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Abstract

Objective—Automatic segmentation of vestibular schwannomas (VS) from magnetic resonance 

imaging (MRI) could significantly improve clinical workflow and assist patient management. 

Accurate tumour segmentation and volumetric measurements provide the best indicator to detect 

subtle VS growth but current techniques are labour-intensive and dedicated software is not 
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readily available within the clinical setting. We aim to develop a novel artificial intelligence (AI) 

framework to be embedded in the clinical routine for automatic delineation and volumetry of VS.

Methods—Imaging data (contrast-enhanced T1-weighted (ceT1) and high-resolution T2-

weighted (hrT2) MR images) from all patients meeting the study’s inclusion/exclusion criteria 

who had a single sporadic VS treated with Gamma Knife Stereotactic Radiosurgery were used 

to create our model. We developed a novel artificial intelligence (AI) framework based on a 

2.5D convolutional neural network (CNN) to exploit the different in-plane and through-plane 

resolutions encountered in standard clinical imaging protocols. We used a computational attention 

module to enable the CNN to focus on the small VS target and propose a supervision on the 

attention map for more accurate segmentation. The manually-segmented target tumour volume 

(also tested for inter-observer variability) was used as the ground truth for training and evaluation 

of the CNN. We quantitatively measured the Dice score, average symmetric surface distance 

(ASSD) and relative volume error (RVE) of the automated segmentation results in comparison to 

manual segmentations to assess the model’s accuracy.

Results—Imaging data from all eligible patients (n=243) were randomly split into three non-

overlapping groups for training (n=177), hyper-parameter tuning (n=20) and testing (n=46). Dice, 

ASSD and RVE scores were measured on the testing set for the respective input data types as 

follows: ceT1: 93.43%, 0.203mm, 6.96%; hrT2: 88.25%, 0.416mm, 9.77%; combined ceT1/hrT2: 

93.68%, 0.199mm, 7.03%. Given a margin of 5% for the Dice score, the automated method was 

shown to achieve statistically equivalent performance in comparison to an annotator using ceT1 

images alone (p=4e-13) and combined ceT1/hrT2 images (p=7e-18) as inputs.

Conclusions—We have a developed a robust AI framework for automatically delineating and 

calculating VS tumour volume achieving excellent results, equivalent to that achieved by an 

independent human annotator. This promising AI technology has the potential to improve the 

management of patients with VS and potentially other brain tumours.

Keywords

Vestibular schwannoma; artificial intelligence; convolutional neural network; segmentation; MRI; 
tumour

Introduction

Diagnosis of vestibular schwannoma (VS) has risen significantly in recent years and is now 

estimated to be between 14 and 20 cases per million per year 6,22,27. In the UK, this equates 

to approximately 1400 – 1500 new patients being diagnosed every year. The widespread 

availability of diagnostic MRI has notably resulted in a greater number of asymptomatic 

patients being diagnosed with small VS 27. For smaller tumours, expectant management 

with serial imaging is often advised 26 with treatment decisions based on the tumour’s 

maximal extra-meatal linear dimension 11,26.

However, linear measurements are not the most sensitive method of measuring a tumour’s 

size and several studies have demonstrated that a volumetric measurement is a more accurate 

method of calculating a vestibular schwannoma’s true size 18,24,29,33,34,35. Such methods 

are also superior at detecting subtle growth 33. The principal reason such volumetric 
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methods have not been widely implemented is because the currently available tools makes 

segmenting (or contouring) the tumour and calculating volume a labour-intensive process 

with no dedicated software seamlessly implemented in the clinical scanners or reporting 

workstations and broadly available. MacKeith et al. recently described their experience 

of using a state-of-the-art commercially available semi-automated method for segmenting 

VS 18 highlighting the speed of the technique compared with older semi-automated 10,32 

and manual segmentation methods 4,33. Nonetheless, it required the operator to identify 

the tumour and initiate the segmentation process 18 and thus potentially suffers from inter-

operator variations.

An automated segmentation tool would also benefit the tumour contouring process that 

is key to the planning and treatment of vestibular schwannomas with Gamma Knife 

Stereotactic Radiosurgery (GK SRS). Current Gamma Knife planning software uses an 

in-plane semi-automated segmentation method enabling the user to manually segment each 

axial slice in turn. This is a relatively time-consuming task that could be improved by the 

availability of an automated segmentation tool.

In this study, we describe, to the best of our knowledge, the first fully automated method of 

segmenting VS from MRI, for which we developed a novel artificial intelligence (AI) deep 

machine learning framework. AI refers to computing technologies inspired by processes 

associated with human intelligence. Machine learning describes a system’s capability to 

acquire statistical knowledge by extracting patterns from training data and learning rules 

to make predictions for a given predefined task based on these patterns. Deep machine 

learning, or simply deep learning (DL), methods take this process a step further, enabling 

the computer to not only statistically reason on extracted patterns but also to build its own 

rich and complex visual representations out of simple mathematical operations cascaded 

into increasingly higher-level feature extractors 9. Convolutional Neural Networks (CNNs), 

often simply referred to as networks by machine learning practitioners, are the most 

commonly used deep learning models in medical image analysis and have achieved state-

of-the-art performance for many segmentation tasks 2,15. These AI models for medical 

image segmentation applications are typically trained in a supervised manner with a set of 

annotated training images (e.g. manual segmentations) providing the network with expected 

input-output data pairs.

The choice of network structure is a key decision when designing CNN-based segmentation 

models. Most of the previously described CNN methods were designed to segment 

anatomical images with an isotropic resolution and are thus not very well suited to 

anisotropic routine clinical brain imaging protocols which present with high in-plane 

and low through-plane resolution 17. A two-dimensional (2D) CNN structure achieves a 

relatively low computational memory requirement by analysing data in a slice-by-slice 

manner but the network ignores three-dimensional (3D) information that ultimately limits its 

segmentation performance 25. 3D CNNs can better exploit 3D features but typically require 

a large amount of memory which may limit its representation power [15]. A 2.5D CNN, 

exploiting refined in-plane but coarse through-plane feature extraction, is a compromise 

between the 2D and 3D network; it has the advantage of being able to use inter-slice features 

absent in 2D networks but requires less memory than the more complex 3D networks 37.
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Vestibular schwannomas are relatively small compared with the entire brain region. For VS 

segmentation, the ability of the CNN to segment small structures from large image contexts 

is thus highly desired. To address the segmentation of small structures, Yu et al. 42 used 

a coarse-to-fine approach with recurrent saliency transformation. Oktay et al.’s 23 method 

learned a computational attention map to locate the region of interest within the larger image 

context enabling the CNN model to then focus on target structures. However, the attention 

map used by Oktay et al. was not explicitly supervised during training so may not have 

been well-aligned with the target region, limiting segmentation accuracy. Complementary 

approaches to deal with small structures include the use of adapted loss functions such 

as Dice loss 21, generalized Dice loss 28 and Focal loss 16. These methods automatically 

address the imbalance between foreground and background voxels, but treat all the voxels 

equally during training. Considering the fact that some voxels are harder than the others 

to learn during training, we proposed a hardness-weighted Dice loss function to further 

improve the segmentation accuracy 40.

In this study, we describe a novel AI framework to automatically segment vestibular 

schwannomas using both contrast-enhanced T1-weighted (ceT1) and high-resolution T2-

weighted images (hrT2). The method was trained and evaluated using MR images from 

patients with VS who had previously undergone Gamma Knife stereotactic radiosurgery.

Methods

Ethics statement

This study was approved by the NHS Health Research Authority and Research Ethics 

Committee (18/LO/0532). Because patients were selected retrospectively and the MR 

images were completely anonymised before analysis, no informed consent was required 

for the study.

Study population

Imaging data from consecutive patients with a single sporadic VS treated with GK SRS 

between October 2012 and January 2018 were screened for the study. All adult patients aged 

over 18 years with a single, unilateral VS treated with GK SRS were eligible for inclusion 

in the study, including patients who had previously undergone operative surgical treatment. 

Two hundred and forty-eight patients (M:F 97:151; median age 56 years, IQR 47 – 65 

years) met this initial inclusion criteria. All patients had a MR performed on a 1.5T scanner 

(Avanto Siemens Healthineers, Erlangen, Germany) including a ceT1 MRI acquired with 

in-plane resolution of 0.4 x 0.4 mm, in-plane matrix of 512 x 512 and a slice thickness of 

1.5mm (TR (Repetition time) = 1900 ms, TE (Echo time) = 2.97 ms, TI (Inversion time) = 

1100 ms) and a hrT2 MRI with in-plane resolution of 0.5 x .0.5 mm, in-plane matrix of 384 

x 384 and a slice thickness of 1.0 – 1.5 mm (TR = 9.4 ms, TE = 4.23 ms). Patients were 

only included in the study if their pre-treatment image acquisition dataset was complete; two 

patients were thus excluded because of incomplete datasets.

We randomly split the final 246 patients into three non-overlapping groups: 180 for training, 

20 for hyper-parameter tuning and 46 for testing with median tumour volumes of 1.36 cm3 
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(range 0.04 – 9.59 cm3, IQR 0.63 – 3.15 cm3), 0.92 cm3 (range 0.12 – 5.50, IQR 0.51 – 

2.40 cm3) and 1.89 cm3 (range 0.22 – 10.78, IQR 0.74 – 4.05 cm3), respectively (Figure 1). 

Thirty-five patients (19%) in the training dataset had undergone previous surgery compared 

to 2 patients (20%) in the hyper-parameter tuning set and 14 patients (30%) in the testing 

dataset.

Manual Segmentations

For each patient, the target tumour volume was manually segmented in consensus by the 

treating team including a neurosurgeon (RB/NK) and physicist (IP/AD) using both the ceT1 

and hrT2 images. The target tumour volume was then considered as the ground truth for 

training and testing of our AI framework. Forty-six images were also manually segmented 

by a third neurosurgeon (JS), blinded to the original manual segmentation in order to 

test inter-observer variability. All manual segmentations were performed using Gamma 

Knife planning software (Leksell GammaPlan, Elekta, Sweden) that employs an in-plane 

semi-automated segmentation method. Using this software, each axial slice was manually 

segmented in turn.

Automated Segmentations using Artificial Intelligence

As described in more technical depth in our preliminary methodological study, we developed 

a novel attention-based 2.5D CNN combining 2D and 3D convolutions 40 to fully automate 

the process of segmenting VS. As shown in Figure 2, the main structure follows a typical 

encoder-decoder design as implemented in the widely used U-Net 25. The encoder contains 

five levels of convolutions. The first two levels (L1-L2) and the others use 2D and 3D 

convolutions/poolings, respectively. This is motivated by the fact that the in-plane resolution 

of our VS tumour images is 2 – 3 times that of the through-plane resolution. After the first 

two max-pooling layers that down-sample the feature maps only in 2D, the feature maps in 

L3 and followings have a near-isotropic 3D resolution. The output feature channel number 

of the convolutions at level l is denoted as Nl with Nl being set as 16l in our experiments.

Note that our network is different from previous works that refer to fusing purely 2D 

networks in three orthogonal views as a 2.5D network 14,19. These indeed have a limited 

ability to exploit 3D features. Existing, more advanced, 2.5D CNNs 38 use inter-slice and 

intra-slice convolution to exploit 3D features but are limited to dealing with images with 

isotropic resolution. Our network goes beyond this limitation and is specifically designed to 

deal with anisotropic input volumes. It ensures a near-isotropic 3D physical receptive field 

(in terms of mm rather than voxels) along each axis.

To deal with the small target region, we added a spatial attention module to each level of the 

decoder. An attention module gives a score of relative importance for each spatial position. 

The module learns to give higher attention scores to voxels in the target region and lower 

attention scores to voxels in the background. Therefore, it enables the network to focus more 

on the small tumour target while suppressing irrelevant background. The proposed attention 

module consists of two convolutional layers followed by a sigmoid activation function to 

obtain the attention scores. As part of this attention module, we developed an attention loss 

to explicitly supervise the learning of spatial attention that broadly defined the tumour region 
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of interest within the larger image. Previous works have shown that spatial attention can be 

automatically learned in CNNs to enable the network to focus on the target region in a large 

image context 23. We developed our network with explicit supervision on the attention map 

to further ensure more accurate results.

Thirdly, we adapted the usual Dice loss function frequently used to train CNNs 21. The Dice 

loss function has shown good performance in dealing with images that have an imbalanced 

foreground and background voxels. However, when segmenting small structures with low 

contrast, some voxels are harder than the others to learn. Treating all the voxels for a certain 

class equally may limit the performance of CNNs on hard voxels so our network defined a 

voxel-level difficulty weight that automatically gives higher weights to voxels mis-classified 

by the CNNs. Let pci represent the probability of voxel i belonging to class c predicted 

by the CNN and gci denote the corresponding probability value in the ground truth. The 

hardness-weighted Dice loss (HDL) is defined as:

LHDL = 1.0 − 1
C ∑

c

2∑i wcipcigci + ϵ
∑i wci pci + gci + ϵ

where C is the class number that is 2 in our binary segmentation task. ϵ is a small number 

for numerical stability and set as 10−5 in our experiments. The weighting coefficient is 

defined as:

wci = 0.5 ∗ abs pci − gci + 0.5

Network training

The networks were implemented in Tensorflow and NiftyNet 8 on a Ubuntu desktop with 

32GB RAM and an NVIDIA GTX 1080 Ti GPU. For training, we used Adam optimizer 

with weight decay 10-7, batch size 2, and iteration number 30k where performance on the 

hyper-parameter tuning set stopped to increase. The learning rate was initialized to 10-4 and 

halved every 10k. We trained the networks respectively to segment vestibular schwannoma 

tumours from different modalities: 1) ceT1 images, 2) hrT2 images, and 3) a combined 

dataset including both imaging modalities.

Deep learning CNNs are nonlinear methods that learn via a stochastic training algorithm. 

This makes them sensitive to the specifics of the training dataset with the potential to 

generate results with high variance. One method to reduce this variance is to perform 

ensemble learning whereby the network is used to train multiple models and the results are 

combined 13. This may be achieved by varying the training dataset, the choice of models 

used in the ensemble or a combination thereof. For our network, we resampled the training 

dataset with replacement and trained the network five times using the final Baseline + SpvA 

+ HDL model, taking their majority voting results as the final segmentations.
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Testing and statistical analysis

For quantitative analysis, we measured the Dice, Average Symmetric Surface Distance 

(ASSD) and Relative Volume Error (RVE) scores. The Dice score is a proven statistical 

validation metric to evaluate the performance and spatial overlap between two sets of 

segmentations of the same anatomy 43. Dice is represented as a percentage with 100% 

being a perfect voxel-wise match between results. The ASSD is measured in millimetres and 

is determined by the average spatial distance between the border voxels of the automated 

segmentation results and the ground truth. Border voxels are defined as those voxels in 

the tumour that have at least one neighbour that does not belong to the tumour. A lower 

ASSD value indicates a better agreement, with ASSD = 0 representing a perfect agreement 

in the segmentation boundary. Finally, the RVE is an approximation error between an exact 

value and in this case, the network’s approximation to it. To calculate the RVE, the total 

volume of the segmentation is divided by the total volume of the ground truth and is then 

represented as a percentage. An RVE of 0 indicates a perfect segmentation. We calculated 

Dice, ASSD and RVE scores for the AI network using 1) ceT1 images, 2) hrT2 images, and 

3) a combined dataset including both imaging modalities.

When describing our results, we refer to the basic network as the “Baseline” model with 

the additional supervised attention module (SpvA) and Hardness-weighted Dice Loss (HDL) 

function implemented and analysed sequentially. The model’s final Ensemble results are 

presented and computational times for each test are documented.

We also assessed if our AI model performed comparably to another independent 

neurosurgeon annotator (still considering the first manual segmentation in consensus as 

ground truth). Using bespoke software, we analysed this by testing the equivalence of 

the paired error means using a two one-sided test procedure for paired-samples (TOST-

P) 30. For this experiment, we considered the mean error in Dice scores between the 

manual annotations and our algorithmic outputs (μalgo-gt) and that between the two clinical 

annotators (μinter-observer), with a margin δ of 5% deemed to be equivalent. Specifically, 

our null hypothesis stated that the difference between the two mean errors was expected 

to fall outside our selected equivalence interval (-δ,δ); H0: μinter-observer - μalgo-gt <-δ and 

μinter-observer - μalgo-gt >δ. Thus, if both of these one-sided tests are rejected, we may 

conclude that the paired means are equivalent.

Results

Compared to the ground truth annotations, the ensembled results for our AI framework 

generated a Dice score of 93.43% (SD 3.97%) for ceT1 images alone, 88.25% (SD 3.90%) 

for hrT2 images and 93.68 (SD 2.80%) for the combined dataset. Similarly, ASSD scores 

of 0.203 mm (SD 0.196), 0.416 mm (SD 0.209) and 0.199 mm (SD 0.181). The algorithm 

was more likely to over-estimate tumour volume and RVEs of 6.96% (SD 5.68%), 9.77% 

(SD 7.56%); and 7.03% (SD 5.04%) were obtained for ceT1, hrT2 and combined datasets, 

respectively (Table 1, Figure 3). The results also demonstrated an incremental improvement 

in segmentation accuracy with the use of a Supervised Attention module and a Hardness-

weighted Dice Loss function compared with a baseline 2.5D U-Net (Table 1). Figures 4, 5 

and 6 provide illustrative examples of the best, average and worst segmentation results using 
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the AI framework across all patients and the five inferences used for ensemble learning. 

Mean computational times of 3.42 s (SD 0.37) to 3.87 s (SD 0.42) per image were observed 

in testing (Table 1). The same hardware was used for training and testing the AI framework.

Finally, we determined if our AI model performed comparably to another independent 

neurosurgeon annotator. Inter-observer variability testing between clinical annotators 

recorded a Dice score of 93.82% (SD 3.08%), an ASSD score of 0.269mm (SD 0.095) 

and a RVE of 5.55% (SD 4.75%) between the two sets of manual annotations. Given a 

margin of 5% for the Dice score, our method is statistically equivalent to another annotator 

using ceT1 images alone as input (p=4e-13) and both the ceT1 and hrT2 images as inputs 

(p=7e-18).

Discussion

In this work, we describe the first fully automated method for segmenting vestibular 

schwannoma tumours using a deep learning AI model and show performance on par with 

inter-observer variability. We have developed a novel 2.5D CNN capable of generating 

automatic VS segmentations using standard clinical sequences requiring no user interaction. 

Our network is specifically designed for images with high in-plane resolution and low 

through-plane resolution and incorporates a multi-scale spatial attention mechanism and a 

novel hardness-weighted Dice loss function to deal with the small target tumour region. The 

choice of a 2.5D network was a trade-off between standard 2D and 3D CNNs however 

its lower memory demands will facilitate its implementation within current healthcare 

infrastructure. Applying 2D CNNs slice-by-slice will ignore inter-slice correlation and 

3D context. To properly deal with anisotropic images, the application of standard 3D 

CNNs requires upsampling input images to isotropic 3D resolution. While this balances 

the physical receptive field along each axis, processing upsampled images requires more 

memory. This may limit the accuracy of the CNN by adding more stringent constraints on its 

depth and number of features. These limitations were highlighted in our preliminary study40 

where we demonstrated that 2.5D networks outperform their 2D and 3D counterparts 

for VS tumour segmentation from anisotropic MRI. An attention module, designed with 

explicit end-to-end supervision was implemented to enable the CNN to focus on the target 

tumour region and we also introduced a hardness-weighted Dice loss function to boost the 

performance of the network.

The proposed AI model demonstrated excellent concordance between the automated results 

and the manually segmented ground truth. The network returned Dice scores of 93% for 

ceT1 and combined ceT1/hrT2 image datasets that were statistically equivalent to another 

clinical annotator. These results suggest that our network is sufficiently robust to perform 

tumour volumetry in clinical practice and a prospective evaluation of the network’s clinical 

utility is already planned.

This work has the potential to significantly change current clinical practice by altering 

the way VS are measured and managed. In 2003, it was agreed that a VS should 

be defined as either purely intrameatal (intracanalicular) or intrameatal with extrameatal 

extension11. By consensus, the size of a VS is currently defined by the tumour’s maximal 
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extrameatal linear dimension 11,26 and an increase of at least 3mm in the largest extrameatal 

diameter is defines absolute growth 11. However, linear measurements are not the most 

sensitive method of measuring a tumour’s size and several studies have demonstrated that a 

volumetric measurement is a more reliable and accurate method of calculating a vestibular 

schwannoma’s true size 18,24,29,33,34,35. Such methods are also superior at detecting subtle 

growth 33. However, the principal reason such volumetric methods have not been widely 

implemented is because currently available tools make calculating tumour volume a 

labour-intensive process with no dedicated software readily available within the clinical 

setting. By providing a simple, fully automated tool to calculate vestibular schwannoma 

volume, this work has the ability to standardise a key part of clinical management of this 

disease, enabling accurate volumetric measurements to be performed easily in the clinic. 

An automated segmentation tool could also improve the process of contouring vestibular 

schwannomas for radiosurgery treatment. This could be used as the initialisation step of an 

interactive segmentation approach 39,41 and would speed up treatment planning.

This network was developed using a standardised dataset of images obtained on a routine 

clinical scanner. The next step would be to generalise the network to work with data from 

any type of MR scanner irrespective of the chosen sequence parameters in order to facilitate 

its widespread adoption within clinical practice. Future work will also focus on optimising 

the algorithm in post-surgical cases in order to improve the segmentation of residual tumour 

volumes.

Most patients in a VS surveillance programme have a ceT1 sequence performed as routine. 

However, there is increasing interest in using non-contrast imaging sequences in the 

surveillance of patients with VS because of the risks associated with gadolinium-containing 

contrast agents (GdCAs) including brain accumulation 5 and nephrogenic systemic fibrosis 

in patients with impaired renal function 20,31. In addition to improving patient safety, high-

resolution T2 imaging is less expensive than ceT1 imaging so switching to non-contrast has 

the potential to deliver a 10-fold saving in scan costs 3.

Whilst the presence of a VS may be identified using hrT2 images alone, tumour-brain 

boundaries are sometimes difficult to determine on hrT2, particularly if the tumour is of 

a similar intensity to brain or when trying to segment cases following surgery (Figure 6). 

Consequently, the manual segmentation of tumours using hrT2 images alone is technically 

challenging. Our network demonstrated high accuracy using hrT2 images in isolation (Dice 

88.25% (SD 3.90%), ASSD 0.416 mm (SD 0.209), 9.77% (SD 7.56%) but was notably less 

accurate than the segmentation results using ceT1 images alone or in combination with hrT2 

data. Ongoing work is focused on optimising the segmentation of VS from hrT2 alone but 

this study has clearly demonstrated how emerging AI technology could be used to exploit 

non-contrast MR imaging data information.

It is postulated that AI technology has the potential to personalise medicine and significantly 

improve the management of patients of tumours including VS. To facilitate the delivery 

of patient-specific care, we now intend to introduce our AI model as part of the clinical 

decision making. Such a model would calculate the probability of an individual’s future 

tumour growth based on a number of past radiological characteristics (including higher-

Shapey et al. Page 9

J Neurosurg. Author manuscript; available in PMC 2024 December 07.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



order features aka “radiomics”) and would then generate a suggested surveillance interval. 

A critical aspect of this work will be to establish a threshold for clinically significant 

volumetric growth. Some authors have suggested that volumetric growth of >20% should be 

considered clinically significant as this roughly equates to linear growth of >2mm year 18 

whereas others concluded that a tumour’s volume doubling time (VDT) provided the best 

value to detect subtle growth 33.

Various groups are developing AI models to apply volumetric measurements in gliomas as 

evidenced by the myriad submissions to such technical challenges 1. However, there has 

been very little focus on optimising models for VS. To our knowledge, we have developed 

the first fully automated method of segmenting VS and our algorithm could be easily 

adapted to analyse other benign tumours in the cerebellopontine angle and skull base, such 

as meningiomas.

The main limitation of this study is common to most deep learning imaging studies; that 

it was developed using a uniform dataset and consequently may not immediately perform 

as well on images obtained with difference scan parameters. That said, ongoing research 

suggests that a clinically-robust, generalisable framework can be optimised. Secondly, this 

study was not designed to provide a measurement of uncertainty of the predictions. Such 

information would be helpful prior to its widespread clinical implementation and we plan to 

include analysis of epistemic uncertainty (from the model) and aleatoric uncertainty (due to 

corrupted data) 7,12,36 in future works.

Conclusion

We have developed a robust AI model to perform automated segmentations of vestibular 

schwannomas. The method was validated using ceT1 and hrT2 images, achieving excellent 

accuracy scores comparable to repeated measurements performed by clinicians. Validating 

our novel results on a larger-scale study in future and improving any model inaccuracy, this 

methodology has the potential to improve and personalise the surveillance management of 

patients with tumours in the skull base.
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Figure 1. 
Vestibular schwannoma tumour volumes (cm3) of the training, hyper-parameter tuning and 

testing datasets used to develop the AI framework
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Figure 2. 
The proposed 2.5D U-Net with spatial attention for VS tumour segmentation from 

anisotropic MRI.
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Figure 3. 
Automated segmentation results for the testing dataset (n = 46). Dice, Average Symmetric 

Surface Distance (ASSD) and Relative Volume Error (RVE) scores for the testing dataset of 

46 patients according to the input image. ceT1: contrast-enhanced T1-weighted image, hrT2: 

high-resolution T2-weighted image
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Figure 4. 
Illustrative example of the best automated segmentation results (patient ID: 246). 

ceT1: contrast-enhanced T1-weighted image, hrT2: high-resolution T2-weighted image. 

Model results generated by AI model. Yellow: Manual ground truth, Green: Automated 

segmentation. Dice of Model T2 is 95.60%.
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Figure 5. 
Illustrative example of average automated segmentation results (patient ID: 206). ceT1: 
contrast-enhanced T1-weighted image, hrT2: high-resolution T2-weighted image. Model 

results generated by AI model. Yellow: Ground truth, Green: Segmentation. Dice of Model 

T2 is 84.80%.
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Figure 6. 
Illustrative example of the worst automated segmentation results (patient ID: 238). ceT1: 
contrast-enhanced T1-weighted image, hrT2: high-resolution T2-weighted image. Model 

results generated by AI model. Yellow: Ground truth, Green: Segmentation. Dice of 

Model T2 is 79.50%. This patient underwent Gamma Knife treatment following a subtotal 

translabyrinthine resection of their VS tumour.
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Table 1

Comparison of different AI methods for VS tumour segmentation from contrast-enhanced T1-weighted images 

(ceT1) alone, high resolution T2-weighted (hrT2) images alone and combined dataset (ceT1 and hrT2). ASSD: 

Average Symmetric Surface Distance, RVE: Relative Volume Error. Ground truth manually-calculated tumour 

volume: 2.66 ± 2.43 cm3

Image sequence(s) Method Dice (%) ASSD (mm) RVE (%) Volume (cm3) Runtime (s)

ceT1

Baseline 92.21 ± 5.64 0.305 ± 0.507 8.90 ± 7.94 2.70 ± 2.51 3.46 ± 0.41

Baseline + SpvA 93.05 ± 4.61 0.226 ± 0.273 8.25 ± 6.36 2.70 ± 2.46 3.48 ± 0.41

Baseline + SpvA + HDL 93.08 ± 4.85 0.218 ± 0.247 7.55 ± 8.33 2.67 ± 2.44 3.49 ± 0.40

Ensemble 93.43 ± 3.97 0.203 ± 0.196 6.96 ± 5.68 2.68 ± 2.45 17.48 ± 2.02

hrT2

Baseline 85.71 ± 7.06 0.663 ± 0.451 15.98 ± 14.65 2.85 ± 2.55 3.42 ± 0.37

Baseline + SpvA 86.72 ± 4.98 0.525 ± 0.292 13.38 ± 9.33 2.85 ± 2.60 3.45 ± 0.41

Baseline + SpvA + HDL 87.30 ± 4.89 0.433 ± 0.315 12.11 ± 8.92 2.67 ± 2.47 3.45 ± 0.42

Ensemble 88.25 ± 3.90 0.416 ± 0.209 9.77 ± 7.56 2.67 ± 2.48 17.20 ± 2.08

Combined dataset (ceT1 + 
hrT2)

Baseline 92.47 ± 5.39 0.492 ± 0.427 8.81 ± 7.02 2.80 ± 2.56 3.83 ± 0.45

Baseline + SpvA 92.91 ± 3.78 0.263 ± 0.385 8.37 ± 6.79 2.73 ± 2.49 3.87 ± 0.43

Baseline + SpvA + HDL 93.19 ± 3.59 0.212 ± 0.219 7.57 ± 5.96 2.80 ± 2.53 3.87 ± 0.42

Ensemble 93.68 ± 2.80 0.199 ± 0.181 7.03 ± 5.04 2.74 ± 2.50 19.26 ± 2.15
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