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Abstract

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) transmission is uncontrolled 

in many parts of the world, compounded in some areas by higher transmission potential of the 

B1.1.7 variant now seen in 50 countries. It is unclear whether responses to SARS-CoV-2 vaccines 

based on the prototypic strain will be impacted by mutations found in B.1.1.7. Here we assessed 

immune responses following vaccination with mRNA-based vaccine BNT162b2. We measured 

neutralising antibody responses following a single immunization using pseudoviruses expressing 

the wild-type Spike protein or the 8 amino acid mutations found in the B.1.1.7 spike protein. 

The vaccine sera exhibited a broad range of neutralising titres against the wild-type pseudoviruses 

that were modestly reduced against B.1.1.7 variant. This reduction was also evident in sera from 

some convalescent patients. Decreased B.1.1.7 neutralisation was also observed with monoclonal 

antibodies targeting the N-terminal domain (9 out of 10), the Receptor Binding Motif (RBM) (5 

out of 31), but not in neutralising mAbs binding outside the RBM. Introduction of the E484K 

mutation in a B.1.1.7 background to reflect newly emerging viruses in the UK led to a more 

substantial loss of neutralising activity by vaccine-elicited antibodies and mAbs (19 out of 31) 

over that conferred by the B.1.1.7 mutations alone. E484K emergence on a B.1.1.7 background 

represents a threat to the vaccine BNT162b.

Keywords

SARS-CoV-2; COVID-19; antibody; vaccine; neutralising antibodies; mutation; variant
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Introduction

The outbreak of a pneumonia of unknown cause in Wuhan, China in December 2019, 

culminated in a global pandemic due to a novel viral pathogen, now known to be SARS-

CoV-21. The unprecedented scientific response to this global challenge has led to the rapid 

development of vaccines aimed at preventing SARS-COV-2 infection and transmission. 

Continued viral evolution led to the emergence and selection of SARS-CoV-2 variants 

with enhanced infectivity/transmissibility2,3 4,5 and ability to circumvent drug6 and immune 

control7,8.

SARS-CoV-2 vaccines have recently been licensed that target the spike (S) protein, either 

using mRNA or adenovirus vector technology with protection rates ranging from 62 to 

95%9–11. The BNT162b2 vaccine encodes the full-length trimerised S protein of SARS 

CoV-2 and is formulated in lipid nanoparticles for delivery to cells12. Other vaccines 

include the Moderna mRNA-1273 vaccine, which is also a lipid nanoparticle formulated 

S glycoprotein13 and the Oxford-AstraZeneca ChAdOx1 nCoV-19 vaccine (AZD1222) 

which is a replication-deficient chimpanzee adenoviral vector ChAdOx1, containing the 

S glycoprotein14. The duration of immunity conferred by these vaccines is as yet 

unknown. These vaccines were designed against the Wuhan-1 isolate discovered in 2019. 

Concerns have been raised as to whether these vaccines will be effective against newly 

emergent SARS-CoV-2 variants, such as B.1.1.7 (N501Y.V1), B.1.351 (N501Y.V2) and P1 

(N501Y.V3) that originated in the UK, South Africa, and Brazil and are now being detected 

all over the world15–17.

In clinical studies of the Pfizer-BioNTech BNT162b2 vaccine, high levels of protection 

against infection and severe disease were observed after the second dose10. Neutralisating 

geometric mean titre (GMT) was below cut-off in most cases after prime dose, but as 

anticipated, titres substantially increased after boost immunization18. In older adults mean 

GMT was only 12 in a preliminary analysis of 12 participants19 and increased to 109 after 

the second dose.

In this study, we assess antibody responses against the the B.1.1.7 variant after vaccination 

with the first and second doses of BNT162b2, showing modest reduction in neutralisation 

against pseudoviruses bearing B.1.1.7 Spike mutations (ΔH69/V70, Δ144, N501Y, A570D, 

P681H, T716I, S982A and D1118H). In addition, by using a panel of human neutralising 

monoclonal antibodies (mAbs) we show that the B.1.1.7 variant can escape neutralisation 

mediated by most NTD-specific antibodies tested and by a fraction of RBM-specific 

antibodies. Finally, we show that the recent emergence and transmission of B.1.1.7 viruses 

bearing the Spike E484K mutation results in significant additional loss of neutralisation by 

BNT162b2 mRNA-elicited antibodies, convalescent sera and mAbs.

Results

Thirty seven participants had received the first dose of BNT162b2 mRNA vaccine three 

weeks prior to blood draw for serum and peripheral blood monocnulear cells (PBMC) 

collection. Median age was 63.5 years (IQR 47-84) and 33% were female. Serum IgG titres 
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to Nucleocapsid (N) protein, S and the S receptor binding domain (RBD) were assayed by 

particle based flow cytometry on a Luminex analyser (Extended Data Fig. 1a). These data 

showed S and RBD antibody titres much higher than in healthy controls, but lower than 

in individuals recovered from COVID-19 and titres observed in therapeutic convalescent 

plasma. The raised N titres relative to control could be the result of non-specific cross 

reactivity that is increased following vaccination. However, the antibody response was 

heterogeneous with almost 100-fold variation in IgG titres to S and RBD across the 

vaccinated participants.

Using lentiviral pseudotyping we studied WT (wild type bearing D614G) and mutant 

B.1.1.7 S proteins (Fig. 1a) on the surface of enveloped virions in order to measure 

neutralisation activity of vaccine-elicited sera. This system has been shown to give results 

correlating with replication competent authentic virus20,21. Eight out of 37 participants 

exhibited no appreciable neutralisation against the WT pseudotyped virus following the first 

dose of vaccines. The vaccine sera exhibited a range of inhibitory dilutions giving 50% 

neutralisation (ID50) (Fig. 1c-d). The GMT against wild type (WT) following the second 

dose of vaccine was an order of magnitude higher than after the first dose (318 vs 77) (Fig 

1c-f).There was correlation between full length S IgG titres and serum neutralisation titres 

(Extended Data Fig. 1b). A broad range of T cell responses was measured by IFN gamma 

FluoroSpot against SARS-CoV-2 peptides in vaccinees. These cellular responses did not 

correlate with IgG S antibody titres (Extended Data Fig. 1c-d).

We then generated mutated pseudoviruses carrying S protein with mutations N501Y, A570D 

and the H69/V70 deletion. We observed no reduction in the ability of sera from vaccinees 

to inhibit either WT or mutant virus (Extended Data Fig. 2a, b). A panel of sera from ten 

recovered individuals also neutralised both wild type and the mutated viruses similarly 

(Extended Data Fig. 2c). We next completed the full set of eight mutations in the S 

protein present in B.1.1.7 variant (Fig. 1a), ΔH69/V70, Δ144, N501Y and A570D in the 

S1 subunit and P681H, T716I, S982A and D1118H in the S2 subunit. All constructs also 

contained D614G. We found that among 29 individuals with neutralisation activity against 

the WT three weeks after receiving a single dose of the the BNT162b2 mRNA vaccine, 20 

showed evidence of reduction in efficacy of antibodies against the B.1.1.7 mutant (Fig. 1b-c, 

Extended Data Fig.3). The mean fold change reduction in sensitivity to first dose vaccine 

sera of B.1.1.7 compared to WT was approximately 3.2 (SD 5.7). The variation is likely due 

to the low neutralisation titres following first dose. Following the second dose, GMT was 

markedly increased compared with first dose titres, and the mean fold change had reduced 

to 1.9 (SD 0.9) (Fig. 1d-e). Amongst sera from 27 recovered individuals, the GMT at 50% 

neutralisation was 1334 for WT, significantly higher than post second dose vaccination (Fig. 

1f-g). The fold change in ID50 for neutralisation of B.1.1.7 versus wild type (D614G) was 

4.5 (Fig. 1f-g and Extended Data Fig.4).

B.1.1.7 with spike E484K mutation and neutralization by vaccine and convalescent sera

The E484K substitution (Fig. 2a) is antigenically important, and has been reported as an 

escape mutation for several monoclonal antibodies including C121, C144, REGN10933 

and Ly-CoV555 22. E484K is also known to be present in the B.1.351 (501Y.V2) and P.1 
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(501Y.V3) lineages in combination with amino acid replacements at N501 and K417. As of 

10th Feb 2021, twenty three English and two Welsh B.1.1.7 sequences from viral isolates 

contained the E484K substitution (Fig. 2b). The number of B.1.1.7 sequences has been 

increasing since the start of December 2020 (Fig. 2c). Phylogenetic analysis suggests that 

there have been multiple independent acquisitions, with one lineage appearing to expand 

over time, indicating active transmission (Fig. 2b). This has resulted in Public Health 

England naming this as a variant of concern (VOC 202102/02)23, triggering enhanced public 

health measures. There are as yet no phenotypic data on the sensitivity to neutralisation for 

this virus or its spike protein.

We therefore generated pseudoviruses bearing B.1.1.7 spike mutations with or without 

additional E484K and tested these against sera obtained after first and second dose mRNA 

vaccine as well as against convalescent sera. Following second dose, we observed a 

significant loss of neutralising activity for the pseudovirus with B.1.1.7 spike mutations and 

E484K (Fig 3d-e). The mean fold change for the E484K B.1.1.7 Spike was 6.7 compared to 

1.9 for B.1.1.7, relative to WT (Fig. 3a-c). Similarly when we tested a panel of convalescent 

sera with a range of neutralisation titres (Fig. 1f-g), we observed additional loss of activity 

against the mutant B.1.1.7 spike with E484K, with fold change of 11.4 relative to WT (Fig. 

3f-g).

B.1.1.7 variant escape from NTD- and RBM-specific mAb-mediated neutralization.

To investigate the role of the full set of mutations in NTD, RBD and S2 present in 

the B.1.1.7 variant, we tested 60 mAbs isolated from 15 individuals that recovered from 

SARS-CoV-2 infection in early 2020 with an in-vitro pseudotyped neutralization assay using 

VeroE6 target cells expressing Transmembrane protease serine 2 (TMPRSS2, Extended Data 

Table 1). We found that 20 out of 60 (33.3%) mAbs showed a greater than 2-fold loss 

of neutralising activity of B.1.1.7 variant compared to WT SARS-CoV-2 (Fig. 4a,b and 

Extended Data Fig.5). Remarkably, the B.1.1.7 mutant virus was found to fully escape 

neutralization by 8 out of 10 NTD-targeting mAbs (80%), and partial escape from an 

additional mAb (10%) (Fig. 4c). We previously showed that the deletion of residue 144 

abrogates binding by 4 out of 6 NTD-specific mAbs tested, possibly accounting for viral 

neutralization escape by most NTD-specific antibodies24. Of the 31 RBM-targeting mAbs, 

5 (16.1%) showed more than 100-fold decrease in B.1.1.7 neutralization, and additional 

6 mAbs (19.4%) had a partial 2-to-10-fold reduction (Fig. 4d). Finally, all RBD-specific 

non-RBM-targeting mAbs tested fully retained B.1.1.7 neutralising activity (Fig. 4e).

To address the role of B.1.1.7 N501Y mutation in the neutralization escape from RBM-

specific antibodies, we tested the binding of 50 RBD-specific mAbs to WT and N501Y 

mutant RBD by biolayer interferometry (Fig. 4f and Extended Data Fig. 6). The 5 RBM-

specific mAbs that failed to neutralize B.1.1.7 variant (Fig. 4d) showed a complete loss of 

binding to N501Y RBD mutant (Fig. 4g-h), demonstrating a role for this mutation as an 

escape mechanism for certain RBM-targeting mAbs.

The decreased neutralising activity of the immune sera from vaccinees and convalescent 

patients against B.1.1.7, but not against Δ69/70-501Y-570D mutant (Fig. 1 and Extended 

Data Fig. 2), could be the result of a loss of neutralising activity of both RBD- and 
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NTD-targeting antibodies, and suggests that the key mutation is Δ144. RBD antibodies 

against N501Y could play a role in decreased neutralisation by sera, with the overall impact 

possibly modulated by other mutations present in B.1.1.7, as well as the relative dominance 

of NTD versus RBM antibodies in polyclonal sera.

To assess the effect of E484K on this panel of mAbs we generated a SARS-CoV-2 

pseudotype carrying the K417N, E484K and N501Y mutations (TM). The inclusion of 

the K417N substitution was prompted by the observation that substitutions at this position 

have been found in 5 sequences from recent viral isolates within the B.1.1.7 lineage (K417 

to N, E or R). This is in keeping with convergent evolution of the virus towards an RBD 

with N501Y, E484K and K417N/T as evidenced by B.1.351 and P.1 lineages (K417N or 

K417T, respectively) causing great concern globally. It is therefore important to assess this 

combination going forward.

Importantly, mutations at K417 are reported to escape neutralization from mAbs, including 

the recently approved mAb LY-CoV016 22,25. Out of the 60 mAbs tested, 20 (33.3%) 

showed >10 fold loss of neutralising activity of TM mutant compared to WT SARS-CoV-2 

(Fig. 4 a-b and Extended Data Fig. 5), and of these 19 are RBM-specific mAbs. As above, 

we addressed the role of E484K mutation in escape from RBM-specific antibodies, by 

testing the binding of 50 RBD-specific mAbs to WT and E484K mutant RBD by biolayer 

interferometry (Fig. 4f and Extended Data Fig. 7). Out of the 19 RBM-specific mAbs that 

showed reduced or loss of neutralization of TM mutant (Fig. 4d), 16 showed a complete 

or partial loss of binding to E484K RBD mutant (Fig. 4g-h), consistent with findings 

that E484K is an important viral escape mutation26, 39, 27. Three of these 16 mAbs also 

lost binding to an RBD carrying N501Y, indicating that a fraction of RBM antibodies 

are sensitive to both N501Y and E484K mutations. Similarly, 3 of the 19 mAbs that lost 

neutralization of TM mutant (S2D8, S2H7 and S2X128) were previously shown to lose 

binding and neutralization to the K417V mutant, and here shown to be sensitive to either 

N501Y or E484K mutations.

SARS-CoV-2 B.1.1.7 binds human ACE2 with higher affinity than WT

SARS-CoV-2 and SARS-CoV enter host cells through binding of the S glycoprotein to 

angiotensin converting enzyme 2 (ACE2)1,28. Previous studies showed that the binding 

affinity of SARS-CoV for human ACE2 correlated with the rate of viral replication 

in distinct species, transmissibility and disease severity 29–31. However, the picure is 

unclear for SARS-CoV-2. To understand the potential contribution of receptor interaction 

to infectivity, we set out to evaluate the influence of the B.1.1.7 RBD substitution N501Y on 

receptor engagement. We used biolayer interferometry to study binding kinetics and affinity 

of the purified human ACE2 ectodomain (residues 1-615) to immobilized biotinylated 

SARS-CoV-2 B.1.1.7 or WT RBDs. We found that ACE2 bound to the B.1.1.7 RBD 

with an affinity of 22 nM compared to 133 nM for the WT RBD (Extended Data Fig. 

8), in agreement with our previous deep-mutational scanning measurements using dimeric 

ACE232. Although ACE2 bound with comparable on-rates to both RBDs, the observed 

dissociation rate constant was slower for B.1.1.7 than for the WT RBD (Table 1).
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To understand the impact of TM mutations (K417N, E484K and N501Y), we evaluated 

binding of ACE2 to the immobilized TM RBD using biolayer interferometry. We determined 

an ACE2 binding affinity of 64 nM for the TM RBD which is driven by a faster off-rate 

than observed for the B.1.1.7 RBD but slower than for the WT RBD. Based on our 

previous deep-mutational scanning measurements using dimeric ACE2, we propose that the 

K417N mutation is slightly detrimental to ACE2 binding explaining the intermediate affinity 

determined for the TM RBD compared to the B.1.17 and WT RBDs, likely as a result of 

disrupting the salt bridge formed with ACE2 residue D30. Enhanced binding of the B.1.1.7 

RBD to human ACE2 resulting from the N501Y mutation might participate in the efficient 

ongoing transmission of this newly emergent SARS-CoV-2 lineage, and possibly reduced 

opportunity for antibody binding. Although the TM RBD mutations found in B.1.351 are 

known to participate in immune evasion33,34, the possible contribution to transmissibility of 

enhanced ACE2 binding relative to WT remains to be determined for this lineage.

Discussion

Serum neutralising activity is a correlate of protection for other respiratory viruses, 

including influenza35 and respiratory syncytial virus where prohylaxis with monoclonal 

antibodies has been used in at-risk groups36,37. Neutralising antibody titres appeared 

to be highly correlated with vaccine protection against SARS-CoV-2 rechallenge in non-

human primates, and importantly, there was no correlation between T cell responses (as 

measured by ELISpot) and protection38. Moreover, passive transfer of purified polyclonal 

IgGs from convalescent macaques protected naïve macaques against subsequent SARS-

CoV-2 challenge39. Coupled with multiple reports of re-infection, there has therefore been 

significant attention placed on virus neutralisation.

This study reports on the neutralisation by sera collected after both the first and second 

doses of the BNT162b2 vaccine. The participants of this study were older adults, in line 

with the targeting of this age group in the initial rollout of the vaccination campaign in the 

UK. Participants showed similar neutralising activity against wild type pseudovirus as in the 

phase I/II study12. This is relevant for the UK and other countries planning to extend the gap 

between doses of mRNA and adenovirus based vaccines from 3 to 12 weeks, despite lack of 

data for this schedule for mRNA vaccines in particular.

The three mutations in S1 (N501Y, A570D, ΔH69/V70) did not appear to impact 

neutralisation in a pseudovirus assay, consistent with data on N501Y having little effect on 

nuetralisation by convalescent and post vaccination sera40. However, we demonstrated that 

a pseudovirus bearing S protein with the full set of mutations present in the B.1.1.7 variant 

(i.e., ΔH69/V70, Δ144, N501Y, A570D, P681H, T716I, S982A, D1118H) did result in small 

reduction in neutralisation by sera from vaccinees that was more marked following the first 

dose than the second dose. This could be related to increased breadth/potency/concentration 

of antibodies following the boost dose. A reduction in neutralization titres from mRNA-

elicited antibodies in volunteers who received two doses (using both mRNA-1273 and 

BNT162b2 vaccines) was also observed by Wang et al.41 using pseudoviruses carrying the 

N501Y mutation. Other studies also reported small reduction of neutralization against the 

B.1.1.7 variant against sera from individuals vaccinated with two doses of BNT162b242 and 
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mRNA-127343. Xie et al did not find an effect of N501Y alone in the context of BNT162b2 

vaccine sera44.

The reduced neutralising activity observed with polyclonal antibodies elicited by mRNA 

vaccines observed in this study is further supported by the loss of neutralising activity 

observed with human mAbs directed to both RBD and, to a major extent, to NTD. In the 

study by Wang et al., 6 out 17 RDB-specific mAbs isolated from mRNA-1273 vaccinated 

individuals showed more than 100-fold neutralisation loss against N501Y mutant, a finding 

that is consistent with the loss of neutralisation by 5 out 29 RBM-specific mAbs described 

in this study. However, the contribution of N501Y to loss of neutralisation activity of 

polyclonal vaccine and convalescent sera is less clear, and interactions with other mutations 

likely.

Multiple variants, including the 501Y.V2 and B.1.1.7 lineages, harbor multiple mutations 

as well as deletions in NTD, most of which are located in a site of vulnerability that is 

targeted by all known NTD-specific neutralising antibodies24,45. The role of NTD-specific 

neutralising antibodies might be under-estimated, in part by the use of neutralization assays 

based on target cells over-expressing ACE2 receptor. NTD-specific mAbs were suggested 

to interfere with viral entry based on other accessory receptors, such as DC-SIGN and 

L-SIGN46, and their neutralization potency was found to be dependent on different in vitro 

culture conditions24. The observation that 9 out of 10 NTD-specific neutralising antibodies 

failed to show a complete or near-complete loss of neutralising activity against B.1.1.7 

indicates that this new variant may have evolved also to escape from this class of antibodies, 

that may have a yet unrecognized role in protective immunity. Wibmer et al.34 have also 

recently reported the loss of neutralization of 501Y.V2 by the NTD-specific mAb 4A8, 

likely driven by the R246I mutation. This result is in line with the lack of neutralization 

of B.1.1.7 by the 4A8 mAb observed in this study, likely caused by Δ144 due to loss of 

binding24. Finally, the role of NTD mutations (in particular, L18F, Δ242-244 and R246I) 

was further supported by the marked loss of neutralization observed by Wibmer et al.34 

against 501Y.V2 compared to the chimeric pseudotyped viral particle carrying only the 

RBD mutations K417N, E484K and N501Y. Taken together, the presence of multiple escape 

mutations in NTD is supportive of the hypothesis that this region of the spike, in addition to 

RBM, is also under immune pressure.

Worryingly, we have shown that there are multiple B.1.1.7 sequences in the UK bearing 

E484K with early evidence of transmission as well as independent aquisitions. We measured 

further reduction neutralisation titers by vaccine sera when E484K was present alongside 

the B.1.1.7 S mutations. Wu and co-authors43 have also shown that variants carrying the 

E484K mutation resulted in 3-to-6 fold reduction in neutralization by sera from mRNA-1273 

vaccinated individuals. Consistently, in this study we found that approximately 50% of the 

RBM mAbs tested lost neutralising activity against SARS-CoV-2 carrying E484K. E484K 

has been shown to impact neutralisation by monoclonal antibodies or convalescent sera, 

especially in combination with N501Y and K417N16,26,47–49. Wang et al also showed 

reduced neutralisation by mRNA vaccine sera against E484K bearing pseudovirus34.
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Evidence for the importance role of NTD deletions in combination with E484K in immune 

escape is provided by Andreano et al.27 who describe the emergence of Δ140 in virus 

co-incubated with potently neutralising convalescent plasma, causing a 4-fold reduction in 

neutralization titre. This Δ140 mutant subsequently acquired E484K which resulted in a 

further 4-fold drop in neutralization titre indicating a two residue change across NTD and 

RBD represents an effective pathway of escape that can dramatically inhibit the polyclonal 

response.

Our study was limited by modest sample size. Although the spike pseudotyping system has 

been shown to faithfully represent full length infectious virus, there may be determinants 

outside the S that influence escape from antibody neutralization either directly or indirectly 

in a live replication competent system. On the other hand live virus systems allow replication 

and therefore mutations to occur, and rigorous sequencing at multiple steps is needed.

Vaccines are a key part of a long term strategy to bring SARS-CoV-2 transmission under 

control. Our data suggest that vaccine escape to current Spike directed vaccines designed 

against the Wuhan strain will be inevitable, particularly given that E484K is emerging 

independently and recurrently on a B.1.1.7 (501Y.V1) background, and given the rapid 

global spread of B.1.1.7. Other major variants with E484K such as 501Y.V2 and V3 are also 

spreading regionally. This should be mitigated by designing next generation vaccines with 

mutated S sequences and using alternative viral antigens.

Materials And Methods

Participant recruitment and ethics

Participants who had received the first dose of vaccine and individuals with COVID-19 

(Coronavirus Disease-19) were consented into the COVID-19 cohort of the NIHR 

Bioresource. The study was approved by the East of England – Cambridge Central Research 

Ethics Committee (17/EE/0025).

SARS-CoV-2 serology by multiplex particle-based flow cytometry (Luminex):

Recombinant SARS-CoV-2 N, S and RBD were covalently coupled to distinct carboxylated 

bead sets (Luminex; Netherlands) to form a 3-plex and analyzed as previously described 

(Xiong et al. 2020). Specific binding was reported as mean fluorescence intensities (MFI). 

Linear regression was used to explore the association between antibody response, T cell 

response and serum neutralisation in Stata 13. The Pearson correlation coefficient was 

reported.

Recombinant expression of SARS-CoV-2-specific mAbs

Human mAbs were isolated from plasma cells or memory B cells of SARS-CoV-2 immune 

donors, as previously described 50–52. Recombinant antibodies were expressed in ExpiCHO 

cells at 37°C and 8% CO2. Cells were transfected using ExpiFectamine. Transfected cells 

were supplemented 1 day after transfection with ExpiCHO Feed and ExpiFectamine CHO 

Enhancer. Cell culture supernatant was collected eight days after transfection and filtered 

through a 0.2 μm filter. Recombinant antibodies were affinity purified on an ÄKTA xpress 
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fast protein liquid chromatography (FPLC) device using 5 mL HiTrap™ MabSelect™ 

PrismA columns followed by buffer exchange to Histidine buffer (20 mM Histidine, 8% 

sucrose, pH 6) using HiPrep 26/10 desalting columns

Generation of S mutants

Amino acid substitutions were introduced into the D614G pCDNA_SARS-CoV-2_S plasmid 

as previously described53 using the QuikChange Lightening Site-Directed Mutagenesis kit, 

following the manufacturer’s instructions (Agilent Technologies, Inc., Santa Clara, CA). 

Sequences were checked by Sanger sequencing.

Preparation of B.1.1.7 or TM SARS-CoV-2 S glycoprotein-encoding-plasmid used to 

produce SARS-CoV-2-MLV based on overlap extension PCR. Briefly, a modification of the 

overlap extension PCR protocol54 was used to introduce the nine mutations of the B.1.1.7 

lineage or the three mutations in TM mutant in the SARS-CoV-2 S gene. In a first step, 9 

DNA fragments with overlap sequences were amplified by PCR from a plasmid (phCMV1, 

Genlantis) encoding the full-length SARS-CoV-2 S gene (BetaCoV/Wuhan-Hu-1/2019, 

accession number mn908947). The mutations (del-69/70, del-144, N501Y, A570D, D614G, 

P681H, S982A, T716I and D1118H or K417N, E484K and N501Y) were introduced by 

amplification with primers with similar Tm. Deletion of the C-terminal 21 amino acids 

was introduced to increase surface expression of the recombinant S55. Next, 3 contiguous 

overlapping fragments were fused by a first overlap PCR (step 2) using the utmost external 

primers of each set, resulting in 3 larger fragments with overlapping sequences. A final 

overlap PCR (step 3) was performed on the 3 large fragments using the utmost external 

primers to amplify the full-length S gene and the flanking sequences including the restriction 

sites KpnI and NotI. This fragment was digested and cloned into the expression plasmid 

phCMV1. For all PCR reactions the Q5 Hot Start High fidelity DNA polymerase was used 

(New England Biolabs Inc.), according to the manufacturer’s instructions and adapting the 

elongation time to the size of the amplicon. After each PCR step the amplified regions 

were separated on agarose gel and purified using Illustra GFX™ PCR DNA and Gel Band 

Purification Kit (Merck KGaA).

Pseudotype virus preparation

Viral vectors were prepared by transfection of 293T cells by using Fugene HD transfection 

reagent (Promega). 293T cells were transfected with a mixture of 11ul of Fugene HD, 1μg 

of pCDNAΔ19spike-HA, 1ug of p8.91 HIV-1 gag-pol expression vector56,57, and 1.5μg of 

pCSFLW (expressing the firefly luciferase reporter gene with the HIV-1 packaging signal). 

Viral supernatant was collected at 48 and 72h after transfection, filtered through 0.45um 

filter and stored at -80°C. The 50% tissue culture infectious dose (TCID50) of SARS-CoV-2 

pseudovirus was determined using Steady-Glo Luciferase assay system (Promega).

Serum/plasma pseudotype neutralization assay

Spike pseudotype assays have been shown to have similar characteristics as neutralisation 

testing using fully infectious wild type SARS-CoV-220. Virus neutralisation assays were 

performed on 293T cell transiently transfected with ACE2 and TMPRSS2 using SARS-

CoV-2 spike pseudotyped virus expressing luciferase58. Pseudotyped virus was incubated 
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with serial dilution of heat inactivated human serum samples or sera from vaccinees in 

duplicate for 1h at 37°C. Virus and cell only controls were also included. Then, freshly 

trypsinized 293T ACE2/TMPRSS2 expressing cells were added to each well. Following 

48h incubation in a 5% CO2 environment at 37°C, luminescence was measured using the 

Steady-Glo or Bright-Glo Luciferase assay system (Promega). Neutralization was calculated 

relative to virus only controls. Dilution curves were presented as a mean neutralization with 

standard error of the mean (SEM). ID50 values were calculated in GraphPad Prism. The 

ID50 withing groups were summarised as a geometric mean titre and statistical comparison 

between groups were made with Wilxocon ranked sign test. In addition, the impact of the 

mutations on the neutralising effect of the sera were expressed as fold change (FC) of ID50 

of the wild-type compared to mutant pseudotyped virus. Statistical difference in the mean 

FC between groups was determined using a 2-tailed t-test.

IFNγ FluoroSpot assays

Frozen PBMCs were rapidly thawed, and the freezing medium was diluted into 10ml 

of TexMACS media (Miltenyi Biotech), centrifuged and resuspended in 10ml of fresh 

media with 10U/ml DNase (Benzonase, Merck-Millipore via Sigma-Aldrich), PBMCs were 

incubated at 37°C for 1h, followed by centrifugation and resuspension in fresh media 

supplemented with 5% Human AB serum (Sigma Aldrich) before being counted. PBMCs 

were stained with 2ul of each antibody: anti-CD3-fluorescein isothiocyanate (FITC), clone 

UCHT1; anti-CD4-phycoerythrin (PE), clone RPA-T4; anti-CD8a-peridinin-chlorophyll 

protein - cyanine 5.5 (PerCP Cy5.5), clone RPA-8a (all BioLegend, London, UK), LIVE/

DEAD Fixable Far Red Dead Cell Stain Kit (Thermo Fisher Scientific). PBMC phenotyping 

was performed on the BD Accuri C6 flow cytometer. Data were analysed with FlowJo v10 

(Becton Dickinson, Wokingham, UK). 1.5 to 2.5 x 105 PBMCs were incubated in pre-coated 

Fluorospot plates (Human IFNγ FLUOROSPOT (Mabtech AB, Nacka Strand, Sweden)) 

in triplicate with peptide mixes specific for Spike, Nucleocapsid and Membrane proteins 

of SARS-CoV-2 (final peptide concentration 1μg/ml/peptide, Miltenyi Biotech) and an 

unstimulated and positive control mix (containing anti-CD3 (Mabtech AB),Staphylococcus 

Enterotoxin B (SEB), Phytohaemagglutinin (PHA) (all Sigma Aldrich)) at 37°C in a 

humidified CO2 atmosphere for 48 hours. The cells and medium were decanted from the 

plate and the assay developed following the manufacturer’s instructions. Developed plates 

were read using an AID iSpot reader (Oxford Biosystems, Oxford, UK) and counted using 

AID EliSpot v7 software (Autoimmun Diagnostika GmbH, Strasberg, Germany). All data 

were then corrected for background cytokine production and expressed as spot forming units 

(SFU)/Million PBMC or CD3 T cells. The association between spike Tcell response, spike 

specific antibody response and serum neutralisation was deterimined using linear regression 

and the Pearson correlation coefficient between these variables were determined using Stata 

13.

Ab discovery and recombinant expression

Human mAbs were isolated from plasma cells or memory B cells of SARS-CoV or 

SARS-CoV-2 immune donors, as previously described 48,56–58. Recombinant antibodies 

were expressed in ExpiCHO cells at 37°C and 8% CO2. Cells were transfected using 

ExpiFectamine. Transfected cells were supplemented 1 day after transfection with ExpiCHO 
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Feed and ExpiFectamine CHO Enhancer. Cell culture supernatant was collected eight days 

after transfection and filtered through a 0.2 μm filter. Recombinant antibodies were affinity 

purified on an ÄKTA xpress FPLC device using 5 mL HiTrap™ MabSelect™ PrismA 

columns followed by buffer exchange to Histidine buffer (20 mM Histidine, 8% sucrose, pH 

6) using HiPrep 26/10 desalting columns.

MAbs pseudovirus neutralization assay

MLV-based SARS-CoV-2 S-glycoprotein-pseudotyped viruses were prepared as previously 

described (Pinto et al., 2020). HEK293T/17cells were cotransfected with a WT, B.1.1.7 

or TM SARS-CoV-2 spike glycoprotein-encoding-plasmid, an MLV Gag-Pol packaging 

construct and the MLV transfer vector encoding a luciferase reporter using X-tremeGENE 

HP transfection reagent (Roche) according to the manufacturer’s instructions. Cells were 

cultured for 72 h at 37°C with 5% CO2 before harvesting the supernatant. VeroE6 stably 

expressing human TMPRSS2 were cultured in Dulbecco’s Modified Eagle’s Medium 

(DMEM) containing 10% fetal bovine serum (FBS), 1% penicillin–streptomycin (100 I.U. 

penicillin/mL, 100 μg/mL), 8 μg/mL puromycin and plated into 96-well plates for 16–24 

h. Pseudovirus with serial dilution of mAbs was incubated for 1 h at 37°C and then added 

to the wells after washing 2 times with DMEM. After 2–3 h DMEM containing 20% FBS 

and 2% penicillin–streptomycin was added to the cells. Following 48-72 h of infection, 

Bio-Glo (Promega) was added to the cells and incubated in the dark for 15 min before 

reading luminescence with Synergy H1 microplate reader (BioTek). Measurements were 

done in duplicate and relative luciferase units were converted to percent neutralization and 

plotted with a non-linear regression model to determine IC50 values using GraphPad PRISM 

software (version 9.0.0).

Antibody binding measurements using bio-layer interferometry (BLI)

MAbs were diluted to 3 μg/ml in kinetic buffer (PBS supplemented with 0.01% BSA) 

and immobilized on Protein A Biosensors (FortéBio). Antibody-coated biosensors were 

incubated for 3 min with a solution containing 5 μg /ml of WT, N501Y or E484K SARS-

CoV-2 RBD in kinetic buffer, followed by a 3-min dissociation step. Change in molecules 

bound to the biosensors caused a shift in the interference pattern that was recorded in real 

time using an Octet RED96 system (FortéBio). The binding response over time was used to 

calculate the area under the curve (AUC) using GraphPad PRISM software (version 9.0.0).

Production of SARS-CoV-2 and B.1.1.7 receptor binding domains and human ACE2

The SARS-CoV-2 RBD (BEI NR-52422) construct was synthesized by GenScript into 

CMVR with an N-terminal mu-phosphatase signal peptide and a C-terminal octa-histidine 

tag (GHHHHHHHH) and an avi tag. The boundaries of the construct are N-328RFPN331 

and 528KKST531-C59. The B.1.1.7 RBD gene was synthesized by GenScript into pCMVR 

with the same boundaries and construct details with a mutation at N501Y. These plasmids 

were transiently transfected into Expi293F cells using Expi293F expression medium (Life 

Technologies) at 37°C 8% CO2 rotating at 150 rpm. The cultures were transfected using 

PEI cultivated for 5 days. Supernatants were clarified by centrifugation (10 min at 4000xg) 

prior to loading onto a nickel-NTA column (GE). Purified protein was biotinylated overnight 

using BirA (Biotin ligase) prior to size exclusion chromatography (SEC) into phosphate 
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buffered saline (PBS). Human ACE2-Fc (residues 1-615 with a C-terminal thrombin 

cleavage site and human Fc tag) were synthesized by Twist. Clarified supernatants were 

affinity purified using a Protein A column (GE LifeSciences) directly neutralized and buffer 

exchanged. The Fc tag was removed by thrombin cleavage in a reaction mixture containing 3 

mg of recombinant ACE2-FC ectodomain and 10 μg of thrombin in 20 mM Tris-HCl pH8.0, 

150 mM NaCl and 2.5 mM CaCl2.The reaction mixture was incubated at 25°C overnight 

and re-loaded on a Protein A column to remove uncleaved protein and the Fc tag. The 

cleaved protein was further purified by gel filtration using a Superdex 200 column 10/300 

GL (GE Life Sciences) equilibrated in PBS.

Protein affinity measurement using bio-layer interferometry

Biotinylated RBD (WT, N501Y, or TM) were immobilized at 5 ng/uL in undiluted 10X 

Kinetics Buffer (Pall) to SA sensors until a load level of 1.1nm. A dilution series of either 

monomeric ACE2 or Fab in undiluted kinetics buffer starting at 1000-50nM was used for 

300-600 seconds to determine protein-protein affinity. The data were baseline subtracted and 

the plots fitted using the Pall FortéBio/Sartorius analysis software (version 12.0). Data were 

plotted in Prism.

Statistical analysis—Linear regression was used to explore the association between 

antibody response, T cell response and serum neutralisation in Stata 13. The Pearson 

correlation coefficient was reported.

Neutralisation data analysis

Neutralization was calculated relative to virus only controls. Dilution curves were 

presented as a mean neutralization with standard error of the mean (SEM). IC50 values 

were calculated in GraphPad Prism. The inhibitory dilution (ID50) within groups were 

summarised as a geometric mean titre and statistical comparison between groups were made 

with Wilxocon ranked sign test. In addition, the impact of the mutations on the neutralising 

effect of the sera were expressed as fold change of ID50 of the wild-type compared 

to mutant pseudotyped virus. Statistical difference in the mean FC between groups was 

determined using a 2-tailed t-test

IFNγ FluoroSpot assay data analysis

The association between spike Tcell response, spike specific antibody response and serum 

neutralisation was determined using linear regression and the Pearson correlation coefficient 

between these variables were determined using Stata 13.
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Extended Data

Extended Data Figure 1. Immune responses three weeks after first dose of Pfizer SARS-CoV-2 
vaccine BNT162b2
a, Serum IgG responses against N protein, Spike and the Spike Receptor Binding 

Domain (RBD) from first vaccine participants (green), recovered COVID-19 cases (red), 

3 convalescent plasma units and healthy controls (grey) as measured by a flow cytometry 

based Luminex assay. MFI, mean fluorescence intensity. Geometric mean titre (GMT 

with standard deviation (s.d) of two technical repeats presented. b, Relationship between 

serum IgG responses as measured by flow cytometry and serum neutralisation ID50. 

c, Relationship between serum neutralisation ID50 and T cell responses against SARS-

CoV-2 by IFN gamma ELISpot. SFU: spot forming units. d, Relationship between serum 

IgG responses and T cell responses. Simple linear regression is presented with Pearson 

correlation (r), P-value (p) and regression coefficient/slope (β).
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Extended data Fig 2. Neutralization by first dose BNT162b2 vaccine and convalescent sera 
against wild type and mutant (N501Y, A570D, ΔH69/V70) SARS-CoV-2 pseudotyped viruses
(a-b) Vaccine sera dilution for 50% neutralization against WT and Spike mutant with 

N501Y, A570D, ΔH69/V70. Geometric mean titre (GMT) + s.d of two independent 

experiments with two technical repeats presented. (c-d) Convalescent sera dilution for 50% 

neutralization against WT and Spike mutant with N501Y, A570D, Δ H69/V70. GMT + s.d 

of representative experiment with two technical repeats presented. e, Representative curves 

of convalescent serum log10 inverse dilution against % neutralization for WT v N501Y, 
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A570D, ΔH69/V70. Where a curve is shifted to the right this indicates the virus is less 

sensitive to the neutralizing antibodies in the serum. Data are means of technical replicates 

and error bars represent standard error of the mean. Data are representative of 2 independent 

experiments. Limit of detection for 50% neutralization set at 10.

Extended Data Fig. 3. Representative neutralization curves of BNT162b2 vaccine sera against 
pseudovirus virus bearing eight Spike mutations present in B.1.1.7 versus wild type (all In Spike 
D614G background).
Indicated is serum log10 inverse dilution against % neutralization. Where a curve is shifted 

to the right this indicates the virus is less sensitive to the neutralizing antibodies in the 

serum. Data are for first dose of vaccine (D1). Data points represent means of technical 

replicates and error bars represent standard error of the mean. Limit of detection for 50% 

neutralization set at 10.
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Extended Data Fig. 4. Representative neutralization curves of convalescent sera against wild type 
and B.1.1.7 Spike mutant SARS-CoV-2 pseudoviruses.
Indicated is serum log10 inverse dilution against % neutralization. Where a curve is shifted 

to the right this indicates the virus is less sensitive to the neutralizing antibodies in the 

serum. Data points represent means of technical replicates and error bars represent standard 

error of the mean. Limit of detection for 50% neutralization set at 10.
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Extended Data Fig. 5. Neutralisation of WT (D614G), B.1.1.7 and TM (N501Y, E484K, K417N) 
SARS-CoV-2 Spike pseudotyped virus by a panel of 57 monoclonal antibodies (mAbs).
a-c, Neutralisation of WT (black), B.1.1.7 (blue) and TM (red) SARS-CoV-2-MLV by 9 

NTD-targeting (a), 29 RBM-targeting (b) and 19 non-RBM-targeting (c) mAbs.
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Extended Data Fig. 6. Kinetics of binding to WT and N501Y SARS-CoV-2 RBD of 43 RBD-
specific mAbs.
a-b, Binding to WT (black) and N501Y (blue) RBD by 22 RBM-targeting (a) and 21 

non-RBM-targeting (b) mAbs. An antibody of irrelevant specificity was included as negative 

control. mAbs: monoclonal antibodies
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Extended Data Fig. 7. Kinetics of binding to WT and E484K SARS-CoV-2 RBD of 46 RBD-
specific mAbs.
a-b, Binding to WT (black) and E484K (red) RBD by 27 RBM-targeting (a) and 19 non-

RBM-targeting (b) mAbs. An antibody of irrelevant specificity was included as negative 

control. mAbs: monoclonal antibodies
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Extended Data Fig. 8. Binding of human ACE2 to SARS-CoV-2 WT, N501Y, TM (N501Y, 
E484K, K417N) RBDs.
a-b. BLI binding analysis of the human ACE2 ectodomain (residues 1-615) to immobilized 

SARS-CoV-2 WT RBD (a) and B.1.1.7 RBD (b). Black lines correspond to a global fit of 

the data using a 1:1 binding model. RBD: receptor binding domain.

Collier et al. Page 30

Nature. Author manuscript; available in PMC 2024 December 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Extended Data Table 1
Neutralization, V gene usage and other properties of 
tested mAbs.

mAb Domain 
(site)

VH usage 
(%id.)

Source 
(DSO)

IC50 
WT 
(ng/
ml)

IC50 
B.1.1.7(ng/

ml)

ACE2 
blocking

SARS-
CoV

Escape 
residues Ref.

4A8 NTD (i) 1-24 N/A 38 - Neg. -

S12P; 
C136Y;

Y144del; 
H146Y;
K147T; 
R246A

60

S2L26 NTD (i) 1-24 
(97.2)

Hosp. 
(52) 70 - Neg. - N/A 24

S2L50 NTD (i) 4-59 
(95.4)

Hosp. 
(52) 264 50 Neg. - N/A 24

S2M28 NTD (i) 3-33 
(97.6)

Hosp. 
(46) 295 12’207 Neg. -

P9S/Q; 
S12P;

C15F/R; 
L18P;
Y28C; 
A123T;
C136Y; 
G142D;
Y144del;
K147Q/T

;
R246G; 
P251L;
G252C

24

S2X107 NTD (i) 4-38-2 
(97)

Sympt. 
(75) 388 - Neg. - N/A 24

S2X124 NTD (i) 3-30 (99) Sympt. 
(75) 221 - Neg. - N/A 24

S2X158 NTD (i) 1-24 
(96.3)

Sympt. 
(75) 56 - Neg. - N/A 24

S2X28 NTD (i) 3-30 
(97.9)

Sympt. 
(48) 1’399 - Neg. -

P9S; 
S12P;
C15W; 
L18P;

C136G/Y
; F140S;
L141S; 

G142C/D
;

Y144C/N
;

K147T/Q
/E;

R158G; 
L244S;
R246G

24

S2X303 NTD (i) 2-5 (95.9) Sympt. 
(125) 69 - Neg. - N/A 24

S2X333 NTD (i) 3-33 
(96.5)

Sympt. 
(125) 66 Neg. -

P9L; 
S12P;

C15S/Y; 
L18P; 

C136G/Y
; F140C;
G142D; 
K147T

24
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mAb Domain 
(site)

VH usage 
(%id.)

Source 
(DSO)

IC50 
WT 
(ng/
ml)

IC50 
B.1.1.7(ng/

ml)

ACE2 
blocking

SARS-
CoV

Escape 
residues Ref.

S2D106 RBD (I/
RBM)

1-69 
(97.2)

Hosp. 
(98) 27 20 Strong - N/A 8

S2D19 RBD (I/
RBM)

4-31 
(99.7)

Hosp. 
(49) 128 75’200 Moderate - N/A 8

S2D32 RBD (I/
RBM)

3-49 
(98.3)

Hosp. 
(49) 26 11 Strong N/A 8

S2D65 RBD (I/
RBM) 3-9 (96.9) Hosp. 

(49) 24 12 Weak - N/A 8

S2D8 RBD (I/
RBM)

3-23 
(96.5)

Hosp. 
(49) 27 58’644 Strong - N/A 8

S2D97 RBD (I/
RBM) 2-5 (96.9) Hosp. 

(98) 20 17 Weak - N/A 8

S2E11 RBD (I/
RBM)

4-61 
(98.3)

Hosp. 
(51) 27 16 Weak - N/A 8

S2E12 RBD (I/
RBM)

1-58 
(97.6)

Hosp. 
(51) 27 31 Strong - G476S 

(3x) 8,61

S2E13 RBD (I/
RBM)

1-18 
(96.2)

Hosp. 
(51) 34 77 Strong - N/A 8

S2E16 RBD (I/
RBM)

3-30 
(98.3)

Hosp. 
(51) 36 38 Strong - N/A 8

S2E23 RBD (I/
RBM) 3-64(96.9) Hosp. 

(51) 139 180 Strong - N/A 8

S2H14 RBD (I/
RBM) 3-15 (100) Sympt. 

(17) 460 64’463 Weak - N/A 8,62

S2H19 RBD (I/
RBM)

3-15 
(98.6)

Sympt. 
(45) 239 - Weak N/A 8

S2H58 RBD (I/
RBM) 1-2 (97.9) Sympt. 

(45) 27 14 Strong - N/A 8

S2H7 RBD (I/
RBM)

3-66 
(98.3)

Sympt. 
(17) 492 573 Weak - N/A 8

S2H70 RBD (I/
RBM) 1-2 (99) Sympt. 

(45) 147 65 Weak - N/A 8

S2H71 RBD (I/
RBM) 2-5 (99) Sympt. 

(45) 36 9 Moderate - N/A 8

S2M11 RBD (I/
RBM) 1-2 (96.5) Hosp. 

(46) 11 4 Weak -

Y449N; 
L455F;
E484K; 
E484Q;
F490L; 
F490S;
S494P

8,61

S2N12 RBD (I/
RBM)

4-39 
(97.6)

Hosp. 
(51) 76 40 Strong - N/A 8

S2N22 RBD (I/
RBM)

3-23 
(96.5)

Hosp. 
(51) 32 21 Strong - N/A 8

S2N28 RBD (I/
RBM)

3-30 
(97.2)

Hosp. 
(51) 72 21 Strong - N/A 8

S2X128 RBD (I/
RBM)

1-69-2 
(97.6)

Sympt. 
(75) 50 112 Strong - N/A 8

S2X16 RBD (I/
RBM)

1-69 
(97.6)

Sympt. 
(48) 45 103 Strong - N/A 8
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mAb Domain 
(site)

VH usage 
(%id.)

Source 
(DSO)

IC50 
WT 
(ng/
ml)

IC50 
B.1.1.7(ng/

ml)

ACE2 
blocking

SARS-
CoV

Escape 
residues Ref.

S2X192 RBD (I/
RBM)

1-69 
(96.9)

Sympt. 
(75) 326 - Weak - N/A 8

S2X227 RBD (I/
RBM)

1-46 
(97.9)

Sympt. 
(75) 26 14 Strong - N/A

S2X246 RBD (I/
RBM)

3-48 
(96.2)

Sympt. 
(75) 35 30 Strong - N/A

S2X30 RBD (I/
RBM)

1-69 
(97.9)

Sympt. 
(48) 32 53 Strong - N/A 8

S2X324 RBD (I/
RBM) 2-5 (97.3) Sympt. 

(125) 8 23 Strong - N/A

S2X58 RBD (I/
RBM) 1-46 (99) Sympt. 

(48) 32 47 Strong - N/A 8

S2H90 RBD (II) 4-61 
(96.6)

Sympt. 
(81) 77 32 Strong + N/A 8

S2H94 RBD (II) 3-23 
(93.4)

Sympt. 
(81) 123 144 Strong + N/A 8

S2H97 RBD 
(V)

5-51 
(98.3)

Sympt. 
(81) 513 248 Weak + N/A

S2K15 RBD (II) 2-26 
(99.3)

Sympt. 
(87) 361 235 0 + N/A

S2K21 RBD (II) 3-33 
(96.2)

Sympt.
(118) 201 189 0 + N/A

S2K30 RBD (II) 1-2 (97.2) Sympt. 
(87) 185 134 0 + N/A

S2K63v2 RBD (II) 3-30-3 
(95.6)

Sympt.
(118) 144 215 0 + N/A

S2L17 RBD (?) 5-10-1 
(98.3)

Hosp. 
(51) 313 127 Moderate + N/A 8

S2L49 RBD (?) 3-30 
(97.9)

Hosp. 
(51) 24 32 Neg. + N/A 8

S2X259 RBD 
(IIa)

1-69 
(94.1)

Sympt. 
(75) 145 91 Moderate + N/A

S2X305 RBD (?) 1-2 (95.1) Sympt. 
(125) 34 21 Strong - N/A

S2X35 RBD 
(IIa)

1-18 
(98.6)

Sympt. 
(48) 140 143 Strong + N/A 62

S2X450 RBD (?) 2-26 
(96.9)

Sympt. 
(271) 368 198 Strong + N/A

S2X475 RBD (?) 3-21 
(93.8)

Sympt. 
(271) 1’431 851 Strong + N/A

S2X607 RBD (?) 3-66 
(95.4)

Sympt. 
(271) 41 23 Strong - N/A

S2X608 RBD (?) 1-33 
(93.2)

Sympt. 
(271) 21 35 Strong - N/A

S2X609 RBD (?) 1-69 
(93.8)

Sympt. 
(271) 47 35 Strong - N/A

S2X613 RBD (I) 1-2 (91.7) Sympt. 
(271) 28 19 Strong - N/A

Collier et al. Page 33

Nature. Author manuscript; available in PMC 2024 December 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



mAb Domain 
(site)

VH usage 
(%id.)

Source 
(DSO)

IC50 
WT 
(ng/
ml)

IC50 
B.1.1.7(ng/

ml)

ACE2 
blocking

SARS-
CoV

Escape 
residues Ref.

S2X615 RBD (I) 3-11 
(94.8)

Sympt. 
(271) 23 17 Strong - N/A

S2X619 RBD (?) 1-69 
(92.7)

Sympt. 
(271) 36 60 Strong - N/A

S2X620 RBD (?) 3-53 
(95.1)

Sympt. 
(271) 34 45 Strong - N/A

id., identity. DSO, days after symptom onset. * as described in Piccoli et al and McCallum et al. N/A, not available; -, not 
neutralising
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Figure 1. Neutralization by first and second dose mRNA vaccine sera against wild type and 
B.1.1.7 Spike mutant SARS-CoV-2 pseudotyped viruses.
a, Spike in open conformation with a single erect RBD (PDB: 6ZGG) in trimer axis 

vertical view with the locations of mutated residues highlighted in red spheres and labelled 

on the monomer with erect RBD. Vaccine first dose (b-c, n=37), second dose (d-e, 
n=21) and convalescent sera, Conv. (f-g,n=27) against WT and B.1.1.7 Spike mutant with 

N501Y, A570D, ΔH69/V70, Δ144/145, P681H, T716I, S982A and D1118H. GMT with 

s.d presented of two independent experiments each with two technical repeats. Wilcoxon 
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matched-pairs signed rank test p-values * <0.05, ** <0.01, ***<0.001, **** <0.0001, ns not 

significant HS – human AB serum control. Limit of detection for 50% neutralization set at 

10.
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Figure 2. E484K appearing in background of B.1.1.7 with evidence of transmission
a. Representation of Spike RBM:ACE2 interface (PDB: 6M0J) with residues E484, N501 

and K417 highlighted as spheres coloured by element b. Maximum likelihood phylogeny 

of a subset of sequences from the United Kingdom bearing the E484K mutation (green) 

and lineage B.1.1.7 (blue), with background sequences without RBD mutations in black. 

As of 11th Feb 2021, 30 sequences from the B.1.1.7 lineage (one cluster of 25 at top 

of phylogenetic tree) have acquired the E484K mutation (red). c. Sequence accumulation 
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over time in GISAID for UK sequences with B.1.1.7 and E484K. RBD – receptor binding 

domain; NTD – N terminal domain.
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Figure 3. 
Neutralization potency of mRNA vaccine sera and convalescent sera (pre SARS-CoV-2 
B.1.1.7) against pseudotyped virus bearing Spike mutations in the B1.1.7 lineage with 
and without E484K in the receptor binding domain (all In Spike D614G background). 

a, Example neutralization curves for vaccinated individuals. Data points represent mean 

of technical replicates with standard error and are representative of two independent 

experiments (b-g). 50% neutralisation titre for each virus against sera derived (b,c, n=37) 

following first vaccination (d,e, n=21) following second vaccination and (f,g, n=20) 
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convalescent sera (CS) expressed as fold change relative to WT. Data points are mean 

fold change of technical replicates and are representative of two independent experiments. 

Central bar represents mean with outer bars representing s.d. Wilcoxon matched-pairs signed 

rank test p-values *<0.05, **<0.01, ***<0.001, ****<0.0001; ns not significant. Limit of 

detection for 50% neutralization set at 10.
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Figure 4. Neutralization and binding by a panel of NTD- and RBD-specific mAbs against WT, 
B.1.1.7 and RBD mutant SARS-CoV-2 viruses.
a, Neutralization of WT D614G (black), B.1.1.7 (blue) and a triple mutant (TM, carrying 

RBD mutations K417N/E484K/N501Y) (red) pseudotyped SARS-CoV-2-MLVs by 3 

selected mAbs (S2E12, S2X333 and S2H14) from one representative experiment. Shown 

is the mean ± s.d. of 2 technical replicates. b, Neutralization of WT (D614G), B.1.1.7 and 

TM SARS-CoV-2-MLVs by 60 mAbs targeting NTD (n=10), RBM (n=31) and non-RBM 

sites in the RBD (n=19). Shown are the mean IC50 values (ng/ml) of n=2 independent 

experiments. c-e, Neutralization shown as mean IC50 values (upper panel) and mean fold 

change of B.1.1.7 (blue) or TM (red) relative to WT (lower panel) of NTD (c), RBM (d) 

and non-RBM (e) mAbs. Lower panel shows IC50 values from 2 independent experiments. 
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f-h, Kinetics of binding of mAbs to WT (black), N501Y (blue) and E484K (red) RBD as 

measured by bio-layer interferometry (BLI). Shown in (f) are the 4 RBM-targeting mAbs 

with no reduced binding to N501Y or E484K RBD. Area under the curve (AUC) (g) and 

AUC fold change (h) of 50 mAbs tested against WT, N501Y and E484K RBD. mAbs 

with a >1.3 AUC fold change shown in blue and red. mAbs: monoclonal antibodies. NTD: 

N-terminal domain
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Table 1
Kinetic analysis of human ACE2 binding to SARS-CoV-2 Wuhan-1, N501Y and N501Y/ 
E484K/ K417N (TM) RBDs by biolayer interferometry.

Values reported represent the global fit to the data shown in Extended Data Fig. 8.

SARS-CoV-2 RBD WT SARS-CoV-2 RBD N501Y SARS-CoV-2 RBD TM

KD (nM)

hACE2

133 22 64

kon (M-1.s-1) 1.3*105 1.4*105 1.3*105

koff (s-1) 1.8*10-2 3*10-3 8.5*10-3
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