Skip to main content
. Author manuscript; available in PMC: 2024 Nov 22.
Published before final editing as: Psychol Methods. 2024 Nov 14:10.1037/met0000695. doi: 10.1037/met0000695

Table 3. Definitions of Common Performance Measures, their Estimates, Monte Carlo Standard Errors (MCSE), and Number of Simulation Repetitions nsim to Achieve a Desired MCSE*.

Performance measure Definition Estimate MCSE n sim
Bias E(θ^)θ (i=1nsimθ^i/nsim)θ Sθ^2/nsim Sθ^2/MCSE2
Relative bias {E(θ^)θ}/θ {(i=1nsim θ^i/nsim )θ}/θ Sθ^2/(θ2nsim) Sθ^2/(MCSE2θ2)
Mean square error (MSE) E{(θ^θ)2} i=1nsim(θ^iθ)2/nsim S(θ^θ)22/nsim S(θ^θ)22/MCSE2
Root mean square error (RMSE) E{(θ^θ)2} i=1nsim(θ^iθ)2/nsim S(θ^θ)22/(4nsimMSE^) S(θ^θ)22/(4MSE^ MCSE2)
Empirical variance Var(θ^) Sθ^2 Sθ^22/(nsim1) 1+2(Sθ^2)2/MCSE2
Empirical standard error Var(θ^) Sθ^2 Sθ^2/{2(nsim1)} 1+Sθ^2/(2MCSE2)
Coverage Pr(CI includes θ) i=1nsim 𝟙(CIiincludesθ)/nsim  Cov^(1Cov^)/nsim Cov^(1Cov^)/MCSE2
Power (or Type I error rate) Pr(Test rejects H0) i=1nsim𝟙(Testirejects H0)/nsim   Pow ^(1 Pow ^)/nsim  Pow^(1Pow^)/MCSE2
Mean CI width E(CIupper − CIlower) i=1nsim (CIi,upperCIi,lower)/nsim  SW2/nsim  SW2/MCSE2
Mean of generic statistic G E(G) i=1nsimGi/nsim SG2/nsim SG2/MCSE2

Note. Table adapted from Table 6 in Morris et al. (2019)

E(X) and Var(X) are the expected value and variance of a random variable X, respectively. Summation is denoted by i=1nxi=x1+x2++xn1+xn.

θ^ is an estimator of the estimand θ, and θ^i is the estimate obtained from simulation i

𝟙 (CIi includes θ) and 𝟙 (Testi rejects H0) are 1 if the respective event occurred in simulation i and 0 otherwise

MSE^Cov^, and Pow^ denote the estimated MSE, coverage, and power, respectively. MCSE* denotes the desired MCSE when calculating the number of repetitions nsim.

The sample variance of the estimates is Sθ^2=i=1nsim {θ^i(i=1nsim θ^i/nsim )}2/(nsim 1)

The sample variance of the square errors is S(θ^θ)22=i=1nsim[(θ^iθ)2{i=1nsim(θ^iθ)2/nsim}]2/(nsim1)

The sample variance of the CI widths is SW2=i=1nsim[(CIi,upperCIi,lower){i=1nsim(CIi,upper CIi,lower)/nsim }]2/(nsim 1)

The sample variance of a generic statistic G is SG2=i=1nsim{Gi(i=1nsimGi/nsim)}2/(nsim1) with Gi the statistic obtained from simulation i. For example, G may be a measure of predictive performance.