 ms either side of the peak DS amplitude or the peak of the SWR envelope, 

using a 1 ms bin width. The mean firing rate of each neuron was calculated during each 1 ms 
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bin over the 400 ms window for each event. Z-scored firing rates were generated (over the 

DS-triggered or SWR-triggered average) separately for each neuron by calculating the mean 

and standard deviation over the 400 ms PETH:

zi = xi − x
S

where zi is the z-score at time bin i, xi is the firing rate in time bin i, x is the mean firing rate 

across all time bins, and s is the standard deviation of the firing rate across all time bins. The 

z-scored firing rate of each neuron was then smoothed using a 3-point moving average to 

eliminate spurious peaks in low firing rate neurons. For a cell to be classified as significantly 

activated during DS and/or SWR events, the firing rate within ± 20 ms of the event peak had 

to be > 3 standard deviations (s.d.) above baseline (calculated as the mean firing rate over 

the 400 ms window). We also calculated the proportion of activated cells as a function of 

activation threshold (2 < z-score < 4; Figures S2H, S3E).

Current source density analysis—Current sources and sinks were estimated from LFP 

recordings taken from single-shank 64-channel silicon-probes spanning the somato-dendritic 

axis of CA1 principal cells and reaching the inferior blade of the DG. LFP signals were 

first down-sampled to 1250 Hz. The current source density 50 unscaled signal at time t and 

electrode n, CSD[t]n, was estimated as:

CSD[t]n = − LFP [t]n − 1 − 2 × LFP [t]n + LFP [t]n + 1

where LFP[t]n−1, LFP[t]n and LFP[t]n+1 are the LFP signals at time t recorded from 

neighboring electrodes (n−1 and n+1 are the channels immediately above and below n, 

respectively, with 20 μm spacing between electrodes). The silicon-probe recording site in 

the pyramidal layer was identified as the one with largest ripple-band power. We defined 

the location of radiatum and lacunosum moleculare layers according to the sharp-wave 

and theta laminar profiles, as previously described 48. We sorted dentate spike events 

into Type 1 (DS1) or Type 2 (DS2) in the following way. First, we calculated the CSD 

estimates for all DSs at the peak of each event and used PCA to find the first two Principal 

Components from the resulting CSD traces. These principal components had as many 

dimensions as the number of silicon-probe channels (64). We then used a 2-component 

Gaussian Mixture Model to classify the events based on their projection onto the first two 

principal components. This consistently resulted in two event classes having the strongest 

sinks in different areas of the molecular layer. In line with previous research 22,24, we 

classified the events with the strongest sink in the outermost part of the molecular layer 

as DS1, and events with their sink closer to the granular layer as DS2. Based on CSD 

classification, event proportions were DS1: 0.35; DS2: 0.65 (5274 DS1 versus 9793 DS2, 

based on 15,067 events from 8 recording days in 3 mice).

Linear discriminant analysis classifier—To distinguish between DS1 and DS2 events 

using only the LFP traces, we trained a linear discriminant analysis (LDA) classifier 

using silicon-probe recorded LFPs from the granule cell layer (https://doi.org/10.5281/
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zenodo.10034433). LFP signals were first down-sampled to 1250 Hz and low-pass filtered 

at 50 Hz. We extracted 400 ms epochs centered around the peak of each DS (-200 to +200 

ms, with 0.8 ms bin width), providing 500 time-based features (dimensions), one for each 

time bin, for each LFP trace. We then performed PCA on all silicon-probe-recorded DS 

LFP traces (15,067) to extract the number of components explaining 90% of the variance. 

This resulted in 16 principal components, which were then used to train a LDA classifier. 

We generated 20 models by, each time, randomly selecting 75% of the dataset, which was 

labelled as DS1 or DS2 based on the CSD classification described above, and then testing the 

classifier on the remaining (unlabeled) 25% of data. The classifier success rate was: median 

(IQR) = 85.4 (85.3-85.6) %. We then used the model with the highest accuracy to classify 

DS1 and DS2 events from LFPs recorded from the granule cell layer in our tetrode-recorded 

data. From tetrode-recorded LFPs, the proportions of Type 1 and Type 2 DS events were: 

median (IQR) DS1 = 0.34 (0.25-0.38); DS2 = 0.66 (0.62-0.75), based on 10,337 DS1 versus 

21,740 DS2 events in 73 recording days in 12 mice.

Population spiking vectors—We generated event-based hippocampal population 

vectors of instantaneous principal cell spiking for every DS and SWR event using 50 ms 

wide windows centered on the peak of the DS or the peak envelope of the CA1 ripple 

(±25 ms from the peak). In addition, we calculated the spiking activity of hippocampal 

principal cells in equivalent 50 ms (‘no event’) control epochs, that contained neither DS 

nor SWRs. Baseline periods were selected from the same sleep sessions and excluded all 

epochs ± 250 ms either side of any DS or SWR events. To calculate the proportion of 

coactive neurons in each time window, we calculated the number of simultaneously active 

hippocampal principal cells (i.e., cells firing at least one spike during the 50 ms window) by 

the total number of simultaneously recorded hippocampal principal cells. We then calculated 

the mean proportion of coactive cells for each recording session. For inclusion in these 

analyses, each recording session required a minimum of 100 of each type of event (DS1, 

DS2, SWR) and a minimum of 20 simultaneously recorded hippocampal principal cells.

Population-level sparsity—The sparsity S of a given population firing vector x was 

calculated using the Gini index 33,51,52 as:

S = ∑i = 1
N (2i − N − 1)xi

N∑i = 1
N xi

where x is the population vector containing, in ascending order, the spike counts discharged 

by each principal cell in a 50 ms time window (centered on the peak of the SWR, DS), N is 

the length of that vector (i.e. the number of simultaneously recorded principal cells), and i 
is the rank of spike counts in ascending order. Population vectors where the total number of 

spikes is more evenly distributed between neurons have a lower Gini index (lower sparsity) 

than population vectors where the total number of spikes is concentrated in a few neurons 

(higher sparsity).

Logistic regression classifier—We used a logistic regression classifier to distinguish 

between population vectors of hippocampal principal cell spiking activity during DS, SWR, 
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or equivalent duration (50 ms) control vectors that were taken from 200–250 ms periods 

before or after the peak of either the DS or SWR events. For each recording session, we 

generated matrices of these population vectors (cells × epochs) for these four different 

event-types, and then binarized the spike counts (i.e., spike count > 0 = 1, else 0) to control 

for the influence of firing rate differences between neurons. For each recording day, we used 

the event with the lowest number of epochs to determine the training set size – for example, 

if there were 200 DS events, we used 75% (150 population vectors) as the DS training set, 

and randomly subsampled the SWR matrix for 150 SWR population vectors (with identical 

principal cells). This way, the training input to the classifier was balanced across event types. 

Similarly, the testing set consisted of the remaining (unlabeled) 25% of population vectors 

from the DS population vectors plus an equivalent number of SWR population vectors (e.g., 

50 DS population vectors and 50 SWR population vectors, subsampled from the remaining 

SWR testing matrix). For each recording day, we ran three models: one to classify event 

epochs, one to classify pre-event epochs and one to classify post-event epochs. Model 

accuracy was measured as the proportion of correctly classified events (DS versus SWR, or 

pre-DS versus pre-SWR, respectively).

Peer-to-peer coactivity analysis—We constructed hippocampal population graphs that 

represent the coactivity relationships between all pairs of principal cell spike trains recorded 

during a given sleep or exploratory session. These coactivity graphs were computed using 

50 ms time windows for DS and SWR events and theta cycles as time windows for active 

exploratory sessions. To further control for the shared influence of the general network 

activity on peer-to-peer coactivity, we used for any two neurons (i, j) the regression 

coefficient β ij obtained by fitting the GLM (Figure 3A):

xj βijxi + αijP

where xj, xi are the z-scored event-nested spike trains of individual neurons j (the target) and 

i (the predictor), and P is the summed activity of the other N − 2 neurons,

P = ∑
n = 0

N − i, j
xn

with αij weighting the influence of the population contribution to the activity of target 

neuron j. The recorded neurons (and their coactivity associations) are therefore the nodes 

(and their edges) in the coactivity graph of each task session. We described each graph by its 

adjacency matrix, A, as the N × N square matrix containing the pairwise coactivity relations 

within the network, yielding a weighted graph with no self-connections:

A =
β0, 0 ⋯ β0, N

⋮ ⋱ ⋮
βN, 0 ⋯ βN, N
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with βi,i = 0 ∀i in N, and the symmetry in the weights of the network being ensured by 

setting A = A + AT
2  to form an undirected graph.

Clustering coefficient—We computed the clustering coefficient Ci to characterize the 

network’s local coactivity structure by scoring the triadic firing relationships established 

by each neuron i with the other neurons in the population, using the formula proposed by 

Onnela et al. 53–55:

Ci =
∑jq βlJβlqβJq

1/3

ki ki − 1

where j and q are neighbors of neuron i, all edge weights are normalized by the maximum 

edge weight in the network β = β /max(β), and ki is the degree of neuron i, which in these 

weighted graphs with no self-connection is equal to the number of neurons minus one. Note 

that this formula accounts for negative edges, yielding a negative value when there is an 

odd number due to the negative edges in the triad; it is positive otherwise. This method 

to assess firing relationships in the neuronal population of the hippocampus as a signed 

network where both positive and negative edges (i.e., correlated and anti-correlated spike 

trains) coexist leverages from past studies investigating community organization in social 

networks, indicating that triads represent the smallest motif capturing “structural balance” in 

patterns of peer-to-peer relationships 56.

Single-neuron coactivity strength—We defined the single-neuron coactivity strength 

as the average pairwise coactivity relation of a given node in a weighted graph. As a 

reference, the strength in a weighted graph can be compared to the degree in a binary graph, 

which accounts for the number of the node’s neighbors. Here, the strength Si of a node i is 

the average across all the weights βij of the edges projected from that node:

Si = ∑j = 0
N βij
N

where N is the number of neurons j that node i projects to.

Population vector similarity—Population vectors of hippocampal principal cell spiking 

activity were generated for baseline, SWR, and DS events as described above, yielding 

separate (cell × event number) matrices of spike counts for each event-type. To remove 

potential biases caused by unequal numbers of events, we used the event-type with the 

fewest epochs to determine the final matrix size. For example, if there were 200 DS events 

in a given recording session, we randomly subsampled the SWR and baseline matrices to 

extract 200 SWR and 200 baseline population vectors (with identical principal cells) for 

comparison. Next we binarized these matrices (spike count > 0 = 1, else 0). Then we 

assessed the self-similarity for each event matrix (cells × event number) by computing 

the Pearson correlation coefficient for every pair of population vectors from the same 

event-type, and then calculating the mean across all of these correlation coefficients. As an 

McHugh et al. Page 18

Neuron. Author manuscript; available in PMC 2024 October 16.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



alternative, we also calculated the Jaccard similarity coefficient (J), which measures the size 

of the intersection (i.e. overlap in active units) between pairs of population vectors (A, B), 

divided by the size of the union:

J(A, B) = A ∩ B
A ∪ B

Population dimensionality—We estimated the dimensionality of the principal cell 

population firing structure during SWRs and DSs from activity matrices that were matched 

for neuron identity and the number of DS and SWR events. We applied Principal 

Component Analysis (PCA) to each activity matrix, using the number of simultaneously 

recorded principal cells as the maximum number of components. Each matrix required 

at least 20 principal cells for inclusion in the analysis. We then extracted the number of 

components explaining 90% of the variance in these population vectors and scaled this 

by the total number of neurons in each matrix (Figures 3L and S4M,P). We also show 

dimensionality for a range of explained variance values (Figure S4N-O). Note that the ratio 

of DG to CA cells in these matrices did not significantly affect the dimensionality estimate 

(Supplemental Table S1).

Theta-cycle detection—Theta cycles were detected as described in Lopes dos Santos 

et al. (2023). Briefly, we used masked Empirical Mode Decomposition 57; https://pypi.org/

project/emd/) to separate CA1 LFPs into oscillatory components termed intrinsic mode 

functions (IMFs). We delineated individual theta cycles from their troughs and peaks, i.e. the 

local maxima and minima of the theta IMF. Theta cycles were defined as peak-trough-peak 

sequences with trough-peak and peak-trough intervals between 31-100 ms and peak-to-peak 

distances between 71-200 ms. Note that this method is designed to detect chains of theta 

cycles but to do so it identifies each cycle independently.

Reactivation of waking coactivity patterns—We leveraged our pairwise peer-to-peer 

coactivity measure (as described above; Figure 3A) to estimate DS and SWR reactivation. 

With this, we compared the tendency of principal cell pairs to co-fire in theta cycles during 

exploration (theta coactivity) with the tendency to co-fire in DS (or SWR) during the 

following post-exploration sleep/rest period (post-DS or post-SWR co-firing), controlling 

for their baseline co-firing in the pre-exploration sleep/rest period before (pre-DS or pre-

SWR co-firing) and mouse identity, using a linear mixed model:

Post β0 + βtℎeta + βpre + υmouseID + e

where β0 is the intercept of the regression line, βtheta is the regression coefficient for the 

theta co-firing, βpre is the regression coefficient for the pre-exploration offline co-firing 

(in DS or SWR events), υmouseID is the individual mouse identity, and e the error term. 

Likewise, we compared the tendency of principal cell pairs to co-fire in theta cycles 

during exploration (theta coactivity) with the tendency to co-fire in DS or SWR during 

the pre-exploration sleep/rest period (pre-DS or pre-SWR co-firing), controlling for their 
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post-exploration co-firing in the sleep/rest period after (post-DS or post-SWR co-firing) and 

mouse identity, using the reverse linear mixed model:

Pre β0 + βtℎeta + βpost + υmouseID + e

From these LMMs, we extracted the β coefficients predicting post-SWR or post-DS 

coactivity from theta coactivity (controlling for pre-SWR or pre-DS coactivity, respectively) 

and tested their significance in two ways. First, we performed control GLMs using the 

pre-DS (or pre-SWR) coactivity as the dependent variable and the theta coactivity and 

post-DS (or post-SWR) coactivity as the independent variables. In these models, pre-event, 

post-event and theta coactivity were entered as fixed-effects and mouse identity as random-

effects, using the restricted maximum likelihood method (implemented using the MixedLM 

class, and fit() method with default parameters, from the statsmodels library (Seabold and 

Perktold, 2010) in Python3.10). Second, we constructed a random probability distribution of 

β weights for theta coactivity by shuffling the cell pair identity, thereby generating a null 

distribution (based on 1000 LMMs, each time randomly shuffling cell-pair identity).

Closed-loop optogenetic interventions—For DS-informed interventions, real time 

detection of DSs was achieved by first high pass filtering the DG LFP signals (5 Hz) using 

the on-board signal processing capabilities of the Intan RHD evaluation board (RHD2000, 

Intan Technologies, USA) and triggering a laser pulse if the LFP signal exceeded a voltage-

threshold. Thresholds for DS-onset detection were set for each mouse during a sleep session 

at the start of each recording day so that DS events were consistently detected (~3 S.D. 

above mean signal amplitude). Threshold detection triggered a digital transistor-transistor 

logic (TTL) output pulse from the RHD interface to a Master 8 stimulation timing device 

(A.M.P.I., Jerusalem, Israel), which in turn sent a 100 ms duration square-wave pulse to 

activate the laser. In the ‘DS-synchronized’ condition, the laser was triggered with zero 

latency from DS-onset, whereas in the ‘DS-delay’ condition the laser was triggered 100 

ms after DS detection (Figures 5, 6). The rates of false negatives (DS not triggering laser 

pulse) and false positives (laser pulse emitted for LFP trace not meeting DS criteria) were 

1.8±0.6% and 4.7±0.4%, respectively. The laser delivered yellow-green light (561-nm) 

into the dentate gyrus, which in DGGrm2::ArchT mice activated the outward proton pump, 

Archaerhodopsin T to suppress spiking activity in DG granule cells. To investigate changes 

in firing rates in individual hippocampal principal cells during light-delivery, we constructed 

PETHs over 400 ms windows, 200 ms either side of DS-onset, using a 1 ms bin width 

and extracted the peak firing rate during DS-synchronized light-delivery versus DSs with 

no light delivery. In addition, we z-scored the binned spike trains and calculated the mean 

z-score between DS-onset and 100 ms after DS-onset for each hippocampal principal cell 

during DS-synchronized light-delivery versus the equivalent 100 ms no-light period in the 

DS-delay condition.

For SWR-informed interventions, the Intan evaluation board was configured with firmware 

enabling additional filtering. Five operations were performed on the continuously acquired 

CA1 wideband LFP signal to provide a real time estimate of the instantaneous power in the 

ripple-band 58,59. (1) To enable low-latency processing, the signal was first down-sampled 
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to 2.5 kHz by averaging the raw 20 kHz data stream with a sliding window of 8 samples 

with no overlap. (2) This signal was then high-pass filtered (using a 1st order digital infinite 

impulse response filter with a corner frequency of 1.6 Hz to remove amplifier offset and 

electrode drift). Next, the signal was (3) band-limited to 100–200 Hz with a 4th order 

Butterworth filter, (4) rectified by taking its absolute value, and (5) amplified 128-fold and 

smoothed with an exponential moving average operation over an equivalent window size 

of 32 samples (12.8 ms). To detect SWR events in this band-power estimate, the threshold 

level for each mouse was set during a sleep session at the start of each recording day to 

ensure consistent (~3 S.D. above mean power) detection throughout the day. On detecting 

a threshold crossing, the Intan recording controller delivered a 5 ms TTL pulse to a Master 

8 stimulation timing device (A.M.P.I., Jerusalem, Israel). Analogous to the DS-informed 

interventions, in the ‘SWR-synchronized’ condition the laser was triggered with zero latency 

from SWR-onset, whereas in the ‘SWR-delay’ condition the laser was triggered 100 ms 

after SWR detection.

Recognition memory tasks—On each day of both the novel-object and novel-position 

recognition tasks, mice explored a square-walled open field (Figure 6A; the ‘object arena’) 

containing four objects, each positioned midway along a given wall, ~1cm from the wall 

edge. Objects used were ~3 × 3 × 4 cm (width × depth × height) objects (e.g., Lego™ 

blocks or other similar items). During the first session in the object arena, mice explored 

four completely novel objects (‘sampling’ session, 10 min). After the sampling session, mice 

were placed into a sleep box where they received DG-targeting light delivery that was either 

synchronized to event detection (DS-synchronized or SWR-synchronized condition) or 

delayed by 100 ms from event detection (DS-delay or SWR-delay condition), as described 

above (sleep/rest session, 20 min). In the novel object recognition task, before the start of 

the next test session, one of the four objects was replaced with a different (and completely 

novel) object, and mice then explored the four objects again (‘test 1’ session, 10 min). This 

process was repeated, with another sleep session (~20 min, with either DS-sync or DS-delay 

light-delivery), followed by another object exploration session with one completely novel 

object and three previously encountered objects (‘test 2’ session, 10 min). In the novel 

position recognition task, the locations of two of the initially sampled objects were swapped 

(e.g. North and West), whereas the other two objects remained in their original positions. 

In the novel position task, only DS-the synchronized and DS-delay conditions and only the 

first test session were used. During each test session, we measured the time spent exploring 

each object and we calculated the percentage time spent investigating the novel object (or 

novel positioned objects) versus the mean percentage time spent investigating the familiar 

objects (i.e., those objects seen in the previous session and/or those in the same locations). 

For analysis, four ‘object-zones’ were created by dividing the arena into nine equal sized 

square zones (~12 × 12 cm), such that four of these zones contained the objects. Time 

spent in the object zone was determined directly from the automated tracking data. Between 

sessions, the floor of the maze and the objects were cleaned with water. On any given day, 

mice received the same light-delivery condition.

Tone fear conditioning task—Fear conditioning was conducted in one of four operant 

chambers each with distinct visual cues (ENV-307A, Med Associates Inc., IN, USA). 
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Mice were exposed to five auditory cues (either 2900 Hz tone or white noise, 72 dB, 30s 

duration), each co-terminating with a mild foot-shock (0.3 mA, 0.5 s). The mean ITI was 

74s (range: 60 to 90s). Immediately after fear conditioning, mice were removed from the 

operant chamber and placed into the sleep box where they received DS-Sync or DS-Delayed 

DG cell silencing for 45 minutes. For the recall session, mice were then placed into a 

different operant chamber than the one where they received conditioning (to reduce the 

impact of contextual cues on recall). Mice were exposed to the same five auditory cues 

but no foot-shocks were given. Fear memory was assessed by measuring freezing responses 

during the first two cues presented in the recall session (before extinction occurs) and 

comparing these responses to freezing responses to the first cue during training (before any 

shocks were given). Freezing was measured using automated movement detection software 

(ezTrack, 60) and expressed as a % of tone duration (i.e. freezing for 15s during a 30s tone = 

50% freezing).

Tissue processing and immunohistochemistry—At the completion of experiments, 

mice were deeply anesthetized with pentobarbital and perfused transcardially with 0.1 M 

PBS followed by 4% paraformaldehyde (PFA) in PBS. Brains were extracted and kept in 

4% PFA for ~24–72 h and then transferred to PBS (with 0.05% sodium-azide). For tetrode 

localization, free-floating sections (50 μm) sections were mounted on slides and imaged 

at ×5 using a Zeiss microscope (AxioImager M2; Zeiss, Plan-Neofluar 5× /0.16 objective). 

For immunostaining, free-floating sections (50 μm) were rinsed in PBS with 0.25% Triton 

X-100 (PBS-T) and were blocked for 1 hour at ~20 °C in PBS-T with 10% normal donkey 

serum (NDS). Sections were then incubated with primary antibodies diluted in 3% NDS 

blocking solution and incubated at 4 °C for 72 hours (GFP anti-chicken, 1:1,000, Aves 

Labs, catalog no. GFP-1020; NeuN guinea pig, 1:500, Synaptic Systems, catalog no. 266 

004). All sections were rinsed three times for 15 min in PBS-T and incubated for 4 hours 

at ~20 °C in secondary antibodies in the blocking solution (Cy3 donkey anti-guinea pig, 

1:400, Jackson ImmunoResearch, catalog no. 706-165-148; goat anti-chicken 488, 1:1,000, 

Thermo Fisher Scientific, catalog no. A-11039). Sections were then rinsed three times for 

15 min in PBS-T, with some sections then incubated for 1 min with DAPI (0.5 μg ml−1, 

Sigma, D8417) diluted in PBS to label cell nuclei before three additional rinse steps of 10 

min each in PBS. Sections were mounted on slides, cover-slipped with Vectashield (Vector 

Laboratories, catalog no. H-1000) and stored at 4 °C. Sections were also used for anatomical 

verification of the tetrode tracks. Images were acquired using a Zeiss confocal microscope 

(LSM 880 Indimo, Axio Imager 2) with a Plan-Apochromat ×20/0.8 M27 objective and the 

ZEN (Zeiss Black 2.3) software.

Quantification and Statistical Analysis

Analyses were performed in Python 3.8 (https://www.python.org/downloads/release/

python-3816/) and Python 3.10 (https://www.python.org/downloads/release/python-31011/), 

using the Python packages DABEST (Ho et al., 2019), scipy (Virtanen et al., 2020), 

numpy (Harris et al., 2020), matplotlib (Hunter, 2007), seaborn (Waskom, 2021), pandas 

(McKinney, 2010), scikit-learn (Pedregosa et al., 2011), statsmodels (Seabold and Perktold, 

2010). Error bars, mean ± S.E.M unless otherwise stated. We used throughout this study 

a bootstrap-coupled estimation of effect sizes, plotting the data against a mean difference 
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between the left-most condition and one or more conditions on the right and compare this 

difference against zero using 5,000 bootstrapped resamples. In these estimation graphics 

(DABEST plots), each black dot indicates a mean difference and the associated black 

ticks depict error bars representing 95% confidence intervals; the shaded area represents 

the bootstrapped sampling-error distribution. Bandwidth estimates for the kernel density 

estimate were computed using the scikit-learn package. We used the DABEST package 

to calculate test statistics and p-values and visualize data. The test statistic is the mean 

difference and the p-value is the is the probability of observing the effect size (or greater), 

assuming the null hypothesis of zero difference is true. Paired permutation tests (or 

equivalent paired tests) were performed for repeated-measures analyses and unpaired tests 

used for independent samples. Data distributions were assumed to be normal, but this 

was not formally tested. Our results were replicable across mice and recording days. For 

the optogenetic interventions, the different closed-loop conditions (DS-Sync, SWR-Sync, 

DS-Delay, and SWR-Delay) were experienced in a randomized order across days. In the 

object recognition tasks, objects and their positions and the order of their replacement 

were randomized. Neural and behavioral data analyses were conducted in an identical way 

regardless of the identity of the experimental condition from which the data were collected, 

with the investigator blind to group allocation during analyses. No statistical methods were 

used to pre-determine sample sizes, but our sample sizes are similar to or larger than those 

reported in previous publications. Inclusion criteria for well-isolated single units were used 

as published in previous studies and are described in the corresponding subsections of 

the Method details. For the population vector analyses (Figures 3 and S4), each recording 

session required a minimum of 100 of each type of event (DS1, DS2, SWR) and a minimum 

of 20 simultaneously recorded hippocampal principal cells for inclusion.

Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

AAV9-CAG-Flex-ArchT-GFP UNC Vector Core n/a

Experimental Models: Organisms/Strains

C57BL/6J mice Charles River 632

Grm2-Cre Tg(Grm2-cre)MR90Gsat/Mmucd MMRRC MMRRC_034611-UCD

Nestin-Cre B6.Cg-Tg(Nes-Cre)1Kln/J Jackson Laboratories IMSR_JAX:003771

Software and Algorithms

Intan RHD2000 Intan Technologies RHD2164

Positrack Kevin Allen n/a

Empirical Mode Decomposition in Python Quinn A.J. et al. 57 n/a

Kilosort via SpikeForest Magland J.F. et al. 61;
Pachitariu M. et al. 62

n/a

Other

12um tungsten wires California Fine Wire M294520

Optic fibers Doric lenses MFC_200/230-
0.37_25mm_RM3_FLT
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REAGENT or RESOURCE SOURCE IDENTIFIER

Head-stage amplifier Intan Technologies RHD2164

561nm diode-pumped solid-state laser Laser 2000 CL561-100

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We would like to thank B. Micklem for technical assistance; all members of the Dupret lab for feedback during 
the project. This work was supported by the Biotechnology and Biological Sciences Research Council UK 
(Awards BB/S007741/1, BB/N002547/1) and the Medical Research Council UK (Programmes MC_UU_12024/3 
and MC_UU_00003/4).

Data and Code Availability

• The electrophysiology dataset reported in this study is being used in on-going 

projects and can be accessed under a data transfer agreement. We welcome 

enquiries for sharing it, please contact david.dupret@bndu.ox.ac.uk.

• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this work 

paper is available from the Lead Contact upon request.

References

1. Maquet P. The Role of Sleep in Learning and Memory. Science. 2001; 294: 1048–1052. 

2. Walker MP, Stickgold R. Sleep, Memory, and Plasticity. Annual Review of Psychology. 2006; 57: 
139–166. 

3. Klinzing JG, Niethard N, Born J. Mechanisms of systems memory consolidation during sleep. Nat 
Neurosci. 2019; 22: 1598–1610. 

4. Brodt S, Inostroza M, Niethard N, Born J. Sleep—A brain-state serving systems memory 
consolidation. Neuron. 2023; 111: 1050–1075. 

5. Buzsáki G. Neural Syntax: Cell Assemblies, Synapsembles, and Readers. Neuron. 2010; 68: 362–
385. DOI: 10.1016/j.neuron.2010.09.023 

6. Girardeau G, Lopes-dos-Santos V. Brain neural patterns and the memory function of sleep. Science. 
2021; 374: 560–564. DOI: 10.1126/science.abi8370 

7. Buzsáki G. Hippocampal sharp waves: Their origin and significance. Brain Research. 1986; 398: 
242–252. 

8. Buzsáki G. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and 
planning. Hippocampus. 2015; 25: 1073–1188. DOI: 10.1002/hipo.22488 

9. Axmacher N, Elger CE, Fell J. Ripples in the medial temporal lobe are relevant for human memory 
consolidation. Brain. 2008; 131: 1806–1817. 

10. Joo HR, Frank LM. The hippocampal sharp wave–ripple in memory retrieval for immediate use 
and consolidation. Nat Rev Neurosci. 2018; 19: 744–757. DOI: 10.1038/s41583-018-0077-1 

11. Csicsvari J, Hirase H, Czurkó A, Mamiya A, Buzsáki G. Fast network oscillations in the 
hippocampal CA1 region of the behaving rat. J Neurosci. 1999; 19 RC20 doi: 10.1523/
JNEUROSCI.19-16-j0001.1999 

McHugh et al. Page 24

Neuron. Author manuscript; available in PMC 2024 October 16.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



12. Csicsvari J, Hirase H, Mamiya A, Buzsáki G. Ensemble Patterns of Hippocampal CA3-CA1 
Neurons during Sharp Wave–Associated Population Events. Neuron. 2000; 28: 585–594. 

13. Wilson MA, McNaughton BL. Reactivation of Hippocampal Ensemble Memories During Sleep. 
Science. 1994; 265: 676–679. 

14. Girardeau G, Benchenane K, Wiener SI, Buzsáki G, Zugaro MB. Selective suppression of 
hippocampal ripples impairs spatial memory. Nat Neurosci. 2009; 12: 1222–1223. 

15. Ego-Stengel V, Wilson MA. Disruption of ripple-associated hippocampal activity during rest 
impairs spatial learning in the rat. Hippocampus. 2010; 20: 1–10. DOI: 10.1002/hipo.20707 

16. van de Ven GM, Trouche S, McNamara CG, Allen K, Dupret D. Hippocampal Offline Reactivation 
Consolidates Recently Formed Cell Assembly Patterns during Sharp Wave-Ripples. Neuron. 2016; 
92: 968–974. DOI: 10.1016/j.neuron.2016.10.020 

17. Maingret N, Girardeau G, Todorova R, Goutierre M, Zugaro M. Hippocampo-cortical coupling 
mediates memory consolidation during sleep. Nat Neurosci. 2016; 19: 959–964. 

18. Fernández-Ruiz A, Oliva A, Fermino de Oliveira E, Rocha-Almeida F, Tingley D, Buzsáki G. 
Long-duration hippocampal sharp wave ripples improve memory. Science. 2019; 364: 1082–1086. 
DOI: 10.1126/science.aax0758 

19. Treves A, Rolls ET. Computational analysis of the role of the hippocampus in memory. 
Hippocampus. 1994; 4: 374–391. 

20. McHugh TJ, Jones MW, Quinn JJ, Balthasar N, Coppari R, Elmquist JK, Lowell BB, Fanselow 
MS, Wilson MA, Tonegawa S. Dentate Gyrus NMDA Receptors Mediate Rapid Pattern Separation 
in the Hippocampal Network. Science. 2007; 317: 94–99. 

21. Knierim JJ, Neunuebel JP. Tracking the flow of hippocampal computation: Pattern separation, 
pattern completion, and attractor dynamics. Neurobiology of Learning and Memory. 2016; 129: 
38–49. DOI: 10.1016/j.nlm.2015.10.008 

22. Bragin A, Jando G, Nadasdy Z, van Landeghem M, Buzsaki G. Dentate EEG spikes and 
associated interneuronal population bursts in the hippocampal hilar region of the rat. Journal of 
Neurophysiology. 1995; 73: 1691–1705. 

23. Senzai Y, Buzsáki G. Physiological Properties and Behavioral Correlates of Hippocampal Granule 
Cells and Mossy Cells. Neuron. 2017; 93: 691–704. e5 doi: 10.1016/j.neuron.2016.12.011 

24. Dvorak D, Chung A, Park EH, Fenton AA. Dentate spikes and external control of hippocampal 
function. Cell Reports. 2021; 36 doi: 10.1016/j.celrep.2021.109497 

25. Penttonen M, Kamondi A, Sik A, Acsády L, Buzsáki G. Feed-forward and feed-back activation 
of the dentate gyrus in vivo during dentate spikes and sharp wave bursts. Hippocampus. 1997; 7: 
437–450. 

26. Meier K, Merseburg A, Isbrandt D, Marguet SL, Morellini F. Dentate Gyrus Sharp Waves, a 
Local Field Potential Correlate of Learning in the Dentate Gyrus of Mice. J Neurosci. 2020; 40: 
7105–7118. DOI: 10.1523/JNEUROSCI.2275-19.2020 

27. Sanchez-Aguilera A, Wheeler DW, Jurado-Parras T, Valero M, Nokia MS, Cid E, Fernandez-Lamo 
I, Sutton N, García-Rincón D, de la Prida LM, et al. An update to Hippocampome.org by 
integrating single-cell phenotypes with circuit function in vivo. PLOS Biology. 2021; 19 e3001213 
doi: 10.1371/journal.pbio.3001213 

28. Farrell JS, Hwaun E, Dudok B, Soltesz I. Neural and behavioural state switching during 
hippocampal dentate spikes. Nature. 2024; 628: 590–595. DOI: 10.1038/s41586-024-07192-8 

29. Headley DB, Kanta V, Paré D. Intra- and interregional cortical interactions related to sharp-wave 
ripples and dentate spikes. Journal of Neurophysiology. 2017; 117: 556–565. DOI: 10.1152/
jn.00644.2016 

30. Csicsvari J, Hirase H, Czurkó A, Mamiya A, Buzsáki G. Oscillatory Coupling of Hippocampal 
Pyramidal Cells and Interneurons in the Behaving Rat. J Neurosci. 1999; 19: 274–287. DOI: 
10.1523/JNEUROSCI.19-01-00274.1999 

31. Pettersen, KH, Lindén, H, Dale, AM, Einevoll, GT. Handbook of Neural Activity Measurement. 
Cambridge University Press; 2012. 92–135. 

32. Nokia MS, Penttonen M. Rhythmic Memory Consolidation in the Hippocampus. Frontiers in 
Neural Circuits. 2022; 16 doi: 10.3389/fncir.2022.885684 

McHugh et al. Page 25

Neuron. Author manuscript; available in PMC 2024 October 16.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



33. Gini C. Measurement of Inequality of Incomes. The Economic Journal. 1921; 31: 124–126. DOI: 
10.2307/2223319 

34. Hurley N, Rickard S. Comparing Measures of Sparsity. IEEE Transactions on Information Theory. 
2009; 55: 4723–4741. DOI: 10.1109/TIT.2009.2027527 

35. McHugh SB, Lopes-dos-Santos V, Gava GP, Hartwich K, Tam SKE, Bannerman DM, Dupret D. 
Adult-born dentate granule cells promote hippocampal population sparsity. Nat Neurosci. 2022; 
25: 1481–1491. DOI: 10.1038/s41593-022-01176-5 

36. Phillips RG, LeDoux JE. Differential contribution of amygdala and hippocampus to cued and 
contextual fear conditioning. Behav Neurosci. 1992; 106: 274–285. 

37. Lee I, Hunsaker MR, Kesner RP. The Role of Hippocampal Subregions in Detecting Spatial 
Novelty. Behavioral Neuroscience. 2005; 119: 145–153. 

38. Gava GP, McHugh SB, Lefèvre L, Lopes-dos-Santos V, Trouche S, El-Gaby M, Schultz SR, 
Dupret D. Integrating new memories into the hippocampal network activity space. Nat Neurosci. 
2021; 24: 326–330. DOI: 10.1038/s41593-021-00804-w 

39. Navas-Olive A, Amaducci R, Jurado-Parras M-T, Sebastian ER, de la Prida LM. Deep learning-
based feature extraction for prediction and interpretation of sharp-wave ripples in the rodent 
hippocampus. eLife. 2022; 11 e77772 doi: 10.7554/eLife.77772 

40. Lopes-dos-Santos V, van de Ven GM, Morley A, Trouche S, Campo-Urriza N, Dupret D. Parsing 
Hippocampal Theta Oscillations by Nested Spectral Components during Spatial Exploration and 
Memory-Guided Behavior. Neuron. 2018; 100: 940–952. e7 doi: 10.1016/j.neuron.2018.09.031 

41. Knierim JJ, Neunuebel JP, Deshmukh SS. Functional correlates of the lateral and medial entorhinal 
cortex: objects, path integration and local–global reference frames. Philosophical Transactions of 
the Royal Society B: Biological Sciences. 2014; 369 20130369 doi: 10.1098/rstb.2013.0369 

42. O’Neill J, Senior TJ, Allen K, Huxter JR, Csicsvari J. Reactivation of experience-dependent cell 
assembly patterns in the hippocampus. Nat Neurosci. 2008; 11: 209–215. 

43. Nokia MS, Gureviciene I, Waselius T, Tanila H, Penttonen M. Hippocampal electrical stimulation 
disrupts associative learning when targeted at dentate spikes. The Journal of Physiology. 2017; 
595: 4961–4971. DOI: 10.1113/JP274023 

44. Lensu S, Waselius T, Penttonen M, Nokia MS. Dentate spikes and learning: disrupting 
hippocampal function during memory consolidation can improve pattern separation. Journal of 
Neurophysiology. 2019; 121: 131–139. 

45. Nakashiba T, Buhl DL, McHugh TJ, Tonegawa S. Hippocampal CA3 Output Is Crucial for 
Ripple-Associated Reactivation and Consolidation of Memory. Neuron. 2009; 62: 781–787. DOI: 
10.1016/j.neuron.2009.05.013 

46. Sullivan D, Csicsvari J, Mizuseki K, Montgomery S, Diba K, Buzsáki G. Relationships 
between Hippocampal Sharp Waves, Ripples, and Fast Gamma Oscillation: Influence of 
Dentate and Entorhinal Cortical Activity. J Neurosci. 2011; 31: 8605–8616. DOI: 10.1523/
JNEUROSCI.0294-11.2011 

47. Davoudi H, Foster DJ. Acute silencing of hippocampal CA3 reveals a dominant role in place field 
responses. Nat Neurosci. 2019; 22: 337–342. DOI: 10.1038/s41593-018-0321-z 

48. Lopes-dos-Santos V, Brizee D, Dupret D. Spatio-temporal organization of network activity patterns 
in the hippocampus. bioRxiv. 2023; doi: 10.1101/2023.10.17.562689 

49. Skaggs, WE, McNaughton, BL, Gothard, KM. Advances in Neural Information Processing 
Systems. Hanson, SJ, Cowan, JD, Giles, CL, editors. Vol. 5. Morgan-Kaufmann; 1993. 1030–
1037. 

50. Mitzdorf U. Current source-density method and application in cat cerebral cortex: investigation of 
evoked potentials and EEG phenomena. Physiological Reviews. 1985; 65: 37–100. 

51. Guest O, Love BC. What the success of brain imaging implies about the neural code. eLife. 2017; 
6 e21397 doi: 10.7554/eLife.21397 

52. Hurley N, Rickard S. Comparing Measures of Sparsity. IEEE Transactions on Information Theory. 
2009; 55: 4723–4741. DOI: 10.1109/TIT.2009.2027527 

53. Onnela J-P, Saramäki J, Kertész J, Kaski K. Intensity and coherence of motifs in weighted complex 
networks. Phys Rev E. 2005; 71 065103 

McHugh et al. Page 26

Neuron. Author manuscript; available in PMC 2024 October 16.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



54. Saramäki J, Kivelä M, Onnela J-P, Kaski K, Kertész J. Generalizations of the clustering coefficient 
to weighted complex networks. Phys Rev E. 2007; 75 027105 

55. Costantini G, Perugini M. Generalization of Clustering Coefficients to Signed Correlation 
Networks. PLOS ONE. 2014; 9 e88669 doi: 10.1371/journal.pone.0088669 

56. Estrada E. Rethinking structural balance in signed social networks. Discrete Applied Mathematics. 
2019; 268: 70–90. DOI: 10.1016/j.dam.2019.04.019 

57. Quinn AJ, Lopes-dos-Santos V, Dupret D, Nobre AC, Woolrich MW. EMD: Empirical Mode 
Decomposition and Hilbert-Huang Spectral Analyses in Python. Journal of Open Source Software. 
2021; 6 2977 doi: 10.21105/joss.02977 

58. Toth, R; Zamora, M; Ottaway, J; Gillbe, T; Martin, S; Benjaber, M; Lamb, G; Noone, T; Taylor, 
B; Deli, A; , et al. DyNeuMo Mk-2: An Investigational Circadian-Locked Neuromodulator with 
Responsive Stimulation for Applied Chronobiology; Conf Proc IEEE Int Conf Syst Man Cybern; 
2020. 3433–3440. 

59. Kavoosi, A; Toth, R; Benjaber, M; Zamora, M; Valentín, A; Sharott, A; Denison, 
T. Computationally efficient neural network classifiers for next generation closed loop 
neuromodulation therapy - a case study in epilepsy; 2022 44th Annual International Conference of 
the IEEE Engineering in Medicine & Biology Society (EMBC); 2022. 288–291. 

60. Pennington ZT, Dong Z, Feng Y, Vetere LM, Page-Harley L, Shuman T, Cai DJ. ezTrack: An 
open-source video analysis pipeline for the investigation of animal behavior. Sci Rep. 2019; 9 
19979 doi: 10.1038/s41598-019-56408-9 

61. Magland JF, Jun JJ, Lovero E, Morley AJ, Hurwitz CL, Buccino AP, Garcia S, Barnett AH. 
SpikeForest: reproducible web-facing ground-truth validation of automated neural spike sorters. 
bioRxiv. 2020; 2020.01.14.900688 doi: 10.7554/eLife.55167 

62. Pachitariu, M, Steinmetz, NA, Kadir, SN, Carandini, M, Harris, KD. Advances in Neural 
Information Processing Systems. Lee, DD, Sugiyama, M, Luxburg, UV, Guyon, I, Garnett, R, 
editors. Vol. 29. Curran Associates, Inc; 2016. 4448–4456. 

McHugh et al. Page 27

Neuron. Author manuscript; available in PMC 2024 October 16.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 1. Dentate spikes recruit principal cell spiking across DG, CA3, and CA1.
(A) Triple-(DG-CA3-CA1) ensemble tetrode recording allowed simultaneous monitoring of 

local field potentials (LFPs) and spiking activities.

(B) Upper: raw wide-band CA1 and DG LFP traces (black) showing sharp-wave ripples 

(SWRs, hash symbols) in CA1 and dentate spikes (DSs, asterisks) in DG. Scale bars, 100 ms 

(horizontal), 1.5 mV for DG and 0.5 mV for CA1 (vertical). Lower: (color-coded) raster-plot 

of spike trains from CA1 (orange), CA3 (red), and DG (blue) principal cells (PCs, one cell 

per row). Shown is a few second sample of recording for clarity.
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(C-E) Spiking responses from single example DG (C), CA3 (D), and CA1 (E) principal 

cells. Upper: Z-scored peri-event time histogram (PETH) during DSs (left) and SWRs 

(right). Lower: corresponding raster plot showing event-related spiking responses (one event 

per row).

(F) Group averaged firing rate PETHs for hippocampal PCs during DSs (top) and SWRs 

(bottom): DG (n=921), CA3 (n=388), CA1 (n=887) cells from 12 mice. Blue traces: mean ± 

SEM.

(G) Heatmaps showing z-scored firing rates for the DG, CA3, and CA1 PCs shown in (F). 

For each heatmap: one cell per row, sorted (top-to-bottom) from the most activated (highest 

z-score at event peak, 0 ms, red) to the least activated (lowest z-score at event peak, blue) 

during DSs.
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Figure 2. Hippocampal principal cell firing is higher in DS2 than DS1.
(A) Left: Laminar (64-channel) silicon-probe recording allowed simultaneous monitoring of 

LFPs across hippocampal layers for current source density (CSD) analysis. Right: Example 

(radially organized) mean LFP traces (gray) with superimposed CSD profile (heatmaps) for 

type 1 (DS1) and type 2 (DS2) dentate spikes and SWRs (calculated from 2,231 DS events 

and 8693 SWR events in one mouse). Note the distinct CSD profiles reflecting the different 

transmembrane currents associated with DS1 versus DS2 versus SWR events. Hippocampal 
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layers: oriens (ori); pyramidale (pyr); radiatum (rad); lacunosum-moleculare (lm); outer 

(om), middle (mm), and inner (im) moleculare; granulare (gcl). Hippocampal fissure (hf).
(B) Upper: Shown for silicon-probe recorded DS1 and DS2 identified from their CSD 

profiles are example average granule cell layer LFP waveforms triggered by the peak of 

these events. Lower: in these recordings there was a higher proportion of DS2 than DS1 

events (n=15,067 events, 3 mice).

(C) Upper: we applied principal component analysis on the normalized granule cell layer 

LFP waveforms for all silicon-probe recorded DS events. We then used the principal 

components explaining 90% of the variance to train a linear discriminant classifier with 

the true labels (DS1 versus DS2) determined by the individual CSD profiles. Lower: the 

classifier performance (>85%) was significantly above chance level (50%) when tested on 

silicon-probe recorded LFP waveforms of unlabeled events. We used this classifier to next 

distinguish DS1 and DS2 from tetrode-recorded granule cell layer LFP waveforms (D).

(D) Upper: Shown for tetrode-recorded DS events are the average granule cell layer LFP 

waveforms for DS1 and DS2 predicted label obtained from the silicon-probe-based classifier 

(C). Lower: these recordings also contained a higher proportion of DS2 than DS1 events 

(n=32,215 events, 12 mice).

(E) Group averaged firing rate PETHs for tetrode-recorded DG, CA3, CA1 principal cells 

during DS1 and DS2 (as Figure 1F,G). Blue traces: mean ± SEM.

(F) Heatmaps showing z-scored firing rates for the DG, CA3, and CA1 cells shown in (E). 

For each heatmap: one cell per row, sorted (top-to-bottom) from the most activated (highest 

z-score) to least activated (lowest z-score) during DS1 peaks.

(G) Estimation plot showing the effect size for the differences in firing rate of DG, CA3, 

CA1 principal cells during all DS events, DS1 and DS2 events analyzed separately, and 

SWRs compared to equivalent (50 ms duration matched) baseline windows (Base) in which 

no DSs or SWRs occurred. Upper: raw data points (each point represents one cell), with 

the gapped lines on the right as mean (gap) ± s.d. (vertical ends) for each event. Lower: 

difference (Δ) in firing rate between Baseline windows and all DS, DS1, DS2, and SWR 

events computed from 5,000 bootstrapped resamples and with the difference-axis origin 

(dashed line) aligned to the baseline rate (black dot, mean; black ticks, 95% confidence 

interval; filled curve, sampling-error distribution). The test statistic is the mean difference, 

shown on the y-axis of the lower plot. P-values are from paired permutation tests, event 

versus baseline, ***P < 0.001.

E-G show data from n=2196 hippocampal principal cells (DG: n=921, CA3: n=388, CA1: 

n=887) from 12 mice.

McHugh et al. Page 31

Neuron. Author manuscript; available in PMC 2024 October 16.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 3. The coactivity structure of population spiking differs between DSs and SWRs.
(A) Analytical framework: the population-level coactivity structure was analyzed using 

population vectors of principal cell spiking transiently nested in individual SWRs, DSs, or 

duration-matched (50 ms) baseline control windows. Scale bars show 20ms and 0.5mV 

for SWRs and 1mv for DSs. For the analyses in panels B-G, these population firing 

vectors were then binarized (for each cell: a non-zero spike count gives 1; or else 0). For 

the analyses in H-K, we calculated the peer-to-peer coactivity, controlling for the overall 

population activity.
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(B, C) Estimation plots showing the effect size for the differences in population sparsity 

(using the Gini index) during DSs (with DS1 and DS2 plotted altogether or separately), 

SWRs, and compared to equivalent (50 ms duration matched) baseline windows (Baseline) 

in which no DSs or SWRs occurred. Upper: raw data points (each point represents one 

session with at least 100 of each event type and 20 principal cells), with the gapped lines 

on the right as mean (gap) ± s.d. (vertical ends) for each event. Lower: difference (Δ) in 

sparsity between Baseline windows and all DS, DS1, DS2, and SWR events computed from 

5,000 bootstrapped resamples and with the difference-axis origin (dashed line) aligned to 

the baseline sparsity (black dot, mean; black ticks, 95% confidence interval; filled curve, 

sampling-error distribution). (C) as B but comparing population sparsity during SWR versus 

DS2. Note that DS2 and SWR events have equivalent sparsity, indicating they engage similar 

levels of neuronal activity.

(D) A logistic regression classifier trained on population vectors nested in SWR versus 

DS events, or matched duration pre-event and post-event control windows, using a 4-fold 

cross-validation approach (75% of vectors for training; the remaining 25% for evaluation), 

significantly discriminated DSs from SWRs, but could not discriminate between pre-DS 

versus pre-SWR, and post-DS versus post-SWR vectors. Gray horizontal bars: mean 

classification accuracy.

(E-G) DS population firing vectors are more diverse than those in SWRs. For each sleep 

session, we computed the similarity (Pearson correlation coefficient) for each pair of 

population vectors nested in either DSs, SWRs, or duration-matched baseline windows 

(Baseline). (E) shows example DS and SWR matrices of cross-vector similarity for one 

session. Cross-population vector similarity was significantly higher in SWRs compared to 

both DSs and control windows (F), and when compared to DS1 and DS2 separately (G).

(H-K) DS and SWR population firing vectors exhibit distinct topology of neuronal 

coactivity. The coactivity between any two (i, j) neurons was measured using a GLM 

that quantified their short timescale (50 ms windows centered on DS or SWR peaks) 

firing relationship while accounting for network-level modulation reported by the remaining 

principal cells in the population (A). (H) This procedure returned for both DS and SWR 

events an adjacency matrix of β regression weights that represented the neuron pairwise 

coactivity structure of the population (example matrix from one session). (I) Visualization of 

the corresponding matrices representing DS and SWR based neuronal coactivity graphs. 

For clarity, (J) shows an example subset (left) for each adjacency matrices shown in 

(H), along with its corresponding motifs of neuronal coactivity and average clustering 

coefficient (right). (K) Note that DS-based graphs contained stronger triads of coactive 

nodes compared to both SWR graphs and control graphs constructed from duration-matched 

baseline windows (Baseline), as indicated by higher mean clustering coefficients. Each 

point in the upper plot of K represents the mean clustering coefficient for one hippocampal 

principal cell (n=1265 neurons, 8 mice)

(L) The dimensionality of population vector matrices (number of principal components 

required to explain 90% of the variance) was higher for DSs than SWRs.

For B-D, F-G, L: each data point shows one recording session (n=34 recording sessions 

from 8 mice). The test statistic is the mean difference, shown on the y-axis of each lower 

plot. P-values are from paired permutation tests, event versus baseline (B,F,K); event versus 
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event (C,F,K,L); or event versus pre-event, event versus post-event (D), *P < 0.05, **P < 

0.01, ***P < 0.001.
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Figure 4. Waking patterns of hippocampal coactivity reactivate in offline DSs.
(A) DS and SWR reactivation of waking patterns formed by principal cell theta coactivity. 

For each cell pair (i, j), we predicted the spike discharge of neuron j from the activity of 

neuron i while regressing out the activity of the remaining population during pre-exploration 

sleep, exploration of open-field arenas, and post-exploration sleep (using GLMs as in Figure 

3A). We separately applied this procedure for DSs and SWRs in both sleep/rest sessions 

(offline DS versus offline SWR coactivity), and across theta cycles in the exploration session 

(waking theta coactivity). This procedure returned a matrix of β regression weights that 

represented the neurons pairwise coactivity structure of the population in each session. 

We then used a Linear Mixed Model (LMM) to compare the waking theta coactivity with 

post-exploration sleep coactivity (in DSs or SWRs) while controlling for pre-exploration 

sleep coactivity (in DSs or SWRs), and vice versa (reverse model). We included mouse 

identity as a random factor in each LMM.

(B) SWR reactivation (measured by the β coefficients of the LMM that predicted post-

exploration SWR coactivity from waking theta coactivity, controlling for pre-exploration 

SWR coactivity). Left: The β coefficient for theta coactivity was significantly higher when 

predicting post-exploration SWR coactivity than with the reverse model (i.e., predicting 

pre-exploration SWR coactivity from theta coactivity, controlling for post-exploration SWR 

coactivity). Gray points show the β coefficient for theta coactivity for individual mice. 

Error bars show ± 95% confidence interval. P-value from t-test comparing post versus 

pre β coefficients: t(7308) = 10.29; P < 0.0001. Right: The histogram shows the random 

probability distribution of β weights for theta coactivity when cell pair identity was shuffled 

(i.e., a null distribution based on 1,000 random shuffles; n=7,310 cell pairs from 4 mice). 

The colored arrow shows the actual β coefficient for theta coactivity.
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(C) DS reactivation exhibited the same pattern of results as SWR reactivation, shown in B. 

P-value from t-test comparing post versus pre β coefficients t(7308) = 8.84; P < 0.0001.
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Figure 5. DS- and SWR-informed offline suppressions of DG granule cell activity.
(A) Triple-(DG-CA3-CA1) ensemble recording with LFP-informed yellow (561 nm) DG 

light-delivery. Dentate granule cells (DGCs) transduced with ArchT-GFP (DGGrm2::ArchT). 

Closed-loop light-delivery to suppress DGC spiking immediately upon either DS detection 

(DS-Sync condition) or SWR detection (SWR-Sync) or their respective control conditions 

(DS-Delay and SWR-Delay, where light delivery was offset by 100 ms after event 

detection).

(B) ArchT-GFP-expressing DGCs in a DGGrm2::ArchT mouse. Neuronal nuclei stained with 

NeuN. Scale bar=100 μm. Granule cell layer: gcl; molecular layer: mol; pyramidal cell 

layer: pyr; stratum oriens: ori; radiatum: rad; lucidum: s.l.

(C, D) Closed-loop feedback transiently silenced DGCs during either DG DS (C; “DS-

Sync”) or CA1 SWR (D; “SWR-Sync”) events, illustrated with raw data examples. Scale 

bars, 30 ms (horizontal), 1.5 mV (vertical).

(E) Raster plots (event-related spiking response; one light pulse per row (Upper), and 

peri-event time histograms (Lower) showing photo-silencing of two example DG cells from 

a DGGrm2::ArchT mouse in DS-Delay and DS-Sync.

(F, G) Corresponding quantification of average DGC firing rate (z-score) for DS-Delay 

versus DS-Sync (F,G; n=548 cells in 9 mice). In F, the orange box shows the laser-on period 

for DS-Sync.
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(H-J) As E-G but showing DGC photo-silencing during SWR-Delay and SWR-Sync 

conditions (I, J; n=181 cells in 3 mice). In I, the orange box shows the laser-on period 

for SWR-Sync.

For G and J, the test statistic is the mean difference, shown on the y-axis of each lower plot. 

P-values are from unpaired permutation tests, Delay versus Sync, ***P < 0.001.
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Figure 6. Offline suppression of DS activity impairs flexible recognition memory.
(A) Behavioral arena used for the recognition memory tasks.

(B-D) Offline DS events are required for novel object recognition memory. (B) Task layout. 

During sleep sessions (interposed between novel object exploration sessions), closed-loop 

optogenetic suppression of DG cells in DGGrm2::ArchT mice was achieved using real-time 

monitoring of either DG or CA1 LFPs to actuate either DS synchronized (DS-Sync) or 

delayed (DS-Delay), SWR synchronized (SWR-Sync) or delayed (SWR-Delay) DG light 

delivery. Letters depict object locations in the task arena (A), with novel objects in blue. 

(C) Estimation plot showing the percentage of time spent by mice with the novel versus the 

familiar objects in each of the four LFP-informed closed-loop conditions. Upper: Each data 

point represents the percentage time spent with the novel object versus the mean percentage 

time spent with the three familiar objects; chance performance is shown by the dashed 

line. Lower: mean difference between novel and familiar object exploration time. (D) as C 

but directly comparing novel object preference in the delay versus sync conditions for DS 

and SWR events. Mice in the DS-Delay, SWR-Delay, and SWR-Sync conditions, but not 

the DS-Sync condition, exhibited a significant preference for novel over familiar objects 
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(DS-Delay and DS-Sync: n=10 sessions, in 3 mice; SWR-Delay and SWR-Sync: n=12 

sessions in 3 mice).

(E-G) Likewise, offline DS events are required for novel position recognition memory. (E) 

Task layout. Letters depict object locations, with novel positions in blue. (F) Estimation plot 

showing the percentage of time spent by DGGrm2::ArchT mice with the novel versus the 

familiar object locations following sleep sessions with DS-Sync or DS-Delay suppression of 

DG cells. Upper: Each data point represents the percentage time spent with objects in novel 

locations versus objects in familiar locations; chance performance is shown by the dashed 

line. Lower: mean difference between novel and familiar location exploration times. (G) As 

F but directly comparing novel location preference in DS-Delay versus DS-Sync. Mice in 

the DS-Delay but not the DS-Sync condition exhibited a significant preference for objects 

in novel over familiar locations (n=12 novel versus n=12 familiar locations, 6 sessions, in 4 

mice).

(H) In the object recognition task, the theta peer-to-peer coactivity increased from the initial 

object sampling to the memory test following offline DG cell suppression in the DS-Delay, 

SWR-Delay, and SWR-Sync conditions; but this was not the case in the DS-sync condition 

(where mice exhibited no novel object preference). Paired estimation plot showing theta 

coactivity during Sampling versus Test. Upper: each point represents a beta coefficient 

for the theta-nested peer-to-peer coactivity between pairs of hippocampal principal cells 

(n=1537, n=678, n=1719, n=1482 cell pairs, respectively, in 6 mice). Lower: black dot, 

mean difference between sampling and test sessions; black ticks, 95% confidence interval.

For C,D and F-H, the test statistic is the mean difference, shown on the y-axis of each lower 

plot. P-values are from paired permutation tests, Familiar versus Novel (C,F); Delay versus 

Sync (D,G); or Test versus Sampling (H), *P < 0.05, **P < 0.01, ***P < 0.001.
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