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Abstract

Background—The aim of this study was to evaluate the role of image heterogeneity analysis of 

standard care magnetic resonance imaging (MRI) in patients with anal squamous cell carcinoma 

(ASCC) to predict chemoradiotherapy (CRT) outcome. The ability to predict disease recurrence 

following CRT has the potential to inform personalized radiotherapy approaches currently being 

explored in novel clinical trials.

Methods—An IRB waiver was obtained for retrospective analysis of standard care MRIs from 

ASCC patients presenting between 2010 and 2014. Whole tumor 3D volume-of-interest (VOI) 

was outlined on T2-weighted (T2w) and diffusion weighted imaging (DWI) of the pre- and post-

treatment scans. Independent imaging features most predictive of disease recurrence were added 

to the baseline clinico-pathological model and the predictive value of respective extended models 

was calculated using net reclassification improvement (NRI) algorithm. Cross-validation analysis 

was carried out to determine percentage error reduction with inclusion of imaging features to the 

baseline model for both endpoints.
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Results—Forty patients who underwent 1.5 T pelvic MRI at baseline and following completion 

of CRT were included. A combination of two baseline MR heterogeneity features (baseline T2w 

energy and DWI coefficient of variation) was most predictive of disease recurrence resulting in 

significant NRI (p = 0 < 0.001). This was confirmed in cross-validation analysis with 34.8% 

percentage error reduction for the primary endpoint and 18.1% reduction for the secondary 

endpoint with addition of imaging variables to baseline model.

Conclusion—MRI heterogeneity analysis offers complementary information, in addition to 

clinical staging, in predicting outcome of CRT in anal SCC, warranting validation in larger 

datasets.
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Definitive chemoradiotherapy (CRT) with concomitant mitomycin C (MMC) and 5-

fluorouracil (5-FU) forms the backbone of anal squamous cell carcinoma (ASCC) 

management based on clinical evidence from three pivotal phase III trials [1–3]. However, 

25% of patients will relapse following CRT, with 84% of recurrences occurring within 

2-years [4–6].

Currently, there is no reliable way to predict which patients will experience disease 

recurrence following CRT. The ability to predict response to CRT at baseline would be 

of significant clinical benefit as it would allow the management to be individualized 

with personalization of RT dose. The baseline American Joint Committee on Cancer 

(AJCC) tumor, node and metastasis (TNM) staging system has undoubted prognostic value 

particularly for ≥T3, node positive tumors [1,7,8]. Tumor involvement of the external 

sphincter and pre-treatment anal function score also have proven prognostic value [9]. 

However, for node negative tumors and node positive tumors that are ≤5 cm [8] there is 

greater variation in reported outcomes and prognostic biomarkers are lacking.

The addition of clinical, biochemical and molecular markers to clinical stage may improve 

predictive accuracy [10,11,12]. While there is good supporting evidence that p16 negative 

patients are at higher risk of failure following CRT [12], the fact that 90% of human anal 

cancers are human papilloma virus (HPV)-driven, limits its prognostic utility [13]. There 

have been preliminary suggestions that factors such as tumor infiltrating lymphocytes may 

play a role [13] and that genomic as well as cellular heterogeneity, reflecting the presence of 

different malignant subclonal and stromal cell populations, may affect clinical outcome [14]; 

however, no particular clonal somatic mutations or biomarkers have been reported to date to 

predict response to CRT in ACSS.

In terms of imaging, early post CRT assessment based on magnetic resonance imaging 

(MRI) morphology has limited value due to confounding effects of treatment related 

changes [15], although a tumor regression grading system (MRI-TRG) has shown some 

promise in identifying patients who could benefit from early salvage surgery for recurrence 

[16]. More recently there has been interest in the potential of quantitative ‘phenotyping’ 

information from medical images beyond volumetric and descriptive measures [17] with 
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the aim of improving patient stratification into distinct phenotypic subgroups [18]. Still 

considered investigational, nevertheless such image analysis has shown promise in cancer 

management, including cancer screening, diagnosis [19], treatment response assessment 

[20,21] and more recently, in predicting tumor molecular phenotype [18] and disease 

outcome [22].

We hypothesize that imaging features capture distinct phenotypic differences and may have 

prognostic value, supplementing clinical and size/volume data in ASCC. Thus we aimed to 

assess whether MRI heterogeneity features may predict disease recurrence or 2-year disease 

free survival (DFS) in ASCC undergoing CRT.

Methods

Patient characteristics, treatment and follow-up

Institutional review board (IRB) waiver of informed consent was obtained for this 

retrospective analysis of consecutive MRI data obtained as part of the standard care pathway. 

Inclusion criteria were histological diagnosis of anal SCC, completion of a course of CRT 

with curative intent and availability of baseline MRI and a follow-up MRI performed within 

3–6 months of treatment. Cases were recruited from two tertiary care institutions between 

2010 and 2014. Exclusion criteria were the absence of DWI MRI sequences, deviations from 

a standard MRI protocol, poor image quality and absence of visible tumor (Fig. 1 suppl.).

The clinical variables considered for the purpose of multivariate analysis included 

patient age at diagnosis, patient gender, binary tumour size (<5cm vs ≥5 cm), N stage 

(N0/N1/N2/N3) and radiological response (complete response (CR) vs no CR).

Radiotherapy was delivered to a mean dose of 50.86 Gy (range 50.4–54 Gy) using a linear 

accelerator (Elekta, Crawley or Varian, Palo Alto) applying a 3-D conformal or intensity-

modulated technique. Concomitant chemotherapy consisted of mitomycin C (MMC) 12 

mg/m2 day 1 with either 5-fluorouracil 1000 mg/m2/day (continuous venous infusion) days 

1–4 and 29–32 or capecitabine (825 mg/m2 twice a day on radiation days). Following 

completion of CRT, patients were assessed at 8–10 weeks, every 3 months for the first two 

years and every 6 months afterwards. Re-staging MRI was carried out at 3–6 months.

Clinical endpoints

The primary endpoint of this study was disease recurrence, either locoregional (defined as 

biopsy-confirmed evidence of non-complete response at restaging or locoregional tumour 

detection during follow-up after initial response) or metastatic (defined as occurrence of 

distant metastasis during CRT, at re-staging, or during follow-up). Patients who were alive 

and free of recurrences or died without recurrence were censored for these endpoints. All 

time-to-event end points were measured from completion of CRT. Disease-free survival 

(DFS) was defined from completion of CRT to the day of locoregional failure or distant 

recurrence.
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MRI acquisition and imaging response assessment

Pelvic MRI scans were performed at baseline and on completion of CRT. Patients were 

scanned in the supine position on one of three 1.5 T MRI scanners (MAGNETOM Avanto 

or Aera, Siemens Healthcare, Erlangen, Germany) using a pelvic phased array coil. The 

standard MRI acquisition protocol included pelvic T2-weighted (T2w) axial, T2w sagittal, 

T1-weighted axial and DWI axial sequences (b = 0, 100, 500, 800 s/mm2); additional 

high-resolution T2w sequences were undertaken parallel and perpendicular to the anal canal. 

The protocols in the two centres albeit similar, were not standardised for the purpose of 

this study; respective acquisition details from participating centres have been summarized in 

Table 1. Patients did not require any additional preparation prior to the examination.

Axial-oblique T2w and the b800-value DWI images, as well as vendor-produced apparent 

diffusion coefficient (ADC0–800) maps, were downloaded from the PACS system onto a 

standalone work station for further analysis.

Scans were analyzed by two independent readers (a clinical oncologist and radiologist, 

with 2 and 10 years’ MRI experience, respectively) in consensus, blinded to clinical data. 

Tumor maximum size, volume, extent and TNM stage were recorded. Response to CRT 

was evaluated in relation to the tumor and nodal stage and in accordance with Response 

Evaluation Criteria in Solid Tumors (RECIST 1.1) and for the purpose of this study coded in 

a binary format (complete response versus incomplete/no response).

Heterogeneity feature extraction and selection

Feature extraction and analysis workflow is outlined on Fig. 1. The tumors were manually 

delineated on all slices of axial T2w and on ADC parametric maps generating 4 separate 

whole tumor 3D volumes-of-interest (VOI) per case (baseline T2w, baseline DWI, post-CRT 

T2w and post-CRT DWI). In cases where no residual tumour was present on post-CRT MRI, 

the corresponding anatomical region with any residual tumor or therapy related changes was 

outlined, confined to the area of visible mucosal abnormality.

Seventy-eight statistical and fractal heterogeneity parameters were derived per VOI using in-

house developed software implemented in Matlab (Matlab 2013, Mathworks, Natick, MA, 

USA) [23]. Highly correlated variables (r > 0.9) and those exhibiting linear dependencies 

were removed resulting in ten first-, second-order and fractal features per sequence per 

timepoint (Table 2). Conventional tumor volume (cm3) was included in the analysis 

alongside heterogeneity variables.

Statistical analysis

Statistical analysis was conducted using R (version 3.5.0) Independent heterogeneity 

features and conventional ROI volume from baseline and follow-up scans were entered 

individually into univariate logistic regression. The primary outcome was recurrence (binary 

measure) and the secondary outcome was 2-year DFS. The Benjamini-Hochberg multiple 

testing correction procedure was used to control the adjusted false discovery rate (FDR). 

Nominal and FDR-adjusted p-values and 95% confidence intervals are reported.
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We used random forest approach [24], and its R package randomForest (version 4.6–14) 

implementation, to select variables with a highest discriminatory value (≥20% increase 

in the prediction mean square error after variable permutation, %IncMSE) in predicting 

primary and secondary outcome.

C-statistic (a goodness-of-fit measure similar to the receiver operating characteristic area 

under the curve (AUC) as previously reported [17]) was calculated for 1) baseline model = 

multivariate clinical model including the following clinical variables (age, gender, T stage, 

N stage); 2) extended model = clinical model with the addition of top performing imaging 

features. As this was an exploratory analysis intended to generate hypotheses that could be 

tested in future cohorts, variables were selected for inclusion in multivariate models based 

on a FDR-adjusted type I error rate of 20% (adjusted P < 0.2).

In addition, we used a net reclassification improvement (NRI) – a criterion designed to 

quantify improvement in model performance as a result of adding a new marker [25,26] – to 

assess the impact of extending the baseline clinico-pathological model by imaging features. 

The NRI calculation procedure is implemented in the R package nricens (version 1.6).

The candidate extended models were built by extending the baseline model by each of the 

most important variables from the random forest model (number of trees 1e5) as well as 

by their two-element combinations with respect to the primary and secondary endpoints. 

Each model was cross-validated (leave-one-out) using the R package boot (version 1.3–20). 

Outcome for each model was reported as percentage average mean squared error reduction 

from the baseline model for each of the endpoints with baseline cross validation errors listed 

in the titles.

Results

Patient and treatment characteristics

40 consecutive patients were included in the analysis (25 female, 15 male). Median age 

at diagnosis was 60.5 (range 37–83). The majority of cases were T2 (17/40, 45%) and 

T3 (14/40, 37%) tumors and there was an even distribution of N0 (13/40, 32.5%), N1 

(12/40, 30%) and N2+ (15/40, 37.5%) disease. Radiotherapy was delivered to a dose of 

50.4 Gy in 28# in 34/40 (85%) cases and to a dose of 54 Gy in 30# in 5/40 (12%) 

cases over a median of 37 days (RT details were not available for one subject). Patients 

received fluoropyrimidine-based chemotherapy, either as monotherapy or in combination 

with a single dose of MMC in 21/40 (53%) cases and in combination with cisplatin in 2/40 

(5%) cases.

Clinical follow up

Median follow-up was 34.5 months (range 2–102 months) and median time to recurrence 

was 25 months (2–102 months). During the course of follow-up 11 patients experienced 

disease recurrence (28%); 4 patients recurred locally, 5 patients recurred with both local and 

metastatic disease and 2 recurred with metastatic disease only (cervical lymph node and liver 

metastases, respectively). 4 patients underwent early salvage abdomino-perineal excision of 
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rectum (APER). 1 year, 2 year- and 3 year-disease free survival (DFS) rate was 90%, 83% 

and 80%, respectively.

Imaging response assessment

Post therapy MRI was performed at a median of 15 weeks (range 5–19 weeks) from the start 

of radiotherapy with 90% of scans performed within 12 weeks of completion of treatment. 

31/40 (73%) patients achieved a radiological complete response (CR) on both T2-w and 

DWI. Radiological CR at this time point from the start of CRT did not predict outcome (CR 

rate: 7/11 (64%) and 24/29 (83%), p = 0.2 in patients who subsequently recurred versus 

patients who did not recur).

Association between MR image heterogeneity and disease recurrence

The imaging features most strongly associated with disease recurrence in univariate analysis 

were T2w energy and DWI coefficient of variation (CoV) from baseline MRI scans (Table 

1 suppl). Patients who developed disease recurrence post CRT demonstrated higher baseline 

T2w energy and higher DWI CoV. In comparison, there was no statistically significant 

difference in either baseline tumor or post-treatment residual volume in patients who 

experienced recurrence versus those that did not, although the post-treatment volume may 

have been over-represented as it included radiotherapy- induced mucosal change and fibrosis 

(p = 0.35 and p = 0.06, respectively).

Predictive accuracy of the baseline clinic-pathological multivariate logistic regression model 

for disease recurrence including age, gender, T stage (dichotomised) and N stage was 

numerically increased with the addition of these two key imaging characteristics (AUC 

= 0.71 for baseline vs AUC = 0.83 for extended model; p = 0.25 for comparison), and 

baseline T2w energy remained associated with disease recurrence after adjusting for clinical 

characteristics (Fig. 2a; Table 3a).

We applied NRI analysis to the baseline and extended model (including T2w energy and 

DWI CoV). Resulting NRI = 1.29 statistic value indicates a significant (p-value <0.001) 

net reclassification improvement by the addition of the 2 imaging variables to the baseline 

model.

Association between MR image heterogeneity and disease free survival

In the univariate analysis, the imaging features associated with 2-year DFS are listed 

in Table 2 suppl. When T2w energy and DWI CoV were included in the multivariate 

regression model for 2-year DFS based on clinical characteristics only, predictive accuracy 

was improved from AUC 0.71 to AUC 0.95 (p = 0.09 for comparison) (Fig. 2b; Table 3b).

Model cross-validation for disease recurrence and 2y-DFS

The following variables were selected from the random forest model which fulfilled the 

importance criterion: (Baseline T2w Energy, Baseline T2w Entropy, Baseline T2w GLCM: 

Cluster Prominence, Post CRT T2w GLRL: Low Gray-Level Run Emphasis, Post CRT 

T2w GLRL: Run Percentage, baseline DWI Coefficient of Variation, baseline DWI Standard 

Deviation). These variables, as well as all their two-element combinations, were taken 

Owczarczyk et al. Page 6

Radiother Oncol. Author manuscript; available in PMC 2024 December 07.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



forward to be included in the extended model (n = 7 + 21 models considered) as compared 

to the baseline clinic-pathological model for both the primary and secondary endpoints. For 

the primary endpoint the model extended with T2w energy and DWI CoV resulted in the 

greatest error reduction (34.8%) as compared to the baseline model baseline (CV error = 

0.24) (Fig. 3a, suppl Table 3).

For the secondary endpoint the model extended with T2w Energy resulted in the greatest 

error reduction (30.3%) from baseline (CV error = 0.174) whereas the combined model 

(T2w energy and DWI CoV) provided reduction by 18.1% (Fig. 3b, suppl Table 3).

Discussion

In this exploratory analysis of imaging heterogeneity features derived from standard care 

MRI acquired at baseline and following CRT in patients with anal cancer, we identified 

two imaging features, namely baseline T2w energy and DWI CoV, which appeared to be 

predictive of CRT outcome, independent of clinical characteristics alone. The addition of 

these two imaging features to multivariate logistic regression models based on clinical 

characteristics including age, gender, T and N stage yielded numeric increases in the 

predictive accuracy for both, disease recurrence as well as 2 year-DFS, when using both, 

conventional C-statistic as well as recently described NRI algorithm.

The extended model (incorporating T2w energy and DWI CoV) demonstrated 34.8% error 

reduction beyond baseline clinical model in terms of disease recurrence prediction and 

18.1% error reduction in terms of 2y-DFS post CRT in an independent cross validation 

analysis meriting its replication in a larger external validation cohort.

As we await the results of a prospective multi-center Australian trial with the aim of 

determining whether the addition of functional MRI sequences to morphological data has 

the potential to predict later disease recurrence [27], to our knowledge, our study is the first 

to explore the potential of functional MRI (including DWI) heterogeneity analysis to predict 

clinical outcome following CRT in anal cancer.

An imaging “radiomics” approach, extracting a large number of quantitative texture features 

from diagnostic images, has the potential to derive more in-depth characterization of the 

tumor, helping to stratify patients into distinct phenotypic subgroups [18] with the added 

advantage of being non-invasive and potentially unaffected by sampling bias [11].

To our knowledge, only one previous study investigated the association between baseline 

MR imaging heterogeneity features and outcome in patients with ASCC undergoing 

CRT [28]. The authors identified two baseline imaging factors, extracted from baseline 

T2w sequences, predictive of tumour related event occurrence, highlighting the potential 

usefulness of MR texture analysis as a predictive factor of outcome for ASSC. The potential 

advantage of our study is the larger sample size as well as functional (DWI) sequences in the 

analysis.

Our results highlight the complementary nature of anatomical and functional MR assessment 

in ASCC. This has also been appreciated in other tumour types, in particular gliomas, where 
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predictive models combining radiomic features from multiple sequences (T1 and ADC) 

had higher diagnostic accuracy in discriminating low grade from high grade gliomas than 

models based on features extracted from a single sequence possibly due to the complexity 

of the microenvironment in tumors [29]. In other studies, radiomic “signatures” employing 

heterogeneity analysis of multiple sequences have been shown to correlate with molecular 

signatures, such as multigene assays in breast cancer [30]

First-order energy is a measure of the overall uniformity (homogeneity) of voxel gray levels 

while first-order coefficient of variation is a measure of intensity variability (heterogeneity) 

within an image. We therefore hypothesise that the higher baseline anatomical uniformity 

combined with higher variation in diffusion (which is considered an indirect indication 

of cellularity) may reflect unfavourable tumour and host environment characteristics (i.e. 

aggressive heterogenous tumour combined with less pronounced immune response, immune 

cell influx etc) leading to resistance to treatment. A study of patients with head and 

neck squamous cell carcinoma, found that high ADC histogram range measures (ADCdiff), 

reflecting more tumor heterogeneity on DWI, was associated with poorer outcomes which 

is consistent with our study [31]. In addition, in another study of advanced squamous cell 

carcinoma of the head and neck, higher imaging uniformity was predictive of local failure 

[32] which is consistent with the T2w feature analysis in our study.

Our study has several limitations. Firstly, this is an exploratory analysis and the results, 

whilst interesting and consistent with previous reports in squamous cell cancers, will require 

validation in a larger cohort. Due to the large number of imaging features and small number 

of patients with this rare cancer coupled with relatively small number of events the risk of 

model overfitting is high although we have made every effort to correct for this using two 

separate indices (C-statistic as well as NRI) as well as internal cross-validation analysis.

Secondly, we included both, local as well as metastatic/combined recurrence, as the primary 

outcome. Due to the limited number of events in our cohort we could not carry out separate 

logistic regression analyses for these outcomes. Further studies are required to find factors 

specifically associated with local or distant tumour progression as this may carry therapeutic 

implication.

Thirdly, signal intensity variability from the MR acquisition protocols and reconstruction 

algorithms were inevitable due to intrinsic differences in the 1.5 T systems used. However, 

sequences were the same type and standard quality assurance was performed. In addition, 

first-order heterogeneity features, which have been found to be most predictive in our study, 

have been shown in other trials to be more reproducible [23] and less reliant on acquisition 

parameters [33] than higher order texture features.

Furthermore, there were challenges in defining the optimal VOI on the post CRT scans given 

the overlap between post CRT change and residual tumor, if present. This was minimized 

by using a radiation oncologist and radiologist in consensus as well as by inclusion of 

functional sequences which have, in our previous published work, been demonstrated to 

improve outlining confidence [34]. Finally, we were unable to independently validate our 
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findings, however, going forward prospective investigation of model performance in the 

multicenter PLATO trial (ISRCTN 88455282) is planned.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
Analysis workflow. Multi-slice regions of interest (ROI) were drawn around the tumor on 

high resolution T2w images as well as on Apparent Diffusion Coefficient (ADC) parametric 

maps with reference to high b value diffusion weighted images (DWI), generating a 3D 

whole tumor volume. From this volume, first-, second- and high-order statistical and fractal 

parameters were derived using in-house software. Both illustrated cases are of T4 anal canal 

tumors (Case 1 – Partial response post CRT, delayed recurrence; Case 2 – Partial response 

post CRT, subsequently CR and no recurrence at last follow-up).
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Fig 2. 
Receiver operator curves (ROC) for prediction of recurrence (a) and disease free survival 

(b) comparing model using clinical variables alone with model using clinical and imaging 

variables as described in text.
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Fig 3. 
Percentage change in cross-validation error from the baseline model for prediction of disease 

recurrence (a) and disease free survival (b).
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Table 1
T2-weighted and diffusion-weighted MRI acquisition parameters utilized.

Sequence Acquisition parameters (Center 1) Acquisition parameters (Center 2)

T2 axial TSE TR/TE: 5010/137 ms; TR/TE: 5290/97 ms;

Tumor Flip angle 137° NSA 4;
ST 3 mm
FoV 220*220 mm

Flip angle 150° NSA 2;
ST 3 mm
FoV 200*200 mm

Diffusion axial SS-EPI TR/TE: 3000/65 ms; TR/TE: 3100/77 ms;

Pelvis Flip angle 90; NSA 4 Flip angle 90; NSA 4

b = 0, 100, 500, 800, (1100) s/mm2 ST 6 mm
Fov 260*260 mm

ST 6 mm
Fov 250*250 mm

TSE, turbo spin echo; TR, repetition time; TE, echo time; NSA, number of signals averaged; ST, slice thickness; FoV, field of view; SS-EPI, 
single-shot echo planar imaging.
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Table 2
Summary description and relevant formulae for the independent first, second and fractal 
features analyzed.

Parameter Description Formula

First order: histogram statistics provide an indication of central tendency (coefficient of variation) and variability (kurtosis, energy and 
entropy)

Coefficient of 
Variation (CoV)

Indicates how large the 
standard deviation is in 
relation to the mean

σ
μ

Kurtosis Describes the “peak” of a 
distribution. Kurtosis >3: 
sharper peak than a normal 
distribution Kurtosis <3: 
flatter peak than a normal 
distribution Kurtosis = 3: 
normal distribution

n
(n − 1)(n − 2)(n − 3)

∑(x, y) ∈ R [a(x, y) − a]4

[sd(a)]4
− 3 (n − 1)2

(n − 2)(n − 3)
where n = the total number of voxels in the region-on-interest, R within the image a(x,y); 
sd = standard deviation; ā is the mean value within R

Energy Measures voxel signal 
distribution. High energy 
is noted in homogeneous 
voxels

∑i = 1

imax [p(i)]2
where i is the voxel value (between i = 1 to imax in the region of interest and p(i) the 
probability of the occurrence of that voxel value

Entropy Measures voxel 
randomness. Low entropy 
is noted in homogeneous 
voxels

∑i = 1

imax [p(i)ln[p(i)]
where i is the voxel value (between i = 1 to imax in the region of interest and p(i) the 
probability of the occurrence of that voxel value

Second order: Gray Level Co-occurrence matrix (GLCM) statistics are computed after the original texture image D is re-quantized into an 
image G with reduced number of gray level, Ng by scanning the intensity of each voxel and its neighbour, defined by displacement d and angle 
θ. A displacement, d could take a value of 1,2,3,…n whereas an angle, θ is limited 0°, 45°, 90° and 135°. The GLCM p(i; j|d; θ) is a second 
order joint probability density function of gray level pairs in the image for each element in the co-occurrence matrix by dividing each element 
with Ng. Finally, scalar secondary features are extracted from this co-occurrence matrix

GLCM: 
Correlation

Measures gray level 
intensity linear dependence 
between the voxels (i,j) 
at the specified positions 
relative to each other

∑i ∑j (ij)p(i, j)
where i is the voxel value (between i = 1 to imax in the region of interest; j is the voxel 
value (between j = 1 to jmax in the region of interest; and p(i,j) the probability of the 
occurrence of that voxel value i relative to j

GLCM: Cluster 
prominence

Measures asymmetry. A 
low cluster prominence 
value indicates small 
variations in gray-scale

∑i ∑j (i + j − μx − μy)4p(i, j)
where i is the voxel value (between i = 1 to imax in the region of interest; j is the voxel 
value (between j = 1 to jmax in the region of interest; p(i,j) is the probability of the 
occurrence of that voxel value i relative to j; μx is the mean of px and μy is the mean of py

Fractal features describe self-similar fractal shapes

Mean fractal 
dimension

Measures the texture of 
a fractal, a self similar 
pattern. A higher fractal 
dimension corresponds to 
greater roughness

D =
∑i = 1

N Di

N
where N is the number of slices and Di is the fractal dimension for the ith slice

Standard deviation
Measures the standard 
deviation of a fractal 
computed by a differential 
box counting algorithm

σ = ∑i = 1

N Di
2/N −

∑i = 1
N Di

N

2

where N is the number of slices and Di is the fractal dimension for the ith slice

Lacunarity

Measures the amount of 
“gaps” in the image/object. 
If a fractal has large “gaps”, 
it has high lacunarity

∑i = 1
N Di

2/N

∑i = 1
N Di

N

2 − 1

where N is the number of slices and Di is the fractal dimension for the ith slice

Hurst component Measures the density of the 
image/object i.e. how much 
the image/object occupies 

H = 3 − D
where D is the mean fractal dimension
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Parameter Description Formula

the space that contains it. A 
small value corresponds to 
coarse texture
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Table 3

Results of the cross-validation analysis for extended models based on most predictive imaging variables. Error 

from each model cross-validation was reported together with its percentage change from the baseline model 

one for each of the endpoints.

Model Primary endpoint (Disease 
recurrence)

Secondary endpoint (2y-DFS)

CV error CV error change 
(%) from the 
Baseline Model

CV error CV error change 
(%) from the 
Baseline Model

Baseline Model 0.240 0.0 0.174 0.0

Baseline model extensions:

Baseline T2w Energy, Baseline T2w Entropy 0.186 −22.8 0.142 −18.3

Baseline T2w Energy, Baseline T2w GLCM: Cluster Prominence 0.181 −24.5 0.148 −14.9

Baseline T2w Energy, Post CRT T2w GLRL: Low Gray-Level Run 
Emphasis

0.201 −16.2 0.168 −3.2

Baseline T2w Energy, Post CRT T2w GLRL: Run Percentage 0.203 −15.6 0.166 −4.6

Baseline T2w Energy, Baseline DWI Coefficient of Variation 0.157 −34.8 0.142 −18.1

Baseline T2w Energy, Baseline DWI Standard Variation 0.183 −23.7 0.217 24.7

Baseline T2w Entropy, Baseline T2w GLCM: Cluster Prominence 0.196 −18.4 0.155 −10.6

Baseline T2w Entropy, Post CRT T2w GLRL: Low Gray-Level Run 
Emphasis

0.221 −8.2 0.173 −0.2

Baseline T2w Entropy, Post CRT T2w GLRL: Run Percentage 0.222 −7.8 0.172 −1.3

Baseline T2w Entropy, Baseline DWI Coefficient of Variation 0.170 −29.1 0.150 −13.9

Baseline T2w Entropy, Baseline DWI Standard Variation 0.196 −18.4 0.208 19.4

Baseline T2w GLCM: Cluster Prominence, Post CRT T2w GLRL: Low 
Gray-Level Run Emphasis

0.203 −15.3 0.204 17.1

Baseline T2w GLCM: Cluster Prominence, Post CRT T2w GLRL: Run 
Percentage

0.205 −14.6 0.208 19.8

Baseline T2w GLCM: Cluster Prominence, Baseline DWI Coefficient of 
Variation

0.171 −28.7 0.173 −0.3

Baseline T2w GLCM: Cluster Prominence, Baseline DWI Standard 
Variation

0.162 −32.7 0.167 −3.8

Post CRT T2w GLRL: Low Gray-Level Run Emphasis, Post CRT T2w 
GLRL: Run Percentage

0.257 6.8 0.208 19.7

Post CRT T2w GLRL: Low Gray-Level Run Emphasis, Baseline DWI 
Coefficient of Variation

0.178 −25.7 0.151 −13.0

Post CRT T2w GLRL: Low Gray-Level Run Emphasis, Baseline DWI 
Standard Variation

0.199 −17.3 0.163 −6.5

Post CRT T2w GLRL: Run Percentage, Baseline DWI Coefficient of 
Variation

0.179 −25.3 0.152 −12.8

Post CRT T2w GLRL: Run Percentage, Baseline DWI Standard Variation 0.200 −16.6 0.163 −6.3

Baseline DWI Coefficient of Variation, Baseline DWI Standard Variation 0.189 −21.5 0.168 −3.1

Baseline T2w Energy 0.188 −21.7 0.121 −30.3

Baseline T2w Entropy 0.203 −15.4 0.134 −22.6

Baseline T2w GLCM: Cluster Prominence 0.228 −5.0 0.177 2.0

Post CRT T2w GLRL: Low Gray-Level Run Emphasis 0.247 3.0 0.198 14.1

Post CRT T2w GLRL: Run Percentage 0.248 3.3 0.201 15.4

Baseline DWI Coefficient of Variation 0.178 −26.0 0.142 −18.2
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Model Primary endpoint (Disease 
recurrence)

Secondary endpoint (2y-DFS)

CV error CV error change 
(%) from the 
Baseline Model

CV error CV error change 
(%) from the 
Baseline Model

Baseline DWI Standard Variation 0.195 −18.8 0.140 −19.3

Radiother Oncol. Author manuscript; available in PMC 2024 December 07.


	Abstract
	Methods
	Patient characteristics, treatment and follow-up
	Clinical endpoints
	MRI acquisition and imaging response assessment
	Heterogeneity feature extraction and selection
	Statistical analysis

	Results
	Patient and treatment characteristics
	Clinical follow up
	Imaging response assessment
	Association between MR image heterogeneity and disease recurrence
	Association between MR image heterogeneity and disease free survival
	Model cross-validation for disease recurrence and 2y-DFS

	Discussion
	References
	Fig 1
	Fig 2
	Fig 3
	Table 1
	Table 2
	Table 3

