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Abstract

Objective—‘F0 tracking’ is a novel method that investigates neural processing of the 

fundamental frequency of the voice (f0) in continuous speech. Using linear modelling, a feature 

that reflects the f0 of a presented speech stimulus is predicted from neural EEG responses. The 

correlation between the predicted and the ‘actual’ f0 feature is a measure for neural response 

strength. In this study, we aimed to design a new f0 feature that approximates the expected human 

EEG response to the f0 in order to improve neural tracking results.

Methods—Two techniques were explored: constructing the feature with a phenomenological 

model to simulate neural processing in the auditory periphery and low-pass filtering the feature to 

approximate the effect of more central processing.

Results—Analysis of EEG-data evoked by a Flemish story in 34 subjects indicated that both the 

auditory model and the low-pass filter significantly improved the correlations between the actual 

and reconstructed feature. The combination of both strategies almost doubled the mean correlation 

across subjects, from 0.078 to 0.13. Moreover, canonical correlation analysis revealed two distinct 

processes contributing to the f0 response: one driven by broad range of auditory nerve fibers with 

center frequency up to 8 kHz and one driven by a more narrow selection of auditory nerve fibers, 

possibly responding to unresolved harmonics.

Conclusion—Optimizing the f0 feature towards the expected neural response, significantly 

improves f0-tracking correlations.

Significance—The optimized f0 feature enhances the f0-tracking method, facilitating future 

research on temporal auditory processing in the human brain.

Index Terms

Brainstem decoding; f0 tracking; auditory modelling; continuous speech; EEG signal processing

I Introduction

Traditionally, auditory-evoked potentials are evoked either by hundreds of repetitions of 

a short stimulus (e.g. a syllable) or the continuous presentation of a steady stimulus 

(e.g. a modulated tone). More recently, research is progressing towards the use of natural 
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speech stimuli. Experiments with these natural stimuli are more pleasant for subjects and 

yield detailed information on auditory processing in day-to-day communication [1]. As 

part of this evolution, researchers developed a framework to analyse neural responses to 

continuous speech based on linear decoding models (e.g. [2, 3, 4, 5, 6]). A linear decoding 

model, or backward model, reconstructs a specific stimulus-related feature from a linear 

combination of multi-channel neural responses and their time-lagged versions [2]. These 

linear models can be constructed for various stimulus features and depending on the feature, 

different aspects of auditory processing can be targeted. With a feature that represents the 

fundamental frequency of the voice (f0), it is possible to examine the neural tracking of 

the f0. This f0-tracking analysis is a rather novel approach, which is described only by a 

few recent studies: Etard et al. [7] used f0-tracking to detect a subcortical mechanism for 

selective attention and Van Canneyt et al. [8] characterized the strength and spatio-temporal 

properties of f0-tracking responses for different speech samples.

The performance of backward decoding models is evaluated based on the correlation 

between the reconstructed feature, derived from the EEG (or MEG), and the actual 

feature, derived from the stimulus. For f0-tracking, the actual feature is typically obtained 

by band-pass filtering the stimulus (or through empirical mode decomposition [9, 7]). 

However, the EEG response is not a perfect reflection of the stimulus and therefore the 

EEG-derived feature and these stimulus-derived features cannot be expected to correlate 

perfectly. The EEG response is shaped by neural processes like adaptation, saturation, 

and refractory periods, which have been extensively studied and can be simulated with 

models of the auditory system. Moreover, researchers have studied the EEG response and its 

dependency on the evoking stimulus and defined important temporal and spectral response 

characteristics. The goal of this study was to use the available knowledge on phase-locked 

EEG responses to adjust the feature used for f0 tracking, such that it is more similar to 

what is expected from the EEG response. We hypothesized that this would improve the 

correlations obtained with linear modelling, as it would be easier to predict the feature from 

the EEG responses. Typically, correlations for f0-tracking responses are quite small, i.e. in 

the range of 0.03-0.08 [7, 8]. Increasing these values is desired to reduce flooring effects and 

to make the analysis more robust.

Two strategies were set out to optimize the f0 feature. In a first step, we aimed to account 

for a series of neural processes occurring in the auditory periphery. This included frequency-

specific basilar membrane delays, adaptation effects and refractory effects in the primary 

auditory nerve fibers (ANF). For this purpose, we employed a phenomenological model 

of the auditory periphery by Bruce et al. [10]. The model predicts neural firing patterns 

in a large population of ANFs based on the input stimulus. By summing together the 

firing patterns over the ANFs, the response on the population level can be estimated. 

In a previous study, this population response has been found to accurately simulate phase-

locked responses to stimulus envelope modulations [11]. Since the f0 manifests as envelope 

modulations, we expect the simulations to approximate the neural response to the f0 in 

continuous speech as well. Therefore, we hypothesized that using the simulated population 

response as a feature would increase the performance of the linear models.
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An additional benefit of using the model of the auditory periphery is that relative 

contributions of neural populations with different center frequencies (CF) could be 

investigated. The adult human f0 ranges from about 80 to 300 Hz, and intuitively one 

would expect the f0 response to be driven by ANF with a CF in this range. However, 

there is evidence (from classic envelope following response (EFR) paradigms) that the f0 

response is not primarily driven by the stimulus f0 but mostly by its harmonics [12, 13], 

whose combined response periodicity equals the f0. For this reason, amongst others, ANF 

with larger CF are thought to contribute as well [14]. Moreover, the higher harmonics of 

a stimulus can be divided in resolved and unresolved harmonics [15]. Resolved harmonics 

are low frequency harmonics (< 1 kHz) which are each processed in a separate auditory 

filter in the cochlea. In contrast, unresolved harmonics have higher frequencies and multiples 

of them will occur within a single auditory filter so the auditory system processes them in 

a combined fashion. Several studies have tried to distinguish the contributions of resolved 

and unresolved harmonics to the classic EFR [16, 17, 13], with varying results. Recently, 

findings of Saiz-Alia and Reichenbach [18] suggested that fibers with CFs up to 8 kHz 

(corresponding to both resolved and unresolved harmonics) contribute more or less equally 

to the continuous f0-tracking response, but the stimulus used in that study has unnaturally 

strong higher harmonics [8]. We used the model simulations and canonical correlation 

analysis (CCA) to verify this finding for speech with a more natural speech profile.

With the model of the auditory periphery, EEG response characteristics up to primary 

auditory nerve are adequately captured. However, the f0 tracking response is predominantly 

generated beyond the ANFs. In our previous work [8], we have shown that the primary 

sources for the f0 tracking response are located in the brainstem, with possible cortical 

contributions. Therefore, the second strategy focussed on auditory processing higher-up 

the auditory pathway. Auditory models of brainstem processing already exist [19, 20, 21, 

18], but we chose to design a new model that is simple, yet highly effective for our 

purpose, by focussing on the spectrum of the response. It is known that the frequency 

limit for phaselocking decreases along the auditory pathway, causing cortical sources to 

contribute more strongly for stimuli with low f0. This ties together with the fact that f0 

(or envelope) following responses decrease in strength with increasing stimulus f0 [e.g. 22, 

23, 24, 8]. The exact relation between response amplitude and stimulus frequency varies 

widely across individuals, and there are many peaks and valleys [25], but we assumed that 

the frequency-amplitude relation could be approximated with a Butterworth low-pass filter. 

Therefore, our higher-level model is essentially a low-pass filter for which we optimized the 

filter parameters, i.e. order and frequency cut-off, in a data-driven way. We hypothesized 

that applying this filter to the feature would enhance the backward modelling correlations 

because the spectrum of the EEG and the to-be-predicted feature match more closely.

In summary, this study aimed to optimize the feature used in linear models to analyse 

neural f0-tracking by incorporating prior knowledge of the f0 response. Two strategies 

were examined: 1) using simulations of the neural population response in the auditory 

periphery as the feature and 2) applying a low-pass filter to the feature to account for the 

effect of more central processing on the spectrum of the response. The two strategies were 

applied separately as well as combined, and the effect on backward modelling correlations 
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was investigated. Additionally, the model simulations were used to quantify the relative 

contributions of ANF with different CF to the f0 response.

II Methods

A Dataset

The neural responses analysed in this study are part of an existing data set [26, 27]. EEG 

responses to continuous speech were measured for 34 young participants, who were native 

Flemish (or Dutch) speakers (31 females, 3 males), with ages ranging between 18 and 24 

years old (mean = 22.4 years, standard deviation = 1.4 years). All participants had normal 

hearing (all thresholds < 20 dB HL), which was verified using pure-tone audiometry (octave 

frequencies between 125 and 8000 Hz). The continuous speech stimulus was a Flemish 

story, titled “Milan” (written and narrated by Stijn Vranken), which lasted 14.6 minutes and 

had a mean f0 of 107 Hz (interquartile range = 34.7 Hz). The experiments were approved by 

the medical ethics committee of the University Hospital of Leuven and all subjects signed an 

informed consent form before participating (s57102).

B EEG responses

The EEG responses in the dataset were recorded with a 64-channel Biosemi ActiveTwo EEG 

recording system (fs = 8192 Hz). The 64 Ag/AgCl active scalp electrodes were placed on a 

cap according to the international standardized 10-10 system [28]. Subjects were seated in 

an electromagnetically-shielded sound-proof booth and instructed to listen carefully to the 

story, which was presented binaurally through electrically-shielded insert phones (Etymotic 

ER-3A, Etymotic Research, Inc., IL, USA) using the APEX 3 software platform [29]. 

Stimulus intensity was set to 62 dB A in each ear. The setup was calibrated in a 2-cm3 

coupler (Brüel & Kjaer, type 4152, Nærum, Denmark) using stationary speech weighted 

noise with the same spectrum as the story. To encourage attentive listening, participants 

answered a question about the content of the story after its presentation.

We applied several preprocessing steps to the raw EEG data from the dataset. First, the data 

was downsampled to a sampling frequency of 1024 Hz. Then, artefacts were removed using 

a multi-channel Wiener filter algorithm with delays from -3 to 3 samples included and a 

noise weighting factor of 1 [30].The data was re-referenced to the average of all electrodes 

and band-pass filtered with a Chebyshev filter with 80 dB attenuation at 10 % outside the 

pass-band and a pass-band ripple of 1 dB. The filter cut-offs, i.e. 75 and 175 Hz, were 

chosen based on the f0 distribution of the story. We also applied a notch filter to remove the 

artefact caused by the third harmonic of the utility frequency at 150 Hz (the other affected 

frequencies did not fall in the bandpass filter range). The EEG was normalized to be zero 

mean with unit variance.

C Linear decoding model

The EEG responses were analysed with linear backward decoding models implemented in 

MATLAB R2016b [31] using custom scripts and the mTRF toolbox [5]. A description of 

the main methods is provided here, but for details we refer to our previous work [8]. In 

backward linear modelling or decoding, one reconstructs a known stimulus-related feature 
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based on a linear combination of the time-shifted data from the EEG electrodes. In this 

study, time shifts between 0-40 ms in steps of 1/fs (fs = 1024 Hz) were included. First, a 

section of the data (including minimum 2 minutes of voiced data) was set aside for testing 

and the model was estimated based on the remainder of the data. Regularization was done 

using ridge regression [32, 33, 34]. Then, the estimated model was used to reconstruct 

the feature for the testing data. Finally, the bootstrapped Spearman correlation between the 

reconstructed feature and the actual f0 feature, for the test section, was calculated (median 

over 100 index-shuffles). Importantly, unvoiced and silent sections were removed from the 

reconstructed and actual feature before correlating, because they have no reliable f0 [9]. 

To validate the backward decoding results, we used a 3-fold cross-validation approach. The 

final backward correlation, i.e. the median over the folds, was compared to a significance 

level (based on correlations with spectrally-matched noise signals) to evaluate its statistical 

significance (two-sided test, α = 0.05).

D The features

To investigate how the neural system tracks the f0, the linear modelling approach requires 

a f0 feature, i.e. a waveform reflecting the instantaneous f0 of the stimulus. In previous f0-

tracking work [8, 7], f0 features were obtained by bandpass filtering the stimulus (‘default’). 

Here, two additional strategies were explored. A first strategy was to use a model of the 

auditory periphery to obtain the feature (‘model’). A second strategy was to apply an 

additional low pass filter, that roughly simulates neural processing beyond the auditory 

periphery, either to the default feature (‘default + low-pass’) or to the model feature (‘model 

+ low-pass’). The four features (the default feature, the model feature, the low-passed 

default feature and the low-passed model feature) are visualised in figure 1. Below the 

calculation of each of the features is discussed in detail. Importantly, unvoiced and silent 

sections were set to zero in all features before normalizing to zero mean and variance 

of 1. We performed linear decoding analysis of the data with each of the four features 

and compared the resulting correlations. Feature-induced differences between backward 

correlations were statistically evaluated in R (version 3.6.3., [35]), using linear mixed 

models (package lme4, version 1.1.21, [36]) with a random intercept per subject.

1) The default feature—The “default” feature was based on band-pass filtering of the 

stimulus. Specifically, we used a Chebyshev bandpass filter with 80 dB attenuation at 10 % 

outside the pass-band and a pass-band ripple of 1 dB. The filter cut-offs, i.e. 75 and 175 

Hz, were chosen based on the f0 distribution of the story. This filter is identical to the one 

applied to the EEG (see above). The amplitude response of the band-pass filter, as well as 

the resulting default feature, is visualized in Figure 1.

2) The model-based feature—The model-based feature is generated with a 

phenomenological model of the auditory periphery [10]. The model simulates spike patterns 

from a population of auditory nerve fibers with different center frequencies (CFs) and 

different spontaneous firing rates. The model takes the stimulus as input, which is then 

filtered with a filterbank: the filter bands are centered around the simulated CF. Here, the 

model simulated 20 CFs logarithmically spaced between 250 and 8000 Hz and for every 

CF, there were 50 nerve fibers with different spontaneous firing rates: 10 low (0.1 spikes/s), 
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10 mid (4 spikes/s) and 30 high (70 spikes/s). Then, the model applies several processing 

stages to produce simulated ANF spike patterns for each of the CFs/filter bands, which can 

be visualized in a neurogram (= the model output).

For a detailed description of the model as well as the model code, we refer to Bruce et 

al. [10]. However, two important changes were made to the model to increase the temporal 

resolution of the output: the window length of the smoothing Hamming window in the post-

stimulus time-histogram (PSTH) was decreased from 128 to 32 samples and the amount of 

bins over which the PSTH was integrated was decreased from 10 to 5.

The process to obtain the model-based f0 feature from the model output is visually 

represented in figure 1: the model received the Flemish story as input and produced the 

corresponding neurogram. The spike patterns were summed across all CFs (i.e. summing 

along the y-axis of the neurogram) to obtain the neural response at population level. Finally, 

the same band-pass filter as discussed in section II-D.1 was applied to extract the neural 

response to the f0.

3) The low-pass filtered features—We applied a low-pass filter to the feature such 

that the spectrum of the feature better resembled the spectrum of the expected f0 response, 

i.e. with reduced amplitude for higher frequencies. To avoid unwanted side effects of the 

filtering, especially in the stopband, we used a Butterworth filter. The order and cut-off 

frequency were determined in a data-driven way: for each subject, we calculated linear 

decoding models based on the default feature, low-pass filtered with different filter orders 

(1, 2, 4, 6, 8, 10, 12) and filter cut-offs (75, 80, 90, 100, 110, 120, 130, 140, 155, 175 Hz). 

Including a wider range of cut-offs made little sense because the features are already filtered 

by a bandpass filter that strongly attenuated frequencies outside this range (see earlier). The 

results of this optimisation are discussed in detail in section III-B. In summary, we found a 

8th (or higher) order filter with a cut-off frequency of 110 Hz to be optimal. The amplitude 

response of this filter is shown in figure 1. The same optimization process was performed 

for the model-based feature leading to nearly identical results, which were therefore not 

reported. As shown in figure 1, the optimized low-pass filter was applied to both the default 

and the model-based feature to create the two low-passed features.

E The relative contribution of nerves with different center frequencies

The model simulations produced neural firing patterns for a group of 50 ANF at 20 CF, 

which were all summed together to obtain the model-based feature. In an additional analysis, 

we investigated the response at different CFs separately using a canonical correlation 

analysis (CCA). In preparation for the CCA, the spike patterns at each of the CF were 

filtered with the same bandpass filter specified earlier in section II-D.1 and normalized to 

be zero mean. Moreover, the silent and unvoiced section were removed. Whereas linear 

backward decoding models are trained by finding the weighted combination of EEG 

channels that maximally correlates with a fixed feature, canonical correlation analysis 

(CCA) optimizes the correlation by applying weights to both the EEG channels and a set 

of features. In this case, the CCA assigned weights to the simulated response at each of 

the CFs, which is indicative of the relative importance of nerves with that CF for the f0 
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response. The CCA also determined weights for the EEG channels and their time-shifted 

versions (0-40 ms with 1/fs steps (fs = 1024 Hz)), but interpreting these ‘backward’ weights 

as a spatial distribution of the response is not reliable. As argued by [37], large weights 

may be paired with channels unrelated to the signal of interest while channels containing 

response energy may receive small weights. These misleading effects occur because the 

linear model attempts to suppress noise components. To resolve this issue, Haufe et al. [37] 

proposed to transform backward models into forward models. In forward modelling, the 

EEG data in each recording channel is predicted based on the feature and its time-shifted 

versions. This method is less powerful than backward modelling, but since each EEG 

channel is treated separately, noise suppression cannot take place so the forward modelling 

weights can be reliably interpreted.

CCA estimated as many canonical components (sets of weights) as there are elements in 

the smallest set, which in this case was determined by the amount of CFs included in the 

model, i.e. 20. Each of these components was estimated under the constraint that they are 

uncorrelated with the previous components. The 20 resulting models, or CCA components, 

were applied to 2 minutes of unseen voiced data and bootstrapped Spearman correlations 

between the reconstructed features and the actual f0 features were calculated (median over 

100 index-shuffles). To assess the significance of each of the components, significance 

thresholds were estimated in the same way as for the linear decoding models.

To understand the spatio-temporal characteristics of the canonical components, the 

significant components were transformed to a forward model. This was done by weighing 

the model simulated responses at different CFs according to the weights estimated by CCA 

(instead of equal weighting in the default case) and summing it together to obtain a new 

f0 feature. This new feature and its time-shifted versions (-20 to 80 ms with 1/fs steps (fs 

= 1024 Hz)) were then used to predict the EEG response in each channel. The weights of 

the forward model can be interpreted through temporal response functions (an average over 

channels in function of time), which reflect the impulse response of the auditory system, 

and also through topoplots, which reveal the spatial distribution of the response at specific 

time lag. Because of the large degree of autocorrelation present in the f0 feature, response 

energy is spread in time, both in the TRFs and the topoplots. To help with interpretation, 

we calculated Hilbert TRFs, but the underlying autocorrelative smearing should be kept in 

mind. For more details on Hilbert TRFs and other aspects of the forward modelling, we refer 

to our previous work [8].

III Results

A Comparison of backward decoding results

We performed linear decoding analysis of the same neural data with four different features: 

the default feature, the model-based feature, the low-passed default feature and the low-

passed model-based feature. Figure 2 compares the backward correlations obtained for all 

subjects with each of the features. Visual comparison indicates that analysis with the model 

based-feature produced larger correlations compared to analysis with the default feature. 

Moreover, adding the low-pass filter improved correlations both for the default and the 

model-based feature. Significance levels are highly similar across features (dashed lines). 
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The only feature that provided significant correlations for all subjects is the low-passed 

model-based feature. A linear mixed model with random intercept per subject was used 

to statistically evaluate the relative performance of the features. There was a significant 

difference between the correlations obtained with the default and the model-based feature (β 
= 0.030, df = 102, t = 10.7, p < 0.001). Moreover, there was a significant difference between 

the correlations obtained with the default and low-passed feature (β = 0.036, df = 102, t = 

12.8, p < 0.001). Finally, the combination of the low-pass filter and the model-based feature 

resulted in significantly different correlations compared to the model-based feature on its 

own (β = 0.022, df = 102, t = 8.0, p < 0.001).

B Optimisation of the low-pass filter

As described in the methods, the parameters of the Butterworth filter, used to filter the 

features, were defined in a data driven way. In figure 3, the results of this optimization are 

presented. We identified the filter parameters that induced the largest increase in correlation, 

compared to the correlation obtained with the default feature. The results indicated that the 

largest increase in correlations, on average over subjects, occurred for a filter of 8th (or 

higher) order with a cut-off frequency of 110 Hz (panel A). For the majority of the subjects, 

increasing the order of the filter up to 8, while keeping the cut-off frequency fixed at 110 

Hz, resulted in a monotonic increase of the correlation. Using filter orders larger than 8 

did not further enhance the correlations (Panel B). With a fixed filter order of 8, a cut-off 

frequency of 110 Hz was most optimal for the majority of the subjects (n = 19), but for some 

subjects a cut-off of 100 Hz (n = 9), 120 (n = 5) or 130 Hz (n = 1) was better (Panel C). For 

filter cut-off frequencies near 175 Hz, the change in correlation induced by low-pass filtering 

approached 0, because in those cases the attenuation of the low-pass filter fell outside the 

bandpass-filter (applied earlier), and therefore had no effect. In contrast, filter cut-offs below 

80 Hz tended to decrease the correlation, indicating the importance of the lower frequencies. 

Optimisation of the low-pass filter on the model-based feature led to highly similar results 

and was therefore not shown.

C The relative contribution of nerves with different center frequencies

To estimate the relative contribution of auditory nerve fibers with different CF to the 

f0 response, we performed CCA with the simulated spike patterns per CF. Out of the 

20 estimated CCA components, the first two provided correlations that were larger than 

the significance level for the majority of the subjects (Figure 4, panel A). The median 

correlation over subjects obtained for the first component (0.099) is similar to what was 

found with the model-based feature in regular linear decoding (0.106), while the median 

backward correlation of the second component is smaller (0.076). Panel B and C of figure 

4 indicate the weight pattern for the first and second component, respectively. Note that 

the sign of these weights can be reversed without a change in meaning, as long as it is 

done for all the weights. The estimated weight patterns are highly similar across subjects. 

The first component revealed positive weights to all CFs except the lowest one, i.e. 250 

Hz, which had a large negative weight. The second component is divided between positive 

weights for CFs < 1 kHz and smaller, (mostly) negative weights > 1 kHz. Weight patterns 

for non-significant CCA components were not analysed.
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Through forward modelling with features assembled according to the weightings displayed 

in panel B of Figure 4, the spatio-temporal characteristics of the canonical components was 

analysed. Panel C of Figure 4 presents the Hilbert TRFs for the two significant canonical 

components. The TRF for the first component peaks around 12.3 and 18.4 ms and is highly 

similar to the TRF of the regular model feature (black dotted line). This is not suprising as 

the CCA weights approximate equal weighting across CFs. However, the second component 

has a slightly more narrow and earlier peak at 9.22 ms. The topoplots in panel D of Figure 

4 indicate the spatial distribution of the response energy at these peak lags and these are 

highly similar to what was reported in Van Canneyt et al. [8]. The second component may 

have slightly less temporo-mastoidal activity, which may indicate less cortical activity, but 

the spatial patterns are highly similar.

IV Discussion

The goal of this study was to improve the analysis of f0-tracking responses to continuous 

speech by optimizing the feature used in the linear decoding models. Backward correlations 

for f0-tracking responses reported in earlier studies are typically quite small, i.e. in the range 

of 0.03 - 0.08. Larger correlations would facilitate the detection and interpretation of group 

differences (less floor effects) and make f0-tracking analysis more robust. We hypothesized 

that better results would be obtained when the feature better resembled the expected neural 

response, as predicting the one from the other would be easier.

A first strategy to optimize the feature was to use a model of the auditory periphery to 

simulate the neural response to the stimulus at the level of the primary auditory nerve. 

In a prior study, Van Canneyt et al. [11], we showed how simulated population responses 

constructed through this model reliably predict neural responses to envelope modulations. 

Here, the simulated population responses were used as a feature in the linear decoding 

models. The model-based feature improved the mean correlation over subjects from 0.079 to 

0.109, compared to the default feature. The model simulated auditory processing up to the 

primary auditory nerve, but f0-tracking is generated in the brain stem, with possible cortical 

contributions [8]. To account for the higher processing stages, we focussed on simulating 

the limitations of phase-locking. Phase-locking is less reliable for higher frequencies and the 

higher up the auditory pathway, the lower the maximum frequency that can be phase-locked 

to. This leads to a decreasing amplitude-frequency relation for the neural response, which 

we simulated through low-pass filtering. As shown in figure 2, low-pass filtering the default 

feature improved the mean correlation over subjects from 0.079 to 0.115. Since the two 

strategies target processes from different sections of the auditory pathway, it made sense to 

evaluated their combined effect. The combination of both strategies delivered the best results 

with significant correlations for all subject and almost a doubling of the mean correlation 

across subjects, from 0.079 to 0.130.

Importantly, the newly developed features differ in the time and computational resources 

necessary to obtain them. Depending on the duration of the continuous speech 

stimulus, calculating the simulated neural responses with the phenomenological model 

is computationally very expensive. In experimental settings where the same stimulus is 

presented to many subjects, use of the model is feasible as the model simulation can be 
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reused for all subjects. However, the process to obtain the model-based feature is likely 

too slow for real-time applications. In contrast with the model-based feature, the addition 

of a low-pass filter is a quick and simple operation, which is easy to implement and likely 

possible in real-time. Moreover, even though this approach is relatively rudimentary, our 

results indicate it still provides a substantial benefit. Alternatively, one could account for 

auditory processing beyond the auditory nerve, by using a model of the auditory pathway up 

to the brainstem, as proposed by Verhulst et al. [20] or Saiz-Alia and Reichenbach [18]. This 

way, neural responses at the level of the brainstem are simulated. However, these models are 

even more computationally expensive than the model of the auditory periphery.

The parameters of the filter used for the low-passed features were determined in a data-

driven way. On a group-level, the backward correlations improved the most when the feature 

was filtered with a 8th (or higher) order Butterworth filter with a cut-off at 110 Hz. The 

order of the filter could be further increased without impacting the correlations but the 

optimal cut-off frequency was rather specific: varying it more than 10 Hz up or down 

reduced the correlations. It is also possible to use the optimal filter parameters for each 

subject individually, however this barely improved the correlations on a group-level (from 

0.1145 to 0.1172 for the low-passed default feature and from 0.1309 to 0.1313 for the 

low-passed model-based feature). The optimization process was time-intensive and useful to 

develop the new feature, but does not necessarily need to be repeated for new data/stimuli. 

From explorations on different datasets with different evoking stimuli, we have learned that 

the optimal filter order is usually situated between 4 and 8, with voices with higher f0 

favouring lower order filters. The optimal filter cut-off usually falls a little (e.g. 40-50 Hz) 

above the lower cut-off chosen for the bandpass filter, which is determined based on the f0 

distribution of the story. Essentially, the filter should be designed such that the frequencies 

in the lower range of the f0 distribution of the stimulus are left untouched and higher 

frequencies are gradually more attenuated. The recent results of Kulasingham et al. [38] 

confirm the dominance of lower frequencies in neural tracking of the f0.

This study also included an investigation of the relative contributions of ANF with different 

CFs to the neural f0 tracking response. In this analysis, the simulated responses at different 

CF were assigned weights to optimize the correlation with a linear combination of the 

multi-channel and time-lagged EEG. The first CCA component indicated mainly positive 

weights, which confirms the findings by Saiz-Alia and Reichenbach [18] that the f0-tracking 

response is generated by a collective of neurons with CFs up to 8kHz. The backward 

correlations obtained for this first CCA component were highly similar to the correlations 

obtained for the regular model-based feature, which makes sense since the weight pattern 

strongly resembles the uniform weighting used in the regular model-based feature. The 

CCA weights do indicate a steady decrease in relative contribution towards larger CF, 

which contrast the finding of Saiz-Alia and Reichenbach [18] where CF up to 8 kHz were 

considered to contribute equally. Potentially, this difference is related to the fact that the 

stimulus of Saiz-Alia and Reichenbach [18] has stronger higher harmonics than the stimulus 

of the present study. The observation that nerves with higher CF contribute to the neural f0 

tracking response, not just the ANF with CF near the f0, follows the results of Dau [14]. 

Moreover, it also is in line with previous findings that claim that the EFR/f0-response is 

driven by both resolved and unresolved harmonics of the stimulus, not just the f0 [39, 17, 
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13, 24]. Finally, the fact that higher harmonics are important drivers of the response could 

partly explain why the model feature outperforms the default feature: the model sends the 

stimulus through a filter bank and considers f0 envelope responses in each filter (including 

filters near higher harmonic frequencies), whereas the construction of the default feature 

only takes the stimulus energy around the f0 into account. As a result, the model-based 

feature may outperform the default feature, even though they are both bandpass filtered in 

the f0 range, because the auditory model simulates the contribution of the higher harmonics 

to the f0 response.

Remarkably, the CCA brought up a second component with (smaller) significant 

correlations, which is per definition uncorrelated to the first. CCA components differ in 

the weights assigned to the CF, but also have different temporal-spatial patterns, i.e. the 

weighting of different EEG channels at different time-shifts. Therefore, a second significant 

component could indicate an additional neural process underlying the f0-tracking response, 

possibly with different neural generators. The weights for the second component are large 

and positive for ANF with lower CF (<1000 Hz) and smaller and mostly negative for higher 

CF. This pattern could indicate that the process behind the second component focusses 

on the resolved harmonics in the stimulus and disregards the unresolved harmonics which 

typically occur above 1000 Hz. To learn more about the neural origin of this second 

response component, and how it differs from the first component, we applied Haufe et al. 

[40]’s suggestion to turn a backward model into a forward model. The results for the first 

component are highly similar to what was found for the regular model feature and to what 

was reported in our previous work [8]: TRFs with two peaks at lags around 13 and 18 ms 

and a topoplot with central and right temporo-mastoidal activity, suggestive of generators 

in the brainstem and right auditory cortex. The second process has a similar predominantly 

central spatial pattern but reduced tempero-mastoidal activity as well as only one and earlier 

TRF peak around 9 ms. This suggests that this second process occurs predominantly in the 

brainstem, with less cortical contributions. These findings seem in line with the theory put 

forward by Laroche et al. [17, 13] that resolved and unresolved harmonics are processed in 

different but interacting pathways that converge in the upper brainstem.

V Conclusion

By implementing two distinct strategies, a f0-feature that better resembles the expected f0-

tracking response was developed and this lead to significant improvements in the obtained 

backward correlations. Low-pass filtering the feature is a fast an flexible strategy that 

significantly boosts the correlations. When the stimulus is fixed and heavy computations are 

possible, a feature predicted by a model of the auditory periphery, combined with a low-pass 

filter, can provide even further improvements. Finally, if one wants to increase precision at 

the cost of even more computational power, one should consider a more extensive model 

of the auditory system that includes the brainstem (and ideally the primary auditory cortex 

as well). Moreover, model simulations combined with CCA indicated that f0-tracking may 

be generated by two uncorrelated processes. The first dominant one is driven by ANF with 

a broad range of CFs (up to 8 kHz). The second smaller one is driven mostly by ANF 

responding to unresolved harmonics (CFs below 1 kHz).
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Fig. 1. Visualisation of the stimulus and how the features were derived from it.
The first four words of the sentence ”Elk jongetje is gewoon een jongetje.” are shown 

(translation: ”every boy is just a boy.”).
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Fig. 2. Comparison of correlations for all subjects obtained with each of the features.
The dashed lines indicate the significance level. *** indicates a significant difference with a 

p < 0.001.
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Fig. 3. Results of the optimisation of the low-pass filter applied to the default feature
A. Change in backward correlation caused by applying a low-pass filter with the specified 

order and cut-off frequency to the default feature, averaged over subjects. B. Change in 

backward correlation by altering the filter order with the cut-off frequency fixed at 110 Hz, 

for each subject separately. C. Change in backward correlation by altering the filter cut-off 

frequency with the filter order fixed at 8, for each subject separately.
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Fig. 4. Results of the CCA using the spike patterns per CF and the EEG (+ time shifted versions)
A. Backward correlations for each of the subjects and for each of the 20 canonical 

components. The significance level is indicated with a dashed line. B. CCA weights across 

CFs for the first and second component respectively, for each of the subjects (thin line) 

and in the median case (thick line). C. Hilbert TRFs for the two significant canonical 

components and the regular model (black dotted line). The peaks lags at which topoplots 
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were plotted in panel D are indicated with vertical dashed lines. D. Topoplots at the peaks 

lags of the TRFs in panel C.

Van Canneyt et al. Page 19

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2024 December 05.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


	Abstract
	Introduction
	Methods
	Dataset
	EEG responses
	Linear decoding model
	The features
	The default feature
	The model-based feature
	The low-pass filtered features

	The relative contribution of nerves with different center frequencies

	Results
	Comparison of backward decoding results
	Optimisation of the low-pass filter
	The relative contribution of nerves with different center frequencies

	Discussion
	Conclusion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4

