
Transcriptomic analysis reveals prognostic molecular signatures 
of stage I melanoma

Rohit Thakur1,2, Jonathan P. Laye1, Martin Lauss3, Joey Mark S. Diaz1, Sally Jane 
O’Shea4,5, Joanna Poźniak1,6,7, Anastasia Filia8, Mark Harland1, Joanne Gascoyne1, 
Juliette A. Randerson-Moor1, May Chan1, Tracey Mell1, Göran Jönsson3, D. Timothy 
Bishop1, Julia Newton-Bishop#1, Jennifer H. Barrett#1, Jérémie Nsengimana#1,*

1University of Leeds School of Medicine, Leeds, LS97TF, United Kingdom

2Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX, USA, 77054

3Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of Medicine, 
Lund University, Lund, 22381, Sweden

4Mater Private Hospital Cork, Mahon, Cork, T12 K199, Ireland

5School of Medicine, University College Cork, College Road, Cork, T12 AK54, Ireland

6Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, 
Belgium

7Department of Oncology, KU Leuven, Leuven, Belgium

8Centre for Translational Research, Biomedical Research Foundation of the Academy of Athens 
(BRFAA), Athens, Greece

# These authors contributed equally to this work.

Abstract

Background—Previously identified transcriptomic signatures have been based on primary and 

metastatic melanomas with relatively few AJCC stage I tumors given difficulties in sampling 

small tumors. The advent of adjuvant therapies has highlighted the need for better prognostic and 

predictive biomarkers especially for AJCC stage I and II disease.

Patients and Methods—687 primary melanoma transcriptomes were generated from the Leeds 

Melanoma Cohort (LMC). The prognostic value of existing signatures across all the AJCC stages 

was tested. Unsupervised clustering was performed and the prognostic value of the resultant 

signature was compared with that of sentinel node biopsy (SNB) and tested as a biomarker in three 

published immunotherapy datasets.
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Results—Previous Lund and TCGA signatures predicted outcome in the LMC dataset (P=10-8 to 

10-4) but showed a significant interaction with AJCC stage (P=0.04) and did not predict outcome 

in stage I tumors (P=0.3 to 0.7). Consensus-based classification of the LMC dataset identified six 

classes which predicted outcome, notably in stage I disease. LMC class was a similar indicator 

of prognosis when compared to SNB and it added prognostic value to the genes reported by 

Gerami et al. One particular LMC class consistently predicted poor outcome in patients receiving 

immunotherapy in two of three tested datasets. Biological characterisation of this class revealed 

high JUN and AXL expression and evidence of epithelial to mesenchymal transition.

Conclusion—A transcriptomic signature of primary melanoma was identified with prognostic 

value, including in stage I melanoma and in patients undergoing immunotherapy.
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Introduction

Cutaneous melanoma continues to increase in incidence worldwide. Although earlier 

diagnosis has been documented with correspondingly better outcomes, the rising incidence 

of thinner tumors means that, counterintuitively, one fifth of deaths now occur in patients 

presenting initially with early disease (1). In the UK, 91% of melanomas are diagnosed at 

AJCC stage I to II (2). Therefore, better prognostic biomarkers are needed to identify early 

stage disease requiring adjuvant therapies, as well as predictive biomarkers of response to 

checkpoint blockade.

Previous transcriptomic analyses of cutaneous melanoma have generated gene signatures 

with a prognostic value independent of AJCC stage (3–7). The prognostic signature 

developed by Jonsson et al. (3) classifies metastatic melanomas into four classes (Lund 
4-classes), later simplified into two classes (Lund 2-grades, (4)), and the signature developed 

by the TCGA (The Cancer Genome Atlas) consortium classified melanomas into three 

classes (TCGA 3-classes) (8). The prognostic significance of the Lund 4-class and TCGA 

3-class signatures have been replicated in relatively small datasets, notably with few AJCC 

stage I patients (5, 9). Another transcriptomic signature based on 27 genes was developed 

by Gerami et al. (6) to classify primary melanoma patients into tumors which were high or 

low-risk for metastasis.

In this study, the first aim was to test the prognostic value of the Lund and TCGA signatures, 

as well as the gene list of Gerami et al’s signature (6) in a large population-based cohort 

of primary melanomas with a good proportion of stage I patients and extensive phenotypic 

annotations (Leeds Melanoma Cohort, LMC). Since the dataset was well powered for 

discovery of novel tumor subtypes, unsupervised clustering of the tumor transcriptomes of 

the LMC was performed and the prognostic value of the resultant signature was compared 

with that of SNB in analyses stratified by AJCC stage. Finally, the association between 

the Leeds signature and outcome was tested in published data from patients receiving 

immunotherapy (10–12).
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Materials and Methods

Leeds Melanoma Cohort

As described previously (13), 2184 primary melanoma patients were recruited to the Leeds 

Melanoma Cohort (LMC) in the period of 2000-2012. This was a population-ascertained 

cohort which therefore recruited patients treated at multiple clinical centres (recruitment 

rate 67%). During this period SNB was neither offered nor accepted universally. The 

study was ethically approved (ethical approval MREC 1/3/57, PIAG 3-09(d)/2003) and 

in accordance with the Declaration of Helsinki. Participants were consented to sampling 

of their FFPE (formalin fixed paraffin embedded) tumor blocks which were stored in the 

NHS (UK National Health Service) histopathology departments of the respective hospitals. 

Haemotoxylin and eosin (H&E)-stained slides were generated and examined to facilitate 

subsequent sampling of the blocks using a 0.6mm diameter tissue microarray needle as 

previously reported (5, 13). Prior to sampling, all the tumor blocks were reviewed, and if 

there was only a small amount of tumor left in the block then the block was not sampled, lest 

a clinically important block be destroyed. Up to two cores were sampled from each block, 

and, to increase the comparability between tumors, the samples were consistently extracted 

from the least inflamed, least stromal regions of the invasive front of the tumor. The tumor 

infiltrating lymphocytes were scored using Clark et al.’s classification system (14). As 

previously reported (13), 703 tumor transcriptomes were profiled and in the current study 

16 samples were removed in quality control leaving a cohort of 687 patients, henceforth 

referred to as the whole LMC dataset. The dataset contained 251 patients who had a SNB 

test (Supplementary table S10), and only 16 patients are known so far to have been treated 

with checkpoint blockade. The LMC patients were assigned an AJCC stage based on the 

AJCC staging 8th edition (15). Where patients did not have a SNB, the AJCC staging used 

was derived from clinical staging and pathological examination of the wide local excision 

sample.

mRNA extraction and expression data generation

Both mRNA and DNA were extracted from the tumor samples derived from cores following 

a previously described protocol (5, 13). The whole genome mRNA expression profiling 

was carried out using Illumina’s DASL-HT12-v4 array. As described previously, for quality 

control, the mRNA was extracted from up to 2 cores for a number of patients (117 duplicates 

in total); gene expression data from only one extraction per patient was used in subsequent 

analyses (13). The raw transcriptomic data were extracted from the image files using 

GenomeStudio (Illumina Inc., San Diego) and were pre-processed as previously reported 

(13). Briefly, after background correction and quantile normalisation (R package LUMI 
(16)), singular value decomposition (SVD) was used to remove the batch effect (R package 

SWAMP (17)) (13).

Quality control in LMC

The array included 29,262 probes corresponding to 20,715 unique genes. For genes with 

multiple probes, the probe detected in the largest number of tumors was retained, and two 

additional filters were applied: genes had to be detected with P<0.05 in at least 40% of 

tumors and had to have a standard deviation (SD)>0.40. This SD threshold was chosen 
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based on the overall distribution across the 20,715 genes on the log2 scale. The median SD 

was 0.68. The data were standardized to give each gene a mean of 0 and SD of 1.

Procedures

The LMC tumors were classified into the Lund 4-classes, Lund 2-grades and TCGA 3-

classes using the supervised nearest centroid classification (NCC) as previously described 

(5). All the 27 genes of the Gerami et al. gene signature (6) were present in LMC dataset 

and were analysed using a univariable survival analysis in the whole LMC dataset and stage 

I tumors. Unsupervised clustering was performed using the consensus Partitioning Around 

Medoids clustering method in the R-package ConsensusClusterPlus (18, 19) with Euclidean 

distance as the dissimilarity measure and a resampling fraction of 0.8 for both genes and 

samples in 1000 iterations (Supplementary methods).

Statistical analysis

Cox proportional hazard models and Kaplan-Meier curves were used to test the association 

with survival (R-package Survival) (20). The survival time was calculated from time of 

diagnosis to time of last follow-up or time of death from melanoma, whichever occurred 

first, referred to as melanoma-specific survival (MSS). Patients with deaths caused by 

factors other than melanoma were censored at the time of death. Receiver Operating 

Characteristic (ROC) analysis was performed using AJCC stage pre-SNB and AJCC stage 

post-SNB for patients who had SNB. Clinical staging prior to SNB is described as AJCC 

pre-SNB. The AJCC stage post-SNB includes additional information on regional lymph 

node metastasis. The analysis used AJCC staging 8th edition, and MSS up to 3 years was 

chosen as cut-off based upon the inclusion of the majority of the deaths without loss of 

data as a result of censoring (Supplementary table S11). Patients who were censored before 

3 years were not included in the analysis. The analysis was performed using R-packages 

pROC, plotROC, and ggplot2 (21–23).

Pathway enrichment analysis

The differentially expressed genes (DEG) were identified using the Significance Analysis 

of Microarrays (R-package SAMR) by comparing each class versus all others (24). 

Pathway enrichment and biological network analysis of DEGs with a q-value equal to 

0 were performed using ReactomeFiviz in Cytoscape (25). The central nodes of the 

biological network were identified using a centrality measure (betweenness) in Gephi (26) 

(Supplementary methods).

Copy Number Alterations (CNA)

The CNA data were generated in a subset of LMC tumors using Illumina’s next-generation 

sequencing platform as reported in Filia et al. (in revision) (Supplementary methods). 

Among the 687 transcriptome-profiled patients of LMC, CNA data were available for 272 

patients. The CNA were assessed in the regions spanning the genes identified as hubs in 

network enrichment analysis. The ratio between mean of the window read counts in the 

region mapping to a gene and the average read count of the 10 flanking regions around that 

gene was used to estimate the copy number changes. The windows (5k) corresponding to a 
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gene locus were identified using the R packages biomaRt (27, 28). The cut-off for calling a 

region amplified was chosen as a value greater than 0.4 while a value less than -0.4 was used 

to identify a deletion. The 272 samples in the CNA dataset were at AJCC stages I (n=80), II 

(n=147), and III (n=45) (similar distribution to the whole LMC dataset).

Lund validation dataset

For replication, a primary melanoma transcriptomic dataset of 223 tumors from a Lund 

cohort (Sweden) was used (Harbst et al. (4)). The samples were classified using the newly 

generated signature by the supervised NCC approach (5). Out of those 223 patients, 200 had 

recorded information on melanoma relapse in the follow-up time post-diagnosis and were 

used to test the association between patient subgroups and relapse-free survival (using Cox 

proportional hazard models, Kaplan-Meier curves and log-rank test).

Immunotherapy datasets

Three publicly available transcriptome datasets (Hugo Cohort: GSE78220, Ulloa-

Monotoya cohort: GSE35640, Riaz Cohort: https://github.com/riazn/bms038_analysis) were 

downloaded (10–12), samples were quantile normalised and classified using the NCC 

method (Pearson’s correlation coefficient). The Riaz cohort was a mixture of samples from 

various melanoma types (cutaneous melanoma, mucosal melanoma, acral melanoma, uveal/

ocular melanoma, others). In this study the samples labelled as cutaneous melanoma were 

analysed. In all the three cohorts, the association with response to immunotherapy was tested 

using Fisher’s exact test.

Results

Existing signatures showed no association with survival in stage I melanoma

The structure of datasets used in this study are depicted in Figure 1. When applied to the 

whole LMC dataset (n=687), the three formerly published signatures (Lund 4-class, Lund 

2-grade, TCGA 3-class) replicated previously observed associations with MSS (Figure 2A, 

2C, and 2E). However, upon stratifying LMC patients on the basis of AJCC stage, the 

Lund and TCGA signatures showed no association with prognosis for LMC stage I patients 

(Figure 2B, 2D, and 2F). The Lund 2-grade signature had the highest statistical power (since 

based on only two groups) and showed a statistically significant interaction with AJCC 

stage (P=0.02, Supplementary table S1), suggesting that the lack of association in stage 

I was not solely due to low sample size. Because the full details of Gerami et al’s (6) 

commercial signature were not published, we were limited in the scope of its replication in 

the LMC dataset. However, analysing the 27 Gerami genes identified 23 genes as predictors 

of prognosis in the whole LMC dataset (Supplementary table S2). However, in keeping with 

the Lund and TCGA signatures, none of these genes showed a significant association with 

prognosis in stage I tumors (Supplementary table S2).

Generating novel LMC classes and their clinical characteristics

Consensus clustering of the LMC dataset was performed, and following additional quality 

control measures (Supplementary table S3), six distinct, novel molecular classes were 

identified (Figure 3A). These classes were associated with clinico-pathological variables 
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known to have prognostic value, including tumor site (P=0.03), age at diagnosis (P=0.03), 

mitotic rate (P=0.002), ulceration (P=0.01), AJCC stage (P=6x10-10), tumor infiltrating 

lymphocytes (TILs) (P=6x10-4), and Breslow thickness (P=9x10-14) (Table 1). The LMC 

classes 1 and 5 tumors tended to be thin and non-ulcerated, whilst classes 2 and 4 tumors 

were thicker. Class 3 and 6 tumors were the thickest and most frequently ulcerated. The 

six classes showed strong association with BRAF (P=6x10-5) and NRAS mutation status 

(P=3x10-4): classes 1, 5, and 6 tumors were frequently BRAF mutated, while classes 2, 3, 

and 4 tumors were frequently NRAS mutated (Table 1).

LMC classes predicted prognosis in primary melanoma and in stage I subset

The LMC classes predicted MSS in the whole LMC dataset and notably, across AJCC stages 

I, II and III subsets (Figure 3B-3C, Supplementary figure S1). In the unadjusted analysis 

of the whole dataset (Figure 3B, Supplementary table S4), class 1 (baseline) had the best 

prognosis, class 2 (HR=1.7, 95% confidence interval (CI) 0.8-3.5) and class 5 (HR=1.5, 

95% CI 0.7-3.1) showed intermediate prognosis, while class 3 (HR=5.0, 95% CI 2.5-10.1), 

class 4 (HR=2.4, 95% CI 1.2-4.7), and class 6 (HR=3.1, 95% CI 1.6-6.1) had the worst 

prognosis. In multivariable analysis, classes 3, 4, and 6 remained significant predictors of 

poor prognosis after including AJCC stage, sex, age at diagnosis, mitotic rate (Table S4) 

and when the AJCC stage was replaced by ulceration and Breslow thickness in the model 

(Table S6). In the LMC stage I subset, class 6 (HR=6.6, 95% CI 1.4-31.2) significantly 

predicted poor prognosis in unadjusted analysis (Figure 3C and Table S5) and it remained 

significant when sex, age at diagnosis, mitotic rate, ulceration and Breslow thickness were 

adjusted (HR=9.8, 95% CI 1.1-86.2, Table S6). Since Gerami signature was not available to 

us in full, we ran unsupervised clustering of the LMC dataset using the 27 Gerami genes to 

generate the 2 tumor groups analysed by Gerami et al. (6), referred to as the Gerami clusters. 

This analysis showed that the LMC classes and Gerami clusters had independent prognostic 

effects in the whole LMC dataset (Supplementary table S7); however, the Gerami clusters 

showed no prognostic value in stage I tumors while LMC class 6 remained a significant 

predictor in the multivariable model (Supplementary table S8).

To validate the prognostic value of the LMC classes in an independent dataset, a 150-gene 

based signature (LMC signature), generated after refining ~13,000 genes (Supplementary 

figure S2), was applied to the Lund dataset (4). In keeping with the observations made in 

the LMC dataset, class 3, class 4, and class 6 predicted worse prognosis in the Lund dataset, 

while class 1, class 2, and class 5 predicted better prognosis (Figure 3D, Supplementary 

table S9). Since the Lund dataset had only a few stage I cases (n=58) the prognostic value of 

LMC signature could not be replicated in stage I disease.

LMC signature had independent prognostic value when compared with SNB

In the dataset derived from individuals who had a SNB, the prognostic value of combined 

LMC class signature and pre-SNB AJCC stage was similar to that of AJCC stage with 

SNB (i.e. stage post-SNB) (AUC 0.82 vs 0.80, P= 0.7, Figure 3E). Combining the LMC 

signature with AJCC stage post-SNB, patient’s sex, age at diagnosis and site of tumor 

increased the AUC to 0.88. Similarly, in the subset of patients at stage I pre-SNB, the LMC 

signature alone had comparable prognostic value to AJCC stage post-SNB (AUC=0.88 vs 
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0.83, P= 0.7, Figure 3F). In this stage I subset, addition of stage post-SNB, patient’s sex, 

age at diagnosis and site of tumor to the LMC signature further increased the AUC to 0.98. 

However, the limited sample size of stage I dataset and including so many variables clearly 

overfitted the model, giving near perfect classification and illustrating that independent 

datasets are needed to better assess performance.

Biological overlap between the LMC and existing signatures

The six classes of LMC signature showed distinct gene expression profiles (Figure 4A) and 

showed partial overlap with the existing Lund and TCGA signatures. LMC classes 1, 3, 

and 5 overlapped substantially with the high-immune, pigmentation, and normal-like classes 

of the Lund 4-classes (Figure 4B), and with the immune, MITF low, and keratin classes 

of the TCGA 3-classes (Figure 4C). In contrast, LMC classes 2, 4, and 6 represented a 

mixture of the Lund 4-classes and TCGA 3-classes. Gene expression pathway enrichment 

analysis revealed distinctive biological features of the 6 LMC classes: notably class 2 

was characterised by increased WNT signalling genes and metabolic pathways; class 4 by 

decreased expression of immune genes and class 6 by increased expression of cell cycle and 

consistent down-regulation of cell metabolism pathway genes (Supplementary table S14).

When applied to the LMC 6 classes, the Lund modules (29) revealed discrimination 

consistent with enriched gene pathways: LMC class 1 tumors showed higher immune 
module activity, and class 3 tumors showed higher cell cycle module activity (Figure 4D). 

Interestingly, class 6 tumors had relatively higher cell cycle but also immune module 

activity and, as expected, the immune, stroma and interferon modules were positively 

correlated but they negatively correlated with cell cycle and MITF modules (Figure 4D). 

The tumor infiltrating immune cell populations imputed for each of the LMC classes (30) 

were consistent with the Lund immune module, as class 1 had the highest immune cell 

populations and class 3 the lowest, whilst class 6 appeared to maintain an intermediate level 

of immune cell populations, having the second highest scores on average (Supplementary 

figure S3).

A comparison with the Consensus Immunome Clusters (CICs), previously generated in the 

same LMC dataset based on 380 immune genes (13), showed that the 2 most prognostically 

contrasted LMC classes (class 1 and class 3) had a near perfect match with CIC 2 (high 

Immune) and CIC 3 (low immune/β-catenin high) respectively (Supplementary figure S4) 

while the rest of LMC classes were a mixture of CICs. Cluster 1 had correspondingly 

a higher proportion of tumors with histological evidence of brisk tumor infiltrating 

lymphocytes (36% compared with 8% in class 3). Analysing the correlation between the 

Gerami genes and LMC signature genes showed that the Gerami genes positively correlated 

with the genes upregulated in LMC class 5 tumors and negatively correlated with genes 

upregulated in LMC class 3 tumors (Supplementary figure S5). Consistent with this, Gerami 

clusters 1 and 2 highly overlapped with LMC classes 3 and 5 respectively (Supplementary 

figure S6).
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JUN as marker of poor prognosis in class 6 tumors

LMC class 6 predicted worse prognosis within AJCC stage I tumors. Further biological 

network analysis identified JUN as a key upregulated nodal gene in this class (Figure 

5A-B). The NGS-based CNA data from a subset of LMC tumors (n=272) indicated that 

class 6 tumors were more likely to have DNA amplifications of JUN than other classes 

(P=0.003, Figure 5C, Supplementary figure S7). In melanoma, JUN has been reported to 

activate epithelial-to-mesenchymal transition (EMT), and accordingly a 6-gene based (31) 

and 200-gene based EMT signature (32) consistently scored higher in LMC class 6 than 

in all other LMC classes (Figure 5D, Supplementary figure S7). A secondary key nodal 

gene NFKB1 identified to be upregulated in class 6 had no copy number changes. Further 

examination of immunohistochemically stained sections, showed that all 4 tumors stained 

from class 6 were positive for NFKB1 protein expression, and this was similar to other LMC 

classes (P=0.4, Supplementary figure S7).

LMC signature as a potential predictor of response to immunotherapy

The value of the LMC signature in predicting outcome in patients treated with 

immunotherapy was assessed in three disparate clinical trial cohorts of metastatic melanoma 

(Figure 5F) (10–12). In the Hugo et al. cohort, tumors classified as class 6 were mainly 

non-responders to PD-1 blockade in comparison to the other LMC classes (P=0.03). 

Hugo et al. reported that expression of AXL predicts poor response to PD-1 blockade; 

the gene expression data revealed significantly higher AXL expression in class 6 tumors 

when compared to other classes within their cohort (Figure 5G). Similarly, for the cohort 

reported by Ulloa-Montoya et al., class 6 tumors showed a significantly higher proportion 

of non-responders to MAGE-A3 immunotherapy in comparison to other classes. The cohort 

reported by Riaz et al. was predominantly composed of non-responders to anti-CTLA-4 

further treated with PD-1 blockade but LMC classes were not convincingly predictive 

but class 3 predicted poor prognosis, which was consistent with the LMC dataset when 

compared to good prognosis class 1 (Figure 5H).

Discussion

In this study, transcriptome classification was performed utilising a large population-

ascertained cohort of primary melanomas, revealing classes having prognostic value in stage 

I disease. In stage I tumors, the LMC signature predicted outcome comparably to AJCC 

staging including SNB. Furthermore, evidence suggests that the signature predicted outcome 

in patients treated with immunotherapies.

Given the rising incidence of early stage tumors and the cost of adjuvant therapies to 

health services and to patients in terms of toxicity, there is an urgent need to identify better 

prognostic and predictive biomarkers for early stage disease. When previous gene signatures 

were applied to the LMC (3, 8), the signatures robustly predicted outcome when the dataset 

was analysed as a whole, but failed to do so in stage I tumors alone. Although the full 

Gerami signature was not available, analysing the prognostic value of genes reported in that 

study (6) showed that the genes were predictive of prognosis in the whole LMC dataset 

but not in stage I tumors. In this work, a six-class signature (Supplementary data file) was 
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identified which was not only prognostic in the whole LMC dataset but also in patients 

diagnosed at AJCC stage I. The prognostic value of the LMC signature was validated in an 

independent cohort of primary melanoma built in Lund (4) although the number of stage I 

cases in this cohort was insufficient to allow replication of the signature’s prognostic value 

in stage I disease.

The LMC signature showed limited overlap with the Lund and TCGA signatures. When 

comparing it with previously identified immunome clusters by our group (13), two LMC 

classes strongly overlapped with immune subgroups. The non-overlapping classes could not 

be clearly discriminated using the immunome clusters suggesting that these LMC classes are 

driven by different genomic mechanisms. Comparison of LMC signature genes with Gerami 

genes indicated a biological pathway overlap as Gerami genes were found to be strongly 

correlated with LMC classes 3 and 5.

Although SNB is an important melanoma staging tool, the surgery is associated with 

morbidity (33, 34). In the LMC, SNB was observed to be of prognostic value in the 

whole dataset and in stage I tumors. However, the LMC signature performed just as well. 

Given the morbidity of SNB, it may be argued that the LMC signature should be tested 

in an independent study as a possible alternative to this procedure especially in stage I 

disease where the likelihood of a positive result is overall low and must be weighed against 

morbidity.

In melanoma, increased immune gene expression has been consistently shown to predict 

good prognosis (5, 9, 13, 35). However, a subset of tumors (LMC class 6) was observed 

which, despite showing immune gene expression, resulted in the patient’s early death. 

Further biological characterisation of this class identified copy number amplifications and 

increased expression of JUN. Ramsdale et al. have shown that JUN promotes an invasive 

cell phenotype through activation of the EMT pathway (36), and a higher scoring EMT 

signature in LMC class 6 confirmed increased activity of the EMT pathway in this class. 

Riesenberg et al. have reported that increased JUN expression leads to pro-inflammatory 

and stress signals that promote cytokine expression in coordination with NF-κB (37). Again, 

these findings are consistent with the presented transcriptomic observations of JUN and 

NFKB1 in defining LMC class 6 (Figure 5B, 5E). There was insufficient tissue to carry out 

immunohistochemistry for JUN, therefore JUN protein expression in the TCGA dataset was 

examined and confirmed a positive correlation between JUN gene transcription and protein 

expression (Supplementary figure S7). Collectively, these data are indicative of copy number 

gains resulting in both increased gene expression and transcriptional activity of JUN in LMC 

class 6 tumors, although further proteomic studies would be required to confirm this.

The LMC signature was associated with response to immunotherapies; specifically, class 6 

associated with poor outcome in two of the three tested datasets. None of these data sets are 

sufficiently large to make clear inferences. It is of note that the expression of AXL, a known 

marker for immune evasion, was significantly upregulated in LMC class 6 in metastatic 

melanoma samples in the Hugo data set.
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The inherent strength of this study is the relatively large size of the population ascertained 

cohort. A corresponding limitation is the lack of a well powered AJCC stage I dataset to 

allow independent replication of the signature in stage I melanoma. Another limitation of 

this study is that only one-third of LMC patients had a SNB, limiting the power to compare 

staging tests. The LMC recruitment period preceded the advent of both immunotherapy and 

targeted therapy, and only a very small number of the study participants have been treated 

with these drugs. Excluding the samples from these participants showed no modifying effect 

of such treatments on MSS in the LMC dataset (data not shown).

In conclusion, this study presents a novel signature with demonstrated prognostic value 

similar in magnitude to that of AJCC staging of melanoma, but having added value in stage 

I melanoma. The data further confirm that AJCC stage largely captures biological variation 

associated with survival. The LMC class signature prognostic value was similar to that of 

SNB in the whole dataset (where their effects were additive) and in stage I disease. The 

signature predicted poor outcome in patients receiving immunotherapies and in particular 

identified high-JUN/high-AXL as a tumor phenotype with poor prognosis in early and 

advanced stage melanoma albeit in very small datasets. This signature has the potential to be 

trialled as a biomarker in clinical monitoring programs and may help in early identification 

of patients who may or may not benefit from adjuvant therapies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank all the participants of the LMC study and the research nurses who conducted the recruitment.

This work was funded by Cancer Research UK C588/A19167, C8216/A6129, and C588/A10721 and NIH 
CA83115. RT, JMSD and JP are supported by Horizon 2020 Research and Innovation Programme no. 641458 
(MELGEN). Copy number data were generated using AICR grant 12-0023.

References

1. Lo SN, Scolyer RA, Thompson JF. Long-term survival of patients with thin (T1) cutaneous 
melanomas: a Breslow thickness cut point of 0.8 mm separates higher-risk and lower-risk tumors. 
Annals of surgical oncology. 2018; 25 (4) 894–902. [PubMed: 29330716] 

2. Cancer research UK 21st September 2018. https://www.cancerresearchuk.org/health-professional/
cancer-statistics/statistics-by-cancer-type/melanoma-skin-cancer/diagnosis-and-treatment#ref-1 

3. Jonsson G, et al. Gene expression profiling-based identification of molecular subtypes in stage IV 
melanomas with different clinical outcome. Clin Cancer Res. 2010; 16 (13) 3356–3367. [PubMed: 
20460471] 

4. Harbst K, et al. Molecular profiling reveals low- and high-grade forms of primary melanoma. 
Clin Cancer Res. 2012; 18 (15) 4026–4036. DOI: 10.1158/1078-0432.CCR-12-0343 [PubMed: 
22675174] 

5. Nsengimana J, et al. Independent replication of a melanoma subtype gene signature and evaluation 
of its prognostic value and biological correlates in a population cohort. Oncotarget. 2015; 6 (13) 
11683–11693. DOI: 10.18632/oncotarget.3549 [PubMed: 25871393] 

6. Gerami P, et al. Development of a prognostic genetic signature to predict the metastatic risk 
associated with cutaneous melanoma. Clin Cancer Res. 2015; 21 (1) 175–183. [PubMed: 25564571] 

Thakur et al. Page 10

Clin Cancer Res. Author manuscript; available in PMC 2024 December 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/melanoma-skin-cancer/diagnosis-and-treatment#ref-1
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/melanoma-skin-cancer/diagnosis-and-treatment#ref-1


7. Ferris LK, et al. Identification of high-risk cutaneous melanoma tumors is improved when 
combining the online American Joint Committee on Cancer Individualized Melanoma Patient 
Outcome Prediction Tool with a 31-gene expression profile–based classification. Journal of the 
American Academy of Dermatology. 2017; 76 (5) 818–825. e813 [PubMed: 28110997] 

8. The Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cell. 2015; 
161 (7) 1681–1696. DOI: 10.1016/j.cell.2015.05.044 [PubMed: 26091043] 

9. Lauss M, Nsengimana J, Staaf J, Newton-Bishop J, Jonsson G. Consensus of Melanoma Gene 
Expression Subtypes Converges on Biological Entities. J Invest Dermatol. 2016; 136 (12) 2502–
2505. [PubMed: 27345472] 

10. Hugo W, et al. Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in 
Metastatic Melanoma. Cell. 2016; 165 (1) 35–44. DOI: 10.1016/j.cell.2016.02.065 [PubMed: 
26997480] 

11. Ulloa-Montoya F, et al. Predictive gene signature in MAGE-A3 antigen-specific cancer 
immunotherapy. J Clin Oncol. 2013; 31 (19) 2388–2395. [PubMed: 23715562] 

12. Riaz N, et al. Tumor and Microenvironment Evolution during Immunotherapy with Nivolumab. 
Cell. 2017; 171 (4) 934–949. e916 doi: 10.1016/j.cell.2017.09.028 [PubMed: 29033130] 

13. Nsengimana J, et al. beta-Catenin-mediated immune evasion pathway frequently operates in 
primary cutaneous melanomas. J Clin Invest. 2018; 128 (5) 2048–2063. DOI: 10.1172/JCI95351 
[PubMed: 29664013] 

14. Clark WH Jr, et al. Model predicting survival in stage I melanoma based on tumor progression. 
JNCI: Journal of the National Cancer Institute. 1989; 81 (24) 1893–1904. [PubMed: 2593166] 

15. Gershenwald JE, Scolyer RA. Melanoma Staging: American Joint Committee on Cancer (AJCC) 
8th Edition and Beyond. Annals of Surgical Oncology. 2018; 25 (8) 2105–2110. [PubMed: 
29850954] 

16. Du P, Kibbe WA, Lin SM. lumi: a pipeline for processing Illumina microarray. Bioinformatics. 
2008; 24 (13) 1547–1548. [PubMed: 18467348] 

17. Lauss M, Visne I, Kriegner A, Ringner M, Jonsson G, Hoglund M. Monitoring of technical 
variation in quantitative high-throughput datasets. Cancer Inform. 2013; 12: 193–201. DOI: 
10.4137/CIN.S12862 [PubMed: 24092958] 

18. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with confidence 
assessments and item tracking. Bioinformatics. 2010; 26 (12) 1572–1573. DOI: 10.1093/
bioinformatics/btq170 [PubMed: 20427518] 

19. Monti S, Tamayo P, Mesirov J, Golub T. Consensus clustering: a resampling-based method for 
class discovery and visualization of gene expression microarray data. Machine learning. 2003; 52 
(1–2) 91–118. 

20. Therneau TM, Verze Lumley T. 2017. 

21. Robin X, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. 
BMC Bioinformatics. 2011; 12 (1) 77. doi: 10.1186/1471-2105-12-77 [PubMed: 21414208] 

22. Sachs M. plotROC: Generate Useful ROC Curve Charts for Print and Interactive Use, 2016. R 
package version. 2 (1) 220. 

23. Wickham, H. ggplot2: elegant graphics for data analysis. Springer; 2016. 

24. Tibshirani R, Chu G, Narasimhan B, Li J. 2011. 

25. Wu G, Dawson E, Duong A, Haw R, Stein L. ReactomeFIViz: a Cytoscape app for pathway 
and network-based data analysis. F1000Res. 2014; 3: 146. doi: 10.12688/f1000research.4431.2 
[PubMed: 25309732] 

26. Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and 
manipulating networks. Icwsm. 2009; 8: 361–362. 

27. Durinck S, et al. BioMart and Bioconductor: a powerful link between biological databases and 
microarray data analysis. Bioinformatics. 2005; 21 (16) 3439–3440. [PubMed: 16082012] 

28. Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic 
datasets with the R/Bioconductor package biomaRt. Nat Protoc. 2009; 4 (8) 1184–1191. DOI: 
10.1038/nprot.2009.97 [PubMed: 19617889] 

Thakur et al. Page 11

Clin Cancer Res. Author manuscript; available in PMC 2024 December 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



29. Cirenajwis H, et al. Molecular stratification of metastatic melanoma using gene expression 
profiling: Prediction of survival outcome and benefit from molecular targeted therapy. Oncotarget. 
2015; 6 (14) 12297. doi: 10.18632/oncotarget.3655 [PubMed: 25909218] 

30. Angelova M, et al. Characterization of the immunophenotypes and antigenomes of colorectal 
cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy. Genome 
Biol. 2015; 16 (1) 64. doi: 10.1186/s13059-015-0620-6 [PubMed: 25853550] 

31. Huang RY, et al. Functional relevance of a six mesenchymal gene signature in epithelial-
mesenchymal transition (EMT) reversal by the triple angiokinase inhibitor, nintedanib 
(BIBF1120). Oncotarget. 2015; 6 (26) 22098–22113. DOI: 10.18632/oncotarget.4300 [PubMed: 
26061747] 

32. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular 
Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015; 1 (6) 417–425. DOI: 
10.1016/j.cels.2015.12.004 [PubMed: 26771021] 

33. Balch CM, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 
2009; 27 (36) 6199–6206. DOI: 10.1200/JCO.2009.23.4799 [PubMed: 19917835] 

34. Morton DL, et al. Sentinel node biopsy for early-stage melanoma: accuracy and morbidity 
in MSLT-I, an international multicenter trial. Ann Surg. 2005; 242 (3) 302–311. doi: 
10.1097/01.sla.0000181092.50141.fa [PubMed: 16135917] 

35. Lauss M, et al. Mutational and putative neoantigen load predict clinical benefit of adoptive T 
cell therapy in melanoma. Nat Commun. 2017; 8 (1) 1738. doi: 10.1038/s41467-017-01460-0 
[PubMed: 29170503] 

36. Ramsdale R, et al. The transcription cofactor c-JUN mediates phenotype switching and BRAF 
inhibitor resistance in melanoma. Sci Signal. 2015; 8 (390) ra82 [PubMed: 26286024] 

37. Riesenberg S, et al. MITF and c-Jun antagonism interconnects melanoma dedifferentiation with 
pro-inflammatory cytokine responsiveness and myeloid cell recruitment. Nature communications. 
2015; 6: 8755. doi: 10.1038/ncomms9755 [PubMed: 26530832] 

Thakur et al. Page 12

Clin Cancer Res. Author manuscript; available in PMC 2024 December 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Translational relevance

The introduction of adjuvant but toxic therapies for primary melanoma has highlighted 

the need to stratify patients based on improved prognostic and predictive biomarkers. 

We report a six-class transcriptomic signature generated from primary melanomas which 

predicted prognosis, notably in stage I disease. The signature demonstrated comparable 

prognostic value to that of sentinel node biopsy. When the six classes were applied to 

published transcriptomic datasets from patients treated with immunotherapy, one class 

consistently predicted poor outcome. This class was characterised by expression of JUN 
and AXL, both known determinants of poor therapeutic response in advanced melanoma. 

These findings suggest that the six-class signature should be applied to larger datasets 

as they become available, in order to further validate its clinical relevance as a prognostic/

predictive biomarker in the adjuvant setting.
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Figure 1. Analysis workflow of the study
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Figure 2. 
Replicating Lund and TCGA signatures using LMC dataset. Kaplan-Meier plots showing 

the Melanoma-specific survival (MSS) for (A) Lund 4-classes (HI- high-immune, NL- 

normal-like, Pigm.- pigmentation, Prolif.- proliferative), (B) Lund 2-grades (low grade 
and high grade) and (C) TCGA 3-classes (immune, keratin, MITF low) across the whole 

LMC dataset. In LMC stage I subset, Kaplan-Meier plots showing the MSS for (D) Lund 

4-classes, (E) Lund 2-grades, and (F) TCGA 3-classes. Pvalues are from log-rank test. 
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Samples which could not be classified into any of the classes were not used in survival 

analysis.

Thakur et al. Page 16

Clin Cancer Res. Author manuscript; available in PMC 2024 December 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 3. Defining LMC signature and its prognostic value.
(A) The area under the CDF and its relative change with increasing k. The delta area 

graph shows little variation at k=6. Heatmap of consensus matrices at k=5 and 6. The 

blue color indicates high consensus score and the white color indicates low consensus (B) 

Kaplan-Meier plot showing the MSS for the six classes in (B) the whole LMC dataset, (C) 

the LMC stage I, and (D) relapse-free survival in the Lund cohort (Pvalue from log-rank 

test, or Wald test for two-groups comparison). Seven mucosal tumors were excluded from 

analysis. (E) ROC curves comparing the prognostic value of the LMC signature to that 
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of Sentinel Node Biopsy (SNB) in the whole dataset. The AUCs for LMC class+ stage 

pre-SNB and stage post-SNB were not significantly different (DeLong’s test P=0.7). (F) The 

ROC curve comparing prognostic value of LMC signature with SNB in the stage I pre-SNB 

group. All but one patient were stage IB pre-SNB, therefore AUC for LMC signature alone 

was compared to stage post-SNB and the difference was not significant (DeLong’s test 

P=0.7). The difference in AUCs between stage post-SNB alone and LMC class +stage 

post-SNB was also not significant (DeLong’s test P=0.1).
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Figure 4. Biological characterization of the six LMC classes.
(A) The heatmap shows gene expression across the classes with tumor samples placed in 

columns and genes in rows. Blue depicts low expression and red depicts high expression. 

Each gene expression was standardized to mean 0 and standard deviation 1. The up- and 

down-regulated nodal genes identified in network analyses are shown under the heatmap. 

The barplot shows the overlap between the LMC classes and (B) Lund 4-classes (HI- 

high-immune, NL- normal-like, Pigm- pigmentation, Prolif- proliferative), and (C) TCGA 

3-classes. The samples that could not be classified into the Lund 4-classes and TCGA 
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3-classes were labelled here as Uncls. (D) The modules (defined by a list of differentially 

upregulated genes) associated with melanoma-specific biological pathways as identified 

by the Lund group (29). Boxplots of immune and cell cycle module scores (standardized 

expressions) within the 6 LMC classes and correlation matrix of immune, cell cycle, MITF, 
stroma and interferon module scores. The module score variation across the classes was 

tested using the Kruskal-Wallis test.
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Figure 5. Biological characterization of LMC class 6 and association with response to 
immunotherapy.
(A) Network of upregulated genes in the LMC class 6 with key genes (highest betweenness 

centrality) shown as large circles. Sub-networks are shown in different colors. (B) 

Expression of JUN across the six LMC classes (Pvalue from Kruskal-Wallis test). (C) 

JUN copy number alterations in LMC class 6 vs other classes. (D) The 6-gene based EMT 

score in tumors across the six LMC classes (Pvalue from Kruskal-Wallis test). (E) The gene 

expression of NFKB1 across the 6 LMC classes (Pvalue from Kruskal-Wallis test). (F) The 

LMC classes association with response to immunotherapy in three cohorts (Pvalue from 
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Fisher’s exact test). Patients in these cohorts were classified into the 6 LMC classes by 

the NCC method. (G) Expression of AXL across the six LMC classes in the Hugo Cohort 

dataset (Pvalue from Mann–Whitney U test). (H) Kaplan-Meier plot showing survival curves 

of LMC class 1, class 3, and class 6 in the Riaz Cohort. Other LMC classes had <5 samples 

and were excluded.
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