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Objectives: The fetal thymus gland has been shown to involute in response to intrauterine infection, and
therefore could be used as a non-invasive marker of fetal compartment infection. The objective of this
study was to evaluate how accurately 2D ultrasound-derived measurements of the fetal thymus reflect
the 3D volume of the gland derived from motion corrected MRI images.
Study design: A retrospective study was performed using paired ultrasound and MRI datasets from the
iFIND project (http://www.ifindproject.com). To obtain 3D volumetry of the thymus gland, T2-
weighted single shot turbo spin echo (ssTSE) sequences of the fetal thorax were acquired. Thymus vol-
umes were manually segmented from deformable slice-to-volume reconstructed images. To obtain 2D
ultrasound measurements, previously stored fetal cine loops were used and measurements obtained at
the 3-vessel-view (3VV) and 3-vessel-trachea view (3VT): anterior-posterior diameter (APD), intratho-
racic diameter (ITD), transverse diameter (TD), perimeter and 3-vessel-edge (3VE). Inter-observer and
intra-observer reliability (ICC) was calculated for both MRI and ultrasound measurements. Pearson cor-
relation coefficients (PCC) were used to compare 2D-parameters with acceptable ICC to TV.
Results: 38 participants were identified. Adequate visualisation was possible on 37 MRI scans and 31
ultrasound scans. Of the 30 datasets where both MRI and ultrasound data were available, MRI had good
interobserver reliability (ICC 0.964) and all ultrasound 3VV 2D-parameters and 3VT 3VE had acceptable
ICC (>0.75). Four 2D parameters were reflective of the 3D thymus volume: 3VV TD r = 0.540 (P = 0.002);
3VV perimeter r = 0.446 (P = 0.013); 3VV APD r = 0.435 (P = 0.110) and 3VT TD r = 0.544 (P = 0.002).
Conclusions: MRI appeared superior to ultrasound for visualization of the thymus gland and reproducibil-
ity of measurements. Three 2D US parameters, 3VV TD, perimeter and 3VT APD, correlated well with TV.
Therefore, these represent a more accurate reflection of the true size of the gland than other 2D measure-
ments, where MRI is not available.
� 2021 King’s College London. Published by Elsevier B.V. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
Introduction

The fetal thymus is a primary lymphoid organ involved in the
development and differentiation of T-cells as part of the fetal
immune system [1]. The fetal thymus has also been demonstrated
to involute in response to intrauterine infection in pregnancies
affected by preterm premature rupture of membranes (PPROM)
[2,3]. These findings suggest that the fetal thymus gland may be
an early, non-invasive indicator of fetal compartment infection in
high-risk pregnancies.

Currently, there is no direct, non-invasive method to identify
fetal compartment infection and clinical markers, including ele-
vated maternal temperature, maternal and fetal tachycardia and
uterine tenderness, are used in conjunction with raised maternal
inflammatory markers to make this diagnosis [2,4]. However, cases
of fetal compartment infection, such as those associated with
PPROM, have been shown to present without overt clinical signs
[5,6], suggesting that by the time of presentation, a fetal infection
may already be established. In addition, adverse infant outcomes
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Fig. 1. Obstetric ultrasound of fetal thorax showing the 3-vessel-view (3VV).
Pulmonary Artery (P), ascending aorta (A) and superior vena cava (V).
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including bronchopulmonary dysplasia [2,7,8], cerebral palsy [9],
intraventricular haemorrhage [10] and neonatal sepsis and pneu-
monia [2] have been associated with the presence of intrauterine
infection. The most significant adverse neonatal outcomes occur
in fetuses that deliver very prematurely (before 32 weeks gesta-
tion) [8,10].

Although antenatal ultrasound (US) has been successfully used
to identify the fetal thymus gland [11–13], US data is often limited
by adverse fetal positioning [12,13], increased maternal body habi-
tus [14] and oligohydramnios [15]. Furthermore, the two-
dimensional (2D) measurements used in these studies may not
account for the inherent variability of the three-dimensional (3D)
thymus gland.

3D imaging of the fetal thymus on antenatal US has also been
attempted and has been shown to provide improved visualisation
of its borders [16]. However, the technique is time-consuming
[17], limited by both acoustic shadowing and movement artefact
[18] and has poor inter-observer reliability [19]. MRI is less sensi-
tive to fetal lie and increased maternal habitus, and slice-to-
volume reconstruction methods can account for unpredictable
fetal motion [20] providing a more accurate representation of true
fetal thymic size [21]. Fetal thymus volume (TV) has been success-
fully measured on fetal magnetic resonance imaging (MRI) in both
normal and growth-restricted fetuses [22] and those at high risk of
preterm birth [21]. However, the cost of MRI in comparison to con-
ventional ultrasound may preclude its use in routine clinical
practice.

This study therefore aims to assess the suitability of two-
dimensional US-derived measures of thymus size as a proxy mar-
ker for overall size of the gland, measured from motion corrected
MRI datasets, in fetuses between 20+0 and 32+0 weeks gestation by:

1. Assessing the reproducibility of 2D US and 3D MRI measure-
ments of the fetal thymus

2. Comparing 2D US measurements with 3D MRI-derived TV

Materials and methods

Participants

Datasets had previously been acquired as part of the intelligent

fetal imaging and diagnosis (iFIND) project (http://www.ifindpro-

ject.com). Cases were selected in singleton pregnancies when: both
US and MRI scanning had been undertaken between 20+0 and 32+0

weeks gestation; MRI scanning had occurred on a 1.5 T MRI sys-
tem; no antenatal complications had occurred; and pregnancies
were delivered after 37+0 weeks gestation. All women had under-
gone US and MRI scanning within a 3-day period. Maternal demo-
graphics were recorded.

MRI scans

All women had given informed, written consent (Ethics refer-
ence 14/LO/1806). All fetal MRI were performed on a 1.5 T Philips
Ingenia MRI system (Philips Medical systems, Best, the Nether-
lands) with a 28-channel Torso-coil placed on the mother’s abdo-
men. The mother was scanned in the ‘‘left lateral tilt” position.
Imaging of the fetus was performed using T2-weighted single shot
turbo spin echo (ssTSE), obtained in three orthogonal planes. The
following scanning parameters were followed: TR = 25,991 ms,
TE = 80 ms, slice thickness = 2.5 mm, slice overlap = 1.25 mm and
flip angle 90�. Medical cover, by either an obstetrician or midwife,
frequent verbal interaction with mother and continuous monitor-
ing of oxygen saturation and heart rate was provided throughout
the scan. Scanning time was limited to one hour.
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The fetal thorax was reconstructed in order to correct motion-
artefacts. Slice-to-volume reconstruction tool (SVR) was per-
formed, using 6–8 MRI stacks acquired in different directions
through the fetal thorax [23,24]. Using the software ITK-SNAP ver-
sion 3.6.0 [25], the fetal thymus was manually segmented from the
SVR volumes, enabling the acquisition of thymus volume from the
fetal thorax. All segmentations were undertaken by one operator
(LS). Good inter observer variability had previously been confirmed
with a further operator (AE) [21].
Ultrasound scans

All fetal ultrasounds were performed on a Philips EPiQ ultra-
sound system (Best, Netherlands) with a high frequency (5–
9 mHz) curvilinear probe. A dedicated fetal cardiac preset was
used. The acquisition plane was achieved by an experienced fetal
cardiologist or senior obstetric sonographer [26]. Five second cine
loops were stored of all cardiac imaging when the plane of interest
was achieved.

Previously cited 2D measurements, were obtained from the
recorded cine loops using Medical Imaging Interaction Toolkit
(MITK) Workbench software (version 2018.04.2) [27] at two
anatomical levels: the 3-vessel-view (3VV) shown in Fig. 1, and
the 3-vessel-trachea view (3VT) shown in Fig. 2 [26].

At the 3VV, as in Chaoui et al [28], the thymic-thoracic ratio
(TTR) was calculated by dividing the anterior-posterior diameter
(APD) of the thymus by the intrathoracic diameter (ITD). The max-
imum transverse diameter (TD) was then measured perpendicu-
larly to the ITD at the widest point of the thymus gland, as in
Cho et al [13]. Perimeter was measured through manual tracing
of the thymic borders, as described in Zalel et al [12]. This is shown
in Fig. 3. At the 3VT, APD, ITD and TD were measured, as well as 3-
vessel-edge (3VE), which was measured by drawing a straight line
through the anterior borders of the superior vena cava (SVC), prox-
imal aortic arch and pulmonary artery (PA), as shown by Diemert
et al [17]. This is shown in Fig. 4.

For all 2D measurements, inter observer reliability was deter-
mined between four operators, including a fetal medicine consul-
tant, senior radiographer and fetal cardiologist (SN, JM, DL and
RM) across 5 control scans. Intra-observer reliability was also con-
firmed (RM). Maternal demographics and neonatal parameters
were recorded. All datasets were then analysed by one operator
(RM).
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Fig. 2. Obstetric ultrasound of fetal thorax in the 3-vessel-trachea view (3VT).
Pulmonary artery (P), proximal aorta (P(Ao)), distal aorta (D(Ao)), superior vena
cava (V), trachea (T).

Fig. 3. Obstetric ultrasound of fetal thorax showing the 3-vessel-view (3VV).
Pulmonary Artery (P), ascending aorta (A) and superior vena cava (V), Anterior-
Posterior Diameter (APD), Intrathoracic Diameter (ITD), Transverse Diameter (TD)
and Perimeter.

Fig. 4. Obstetric ultrasound of fetal thorax showing the 3-vessel-trachea view
(3VT). Pulmonary artery (P), proximal aorta (P(Ao)), distal aorta (D(Ao)), superior
vena cava (V), trachea (T), Anterior-Posterior Diameter (APD), Intrathoracic
Diameter (ITD), Transverse Diameter (TD) and 3-vessel-edge (3VE).
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Statistical analysis

Intraclass correlation coefficients (ICC) were calculated to
obtain the intra- and inter-observer reliability for 2D US-derived
measurements of the thymus gland in each of the above views.
3

Intra- and inter-observer variability of MRI-derived TV had previ-
ously been ascertained [21]. Pearson correlation coefficients
(PCC) (r) were then used to compare US-derived measurements
with the 3D MRI-derived TV. Analyses were conducted using IBM
SPSS Statistics Version 26.0.
Results

Participants

During the period of the study, 38 cases were selected from
existing datasets (iFIND project). On fetal MRI, 3D reconstruction
of the fetal thorax was completed in all women. The fetal thymus
could not be visualised in one case. In US imaging, visualisation
of the thymus gland was not possible in seven cases (18%) due to
acoustic shadowing impeding visualisation of the thymus borders.
This left 30 cases with both US and MRI images suitable for com-
parison. All fetuses had normal liquor volume on scan.

Maternal and neonatal parameters were recorded. Mean mater-
nal age was 32.83 years (range (R) = 20–39 years) and meanmater-
nal BMI was 22.9 kg/m2 (R = 19–33 kg/m2).

Thymic measurements

Intra and inter-observer reliability was calculated using ICC are
presented in Table 1. Coefficients > 0.75 were accepted as an indi-
cator of good reliability [29]. Intra-observer reliability for MRI-
derived TV was confirmed previously between two expert opera-
tors (AE and LS), ICC = 0.964, P<=0.0001) [21].

Pearson correlation coefficients (PCC) (r and r2) were used to
compare 2D US measurements with TV and are presented in
Table 2. 3VV APD, TD, and perimeter, as well as 3VT TD correlated
with TV and were statistically significant (P<=0.05), whereas 3VV
ITD, TTR and 3VT ITD, TTR and 3VE were neither well correlated
nor statistically significant [30].
Discussion

Reproducibility of thymic measurements

MRI proved superior for visualisation of the thymus gland, with
adequate visualisation occurring in 97% of cases, compared to 80%
(30/38) on ultrasound. MRI-derived TV also provided the most
reproducible method of assessment of thymus size (0.964,
P < 0.01) [21].

Few studies have assessed the fetal thymus using MRI, however
a previous study from our research group evaluated the gland in 39
fetuses with the gland visualised in all cases [22]. Although some
studies have reported poor visualisation of the fetal thymus on
ultrasound [11,18], our finding that adequate visualisation
occurred in only 80% of cases on ultrasound images is lower than
previously reported studies where rates of up to 100% have been
described [12,19]. All previous studies were conducted by special-
ists specifically assessing the thymus gland. However, our datasets
were evaluated retrospectively from stored cine loops, with mea-
surements from two planes (3VV and 3VT-view), which have been
previously described as necessary for obtaining optimal thymus
images to ensure standardization of measurements
[12,13,17,26,28]. Our results may therefore be more reflective of
practitioners assessing the thymus in clinical practice.

In the present study, 2D measurements with acceptable inter-
observer reliability (ICC > 0.75, P<=0.05) were 3VV APD (0.913),
ITD (0.931), TD (0.872) and perimeter (0.788), as well as 3VT 3VE
(0.913), with only 3VV APD and 3VT 3VE with excellent inter-
observer reliability (>0.9) [29]. Multiple previous studies have



Table 1
Intraclass Correlation Coefficients for Intra and Inter-reliability for thymic parameters measured on ultrasound scan. 3VV (3 vessel-view), 3VT (3 vessel-trachea view), APD
(anterior-posterior diameter), ITD (intrathoracic diameter), TTR (thymic: thoracic ratio), TD (transverse diameter), 3VE (3-vessel-edge). Acceptable ICC values (>0.75 [29]) that are
clinically significant (P< = 0.05) are in bold.

Thymus Measurement Intra-observer reliability (n = 5) Inter-observer reliability (n = 5)

ICC (95% CI) P value ICC (95% CI) P value

3VV APD 0.984 (0.851-0.998) 0.001 0.913 (0.35-0.99) 0.012
ITD 0.981 (0.860-0.998) 0.001 0.931 (0.37-0.99) 0.015
TTR 0.903(0.232-0.990) 0.024 0.771(�0.256-0.968) 0.052
TD 0.954 (0.516-0.995) 0.008 0.872 (0.700-0.986) 0.035
Perimeter 0.962 (0.648-0.996) 0.002 0.788 (0.264-0.976) 0.041

3VT APD 0.894(0.256-0.989) 0.022 0.731(�0.358-0.782) 0.052
ITD 0.989 (0.917-0.999) <0.001 0.210(�0.072-0.782) 0.077
TTR 0.996(0.966-1.000) <0.001 0.705(0.099-0.963) 0.015
TD 0.852(�0.200-0.984) 0.049 0.790(�0.590-0.828) 0.375
3VE 0.988 (0.881-0.999) 0.001 0.901 (�0.191-0.990) 0.032

Table 2
Table showing Pearson Correlation Coefficients (r and r2) of 2D ultrasound measurements compared to Thymus Volume (TV). 3VV (3 vessel-view), 3VT (3 vessel-trachea view),
APD (anterior-posterior diameter), ITD (intrathoracic diameter), TTR (thymic: thoracic ratio), TD (transverse diameter), 3VE (3-vessel-edge). Clinically significant P values are in
bold.

Measurement
Thymus Volume (n = 30)

r r2 P value

3VV APD 0.435 0.189 0.016
ITD 0.342 0.117 0.064
TTR 0.083 0.007 0.664
TD 0.540 0.292 0.002
Perimeter 0.446 0.199 0.013

3VT APD 0.409 0.167 0.025
ITD 0.325 0.105 0.080
TTR 0.123 0.015 0.518
TD 0.544 0.296 0.002
3VE 0.298 0.089 0.110

Fig. 5. Slice-to-volume reconstructed MRI images of the fetal thorax from two fetuses showing the segmented fetal thymus gland in the axial plane. Scan A conducted at 24
+ 6 weeks gestation, Scan B conducted at 24 + 2 weeks gestation.
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reported good agreement for all 2D parameters [12,13,17,28],
although Diemert et al found poor inter-observer reliability for
thymic perimeter [17]. There are difficulties in obtaining standard-
ised planar views on ultrasound imaging; 2D measurements are
angle-dependent, meaning that only a few degrees of error can
have significant effects on the overall measurement. Furthermore,
ultrasound data was stored as cine loops and not observed in real
time, meaning that investigators had a limited number of views to
measure from. Therefore, these differences may be exacerbated in
4

clinical practice without a preset number of frames to view. How-
ever, it is likely that US may perform better with prospective mea-
surements as individual adjustments can be made to allow for
better visualisation.

Furthermore, although acceptable ICC for MRI-derived TV has
been identified in growth restricted fetuses previously [22], the
high ICC obtained in the present study (0.964, P<=0.0001) is likely
due to improvements in slice-to-volume reconstruction techniques
[20].



Fig. 6. Slice-to-volume reconstructed MRI images of the fetal thorax from two fetuses showing the segmented fetal thymus gland in the coronal plane. Scan A conducted at
24 + 6 weeks gestation. Scan B conducted at 24 + 2 weeks gestation.

Fig. 7. Slice-to-volume reconstructed MRI images of the fetal thorax from two fetuses showing the segmented fetal thymus gland in the sagittal plane. Scan A conducted at
24 + 6 weeks gestation. Scan B conducted at 24 + 2 weeks gestation.
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Comparison of 2D-ultrasound and 3D-MR thymus measurements

Results from the study found only four 2D parameters corre-
lated with MR-derived thymus volume [30]: 3VV TD, APD and
perimeter, and 3VT TD. The variation in correlation between differ-
ent 2D measurements and TV may be attributable to significant
variability in thymus shape even within healthy fetuses [31],
where some thymuses have a more globular appearance and
others more diffuse. This is demonstrated in Figs. 5, 6 and 7. Fur-
thermore, r2 values for the 2D-parameters that best correlate with
5

MRI-derived TV remain low. This indicates that approximately only
20 to 30% of the variance in MRI TV can be explained, highlighting
that the variable thymus shape is poorly captured by linear
measurements.

These findings are supported by Li et al who previously com-
pared the size and volume of the thymus by 2D (maximum trans-
verse diameter (TD), maximum transverse area (A) and anterior-
posterior diameter (APD) and superior-inferior diameter (SID))
and 3D ultrasound in 321 fetuses [16]. Results found that the cor-
relation between thymus volume and gestation age was stronger
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than between each of the 2D measurements individually (r(TV)
= 0.99 and r(TA) = 0.92, r(TD) = 0.88, r(APD) = 0.85 and r(SID)
= 0.82)), suggesting that TV is more accurate than 2D measure-
ments in determining thymic size.

Furthermore, Tonni et al compared ultrasound-derived trans-
verse diameter and TV, identifying the thymus gland with the
use of Doppler ultrasound to identify perithymic vessels in order
to improve visualisation of the gland [19]. Across 100 women, a
good correlation between transverse diameter and TV was
reported (r = 0.58p < 0.001). However, the inter-observer reliability
for TV was low (ICC = 0.57), suggesting some difficulty obtaining
accurate US-derived 3D measurements.

With US being a quick, non-resource intensive imaging tech-
nique, questions of accessibility to fetal MRI and difficulties in
post-imaging processing have been raised; however a recent study
demonstrating the advances in MRI post-acquisition techniques
ensures processing can be completed with relative ease in a less
time-consuming manner [32].

Limitations

Limitations of the present study include a small sample size
(n = 30) which was retrospective in nature. Additionally, all
patients had normal liquor volume and a normal maternal BMI
(R = 19–33 kg/m2). As both oligohydramnios [15] and raised
maternal BMI [14] reduce visualisation of fetal structures on ultra-
sound, quantification of the fetal thymus may be even more chal-
lenging in these scenarios. Finally, confidence intervals for intra
and inter-reliability were wide, which may relate to the small sam-
ple number (n = 5), that these values were determined from.

In the future, further 2D US measurements of the fetal thymus
should be evaluated in women at high-risk of preterm birth so as to
assess whether accurate visualisation of the gland occurs in the
presence of oligohydramnios and whether MRI-derived TV may
prove superior in such cases. In addition, exactly how the shape
changes in the presence of infection also needs to be evaluated.
This is of importance as this subgroup of patients who are at signif-
icant risk of fetal infection. Finally, larger studies investigating 2D
measurements are representative of true thymus size at different
gestational ages should be undertaken.

Conclusions

Results have demonstrated that thymus volume is a more
reproducible measure of thymic size compared to 2D parameters.
However, where US is used, the measures that best correlated to
thymus volume were 3VV TD, APD and perimeter, making these
the more suitable measures in clinical practice where fetal MR
scanning may not be feasible due to cost and scanner availability.
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