
Asynchronous Carbon Sink Saturation in African and 
Amazonian Tropical Forests

A full list of authors and affiliations appears at the end of the article.
# These authors contributed equally to this work.

Abstract

Structurally intact tropical forests sequestered ~50% of global terrestrial carbon uptake over the 

1990s and early 2000s, removing ~15% of anthropogenic CO2 emissions1–3. Climate-driven 

vegetation models typically predict that this tropical forest ‘carbon sink’ will continue for 

decades4,5. Here, we assess trends in the carbon sink using 244 structurally intact African tropical 

forests spanning 11 countries, we compare them with 321 published plots from Amazonia and 

investigate the underlying drivers of the trends. The carbon sink in live aboveground biomass 

in intact African tropical forests has been stable for the three decades to 2015, at 0.66 Mg C 

ha-1 yr-1 (95% CI:0.53-0.79), in contrast to the long-term decline in Amazonian forests6. Thus, 

the carbon sink responses of Earth’s two largest expanses of tropical forest have diverged. The 

difference is largely driven by carbon losses from tree mortality, with no detectable multi-decadal 

trend in Africa and a long-term increase in Amazonia. Both continents show increasing tree 

growth, consistent with the expected net effect of rising atmospheric CO2 and air temperature7–9. 

Despite the past stability of the African carbon sink, our data suggest a post-2010 increase in 

carbon losses, delayed compared to Amazonia, indicating asynchronous carbon sink saturation on 

the two continents. A statistical model including CO2, temperature, drought and forest dynamics 

accounts for the observed trends and indicates a long-term future decline in the African sink, 

while the Amazonian sink continues to rapidly weaken. Overall, the uptake of carbon into 
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Earth’s intact tropical forests peaked in the 1990s. Given that the global terrestrial carbon sink 

is increasing in size, observations indicating greater recent carbon uptake into the Northern 

hemisphere landmass10 reinforce our conclusion that the intact tropical forest carbon sink has 

already saturated. This tropical forest sink saturation and ongoing decline has consequences for 

policies to stabilise Earth’s climate.

Tropical forests account for approximately one-third of Earth’s terrestrial Gross Primary 

Productivity and one-half of Earth’s carbon stored in terrestrial vegetation11. Thus, 

small biome-wide changes in tree growth and mortality can have global impacts, either 

buffering or exacerbating the increase in atmospheric CO2. Models2,4,5,7,12, ground-based 

observations13–15, airborne atmospheric CO2 measurements3,16, inferences from remotely 

sensed data17, and synthetic approaches3,8,18 each suggest that, after accounting for land-

use change, remaining structurally intact tropical forests (i.e. not impacted by direct 

anthropogenic impacts such as logging) are increasing in carbon stocks. This structurally 

intact tropical forest carbon sink is estimated at ~1.2 Pg C yr-1 over 1990-2007 using scaled 

inventory plot measurements1. Yet, despite its policy relevance, changes in this key carbon 

sink remain highly uncertain19,20.

Globally the terrestrial carbon sink is increasing2,7,8,21. Between 1990 and 2017 the land 

surface sequestered ~30% of all anthropogenic carbon dioxide emissions1,21. Rising CO2 

concentrations are thought to have boosted photosynthesis more than rising air temperatures 

have enhanced respiration, resulting in an increasing global terrestrial carbon sink2,4,7,8,21. 

Yet, for Amazonia, recent results from repeated censuses of intact forest inventory plots 

show a progressive two-decade decline in sink strength primarily due to an increase of 

carbon losses from tree mortality6. It is unclear if this simply reflects region-specific 

drought impacts22,23, or potentially chronic pan-tropical impacts of either heat-related tree 

mortality24,25, or internal forest dynamics resulting from past increases in carbon gains 

leaving the system26. A more recent deceleration of the rate of increase in carbon gains from 

tree growth is also contributing to the declining Amazon sink6. Again, it is not known if 

this is a result of either pan-tropical CO2 fertilisation saturation, or rising air temperatures, 

or is merely a regional drought impact. To address these uncertainties, we (i) analyze 

an unprecedented long-term inventory dataset from Africa, (ii) pool the new African and 

existing Amazonian records to investigate the putative environmental drivers of changes in 

the tropical forest carbon sink, and (iii) project its likely future evolution.

We collected, compiled and analysed data from structurally intact old-growth forests from 

the African Tropical Rainforest Observation Network27 (217 plots) and other sources (27 

plots) spanning the period 1968 to 2015 (Extended Data Figure 1; Supplementary Table 1). 

In each plot (mean size, 1.1 ha), all trees ≥100 mm in stem diameter were identified, mapped 

and measured at least twice using standardised methods (135,625 trees monitored). Live 

biomass carbon stocks were estimated for each census date, with carbon gains and losses 

calculated for each interval (Extended Data Figure 2).
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Continental Carbon Sink Trends

We detect no long-term trend in the per unit area African tropical forest carbon sink over 

three decades to 2015 (Figure 1, Table 1). The aboveground live biomass sink averaged 

0.66 Mg C ha-1 yr-1 (95% CI: 0.53-0.79; n=244) and was significantly greater than zero for 

every year since 1990 (Figure 1). While very similar to past reports (0.63 Mg C ha-1 yr-1)13, 

this first estimate of the temporal trend in Africa contrasts with the declining Amazonian 

trend6 (Figure 1). A linear mixed effect model shows a significant difference in the slopes 

of the sink trends for the two continents over the common time window (pooled data from 

both continents, common time window, 1983-2011.5; p=0.017). Thus, the per unit area sink 

strength of the two largest expanses of tropical forest on Earth diverged in the 1990s and 

2000s.

The proximal cause of the divergent sink patterns is a significant increase in carbon losses 

(from tree mortality, i.e. the loss of carbon from the live biomass pool) in Amazonian 

forests, with no detectable trend over three decades in African forests (Figure 1). A linear 

mixed effects model using pooled data shows a significant difference in slopes of carbon 

losses between the two continents over the common 1983-2011.5 time window (p=0.027). 

Long-term trends in carbon gains (from tree growth and newly recruited trees) on both 

continents show significant increases (Figure 1), and we could detect no difference in 

slopes between the continents (p=0.348; carbon gains from tree growth alone also show 

no continental difference in long-term trends, p=0.322). However, an assessment of how 

underlying environmental drivers affect carbon gains and losses is needed to understand the 

ultimate causes of the divergent sink patterns.

Understanding the Carbon Sink Trends

We first investigate environmental drivers exhibiting long-term change that impact 

theory-driven models of photosynthesis and respiration: atmospheric CO2 concentration, 

surface air temperature, and water availability. A linear mixed effects model of carbon 

gains, with censuses nested within plots, and pooling the new African and published 

Amazonian data, shows a significant positive relationship with CO2, and significant negative 

relationships with mean annual temperature (MAT) and drought (measured as the Maximum 

Climatological Water Deficit, MCWD14; Figure 2; Extended Data Table 1). These results 

are consistent with a positive CO2 fertilisation effect, and negative effects of higher 

temperatures and drought on tree growth, consistent with temperature-dependent increases 

in autotrophic respiration, and temperature- and drought-dependent reductions in carbon 

assimilation. By contrast, the equivalent model for carbon losses (i.e. tree mortality) shows 

no significant relationships with CO2, MAT or MCWD (Figure 2; Extended Data Table 1).

We further investigate the responses of carbon gains and losses (for which the above 

analysis has no explanatory power) by expanding our potential explanatory variables to 

additionally include the change in environmental conditions (CO2-change, MAT-change, 

MCWD-change, see Extended Data Figure 3 for calculation details), and two attributes 

of forests that may influence their response to the same environmental change: plot 

mean wood density (which in old-growth forests correlates with below-ground resource 
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availability28,29), and the plot carbon residence time (which measures how long fixed carbon 

remains in the system, hence dictates when past increases in carbon gains leave the system 

as elevated carbon losses30).

The minimum adequate carbon gain model using our expanded explanatory variables (best 

ranked model using multimodel inference) has a positive relationship with CO2-change, and 

negative relationships with MAT, MAT-change, MCWD, and wood density (Table 2; model-

average results are similar, see Methods and Supplementary Tables 2-4). The retention of 

both MAT and MAT-change suggests that higher temperatures correspond to lower tree 

growth, and that trees only partially acclimate to recently rising temperatures, which further 

reduces growth, consistent with warming experiments31 and observations9. The inclusion 

of higher wood density, and it being related to lower carbon gains (Extended Data Figure 

4), alongside no temporal trends in wood density (Extended Data Figure 5), suggests that 

old-growth forests with denser-wooded tree communities typically have fewer available 

below-ground resources, or such patterns may also emerge from disturbance regimes lacking 

large-scale exogenous events, consistent with prior studies26,28,32.

The minimum adequate carbon gain model using our expanded explanatory variables also 

highlights continental differences. Between 2000 and 2015 African forest carbon gains 

increased by 3.1% compared with a 0.1% decline in Amazonia over the same interval (Table 

2). In Africa, from 2000 to 2015, the increase was composed of a 3.7% increase from 

CO2-change, partially offset by increasing droughts depleting gains by 0.5%, and only a 

slight decline in gains of 0.1% resulting from temperature increases (Table 2), because the 

rate of temperature change (MAT-change) decelerated over this time window (Extended 

Data Figure 5). For Amazonia, the same 3.7% increase due to CO2-change was seen, while 

increasing droughts—and these forests’ greater sensitivity to drought—reduced gains by 

2.7% (five times the impact in Africa), and temperature increases at the same rate as in 

the past (i.e. MAT-change is zero) further reduced gains by 1.1% (ten times the impact in 

Africa), leaving a net change in gains slightly below zero (Table 2). Thus, the recent stalling 

of carbon gain increases in Amazonia6 is a response to drought and temperature and not 

due to an unexpected saturation of CO2 fertilisation. Overall, the larger modelled increase 

in gains in Africa relative to Amazonia appear to be driven by slower warming, fewer or 

less extreme droughts, lower forest sensitivity to droughts, and overall lower temperatures 

(African forests are on average ~1.1°C cooler than Amazonian forests, as they typically 

grow at ~200 m higher elevation). Other continental differences may also be influencing the 

results, including higher nitrogen deposition in African tropical forests due to the seasonal 

burning of nearby savannas33 and biogeographic history resulting in differing contemporary 

species pools and resulting functional attributes34,35.

The minimum adequate carbon loss model using our expanded explanatory variables shows 

higher losses with CO2-change and MAT-change, and lower losses with MCWD and the 

carbon residence time (CRT; Table 2). Thus, changes in carbon losses appear to be largely 

a function of carbon gains. First, the greater losses in forests with shorter CRT conform 

to a ‘high-gain high-loss’ forest dynamics pattern26. Second, wetter plots have a longer 

growing season and so have higher gains and correspondingly higher losses, explaining 

the negative relationship with MCWD. Third, as increasing CO2 levels result in additional 
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carbon gains, after some time these additional past gains leave the system resulting in greater 

carbon losses, explaining the positive relationship with CO2-change. Finally, in addition 

to these relationships with carbon gains, the inclusion of MAT-change (p<0.001) indicates 

heat- or vapour pressure deficit-induced tree mortality24. Overall, our results imply that 

chronic long-term environmental change factors, temperature and CO2, rather than simply 

the direct effects of drought, underlie longer-term trends in tropical forest tree mortality, 

although other changes such as rising liana infestation rates seen in Amazonia36,37 cannot be 

excluded.

The minimum adequate carbon loss model using our expanded explanatory variables 

replicates the continental trends (Figure 3). The overall lower loss rates in Africa reflect 

their longer CRT (69 yrs, 95% CI, 66-72), compared with Amazonian forests (56 yrs, 

95% CI, 54-59) while over the 2000-2015 window the much smaller increase in loss rates 

in Africa compared to Amazonia results from a slower increase in warming and a stable 

CRT in Africa compared to continued warming at previous rates and a shortening CRT in 

Amazonian forests (Extended Data Figure 5). Furthermore, given that losses appear to lag 

behind gains they should relate to the long-term CRT of plots. This is what we find: the 

longer the CRT the smaller the increase in carbon losses, with no increase in losses for plots 

with CRT ≥77 years (Extended Data Figure 6). Consequently, due to the typically longer 

residence times of African forests, increasing losses in Africa ought to appear 10-15 years 

after the increase in Amazon losses began (c.1995). Strikingly, in Africa the most intensely 

monitored plots suggest that losses began increasing from c.2010 (Extended Data Figure 

7), and plots with shorter CRT are driving the increase (Extended Data Figure 8). Thus, a 

mortality-dominated African carbon sink decline appears to have begun very recently.

Future of the Tropical Forest Carbon Sink

Our carbon gain and loss models (Table 2) can be used to make a tentative estimate of the 

future size of the per unit area intact forest carbon sink (Figure 3). Extrapolations of the 

changes in the predictor variables from 1983-2015 forward to 2040 (Extended Data Figure 

5) show declines in the sink on both continents (Figure 3). By 2030 the carbon sink in 

aboveground live biomass in intact African tropical forest is predicted to decline by 14% 

from the measured 2010-15 mean, to 0.57 Mg C ha-1 yr-1 (2σ range, 0.16-0.96; Figure 

3). The Amazon sink continues to decline, reaching zero in 2035 (2σ range, 2011-2089; 

Figure 3). Our estimated sink strength on both continents in the 2020s and 2030s is sensitive 

to future CO2 emissions pathways (CO2-change)38, resulting temperature increase (MAT, 

MAT-change) and hydrological changes (MCWD), plus changes in forest dynamics (CRT), 

but the sink is always lower than levels seen in the 2000s (see Methods and Supplementary 

Table 5). Thus, the carbon sink strength of the world’s two most extensive tropical forests 

have now saturated, albeit asynchronously.

Scaling Results to the Pan-tropics

Scaling our estimated mean sink strength by forest area for each continent signifies that 

Earth recently passed the point of peak carbon sequestration into intact tropical forests 

(Table 1). The continental sink in Amazonia peaked in the 1990s, followed by a decline, 
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driven by sink strength peaking in the 1990s and a continued decline in forest area (Table 

1). In Africa the per unit area sink strength peaked later in the 2000-2010 period, but the 

continental African sink peaked in the 1990s, due to the decline in forest area in the 2000s 

outpacing the small per unit area increase in sink strength. Including the modest uptake in 

the much smaller area of intact Asian tropical forest indicates that total pan-tropical carbon 

uptake peaked in the 1990s (Table 1). From peak pan-tropical intact forest uptake of 1.26 

Pg C yr-1 in the 1990s, we project a continued decline reaching just 0.29 Pg C yr-1 in 

the 2030s (multi-decade decline of ~0.24 Pg C yr-1 decade-1), driven by (i) reduced mean 

pan-tropical sink strength decline of 0.1 Mg C ha-1 yr-1 decade-1 and (ii) ongoing forest area 

losses of ~13.5 million ha yr-1 (see Extended Data Table 2 for forest area details). Critically, 

climate-driven vegetation model simulations have not predicted that peak net carbon uptake 

into intact tropical forests has already been passed2,4,5.

Discussion

Our method of scaling to arrive at a pan-tropical sink estimate – in common with other 

studies using similar datasets1,6,13 – is limited. Yet, pervasive net carbon uptake is expected 

given that we find a strong and ongoing CO2 fertilisation effect. Using our CO2 response in 

Table 2, we find an increase in aboveground carbon stocks of 10.8±3.7 Mg C ha-1 100 ppm-1 

CO2, or 6.5±2.2% (±SE; using an area-weighted pan-tropical mean aboveground C stock of 

165 Mg C ha-1), comparable to the 5.0±1.2% increase in tropical forest C stocks 100 ppm-1 

CO2 derived from a recent synthesis of CO2 fertilisation experiments, despite a lack of data 

from mature tropical forests39. Our result is within the range of climate-driven vegetation 

models2,7, although it is greater than a number of recently-published models that include 

potential nutrient constraints, reported as 5.9±4.7 Mg C ha-1 100 ppm-1 CO2 (Ref.40). We 

find that the CO2 fertilisation uptake is currently only partially offset by the negative impacts 

of similarly widespread rising air temperatures (-2.0±0.4 Mg C ha-1 °C-1, from Table 2), 

consistent with models7, limited experiments31 and independent observations9, plus negative 

responses to drought41,42. Long-term and extensive increases in satellite-derived greenness 

in tropical regions not experiencing major changes in land-use management17,43, particularly 

in central Africa in the past decade44, indicate increases in tropical forest net primary 

productivity, providing further evidence that the sink is a widespread phenomenon44.

Nonetheless, our analyses show that this pervasive tropical forest sink in live biomass is 

in long-term decline, first saturating in Amazonia, and more recently followed by African 

forests, explaining the prior Africa-Amazon carbon sink divergence as part of a longer-term 

pattern of asynchronous saturation and decline. From an atmospheric perspective the full 

impacts of the contribution to the saturation of the sink from slowing carbon gains are 

experienced immediately, but the contribution from rising carbon losses is delayed because 

dead trees do not decompose instantaneously. Decomposition of this dead tree mass is ~50% 

in 4 yrs, and ~85% in 10 yrs, thus rising carbon losses result in delayed carbon additions to 

the atmosphere45. Hence, from an atmospheric perspective the intact tropical forest biomass 

carbon sink likely peaked a few years later than our plot data indicate and the full impacts 

are not yet realised. The pan-tropical carbon sink in live biomass reduced by 0.27 Pg C 

yr-1 between the 1990s and 2000s (Table 1), but accounting for dead wood decomposition45 

shows a smaller 0.17 Pg C yr-1 reduction from an atmospheric perspective (see Methods).
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Given that the global terrestrial carbon sink is increasing, a weakening intact tropical forest 

sink implies that the extra-tropical carbon sink has increased over the past two decades. 

Independent observations of inter-hemispheric atmospheric CO2 concentration indicates that 

carbon uptake into the Northern hemisphere landmass has increased at a greater rate than 

the global terrestrial carbon sink since the 1990s, with a further disproportionate increase in 

the 2000s10. The inter-hemispheric analysis suggests a weakening of the tropical forest sink 

by ~0.2 Pg C yr-1 between the 1990s and 2000s10, which is similar to the 0.17 Pg C yr-1 

weakening over the same time period that we find. This reinforces our conclusion that the 

intact tropical forest carbon sink has already saturated.

In summary, our results indicate that while intact tropical forests remain major stores of 

carbon and are key centres of biodiversity11, their ability to sequester additional carbon is 

waning. In the 1990s intact forests removed 17% of anthropogenic CO2 emissions. This 

has declined to 6% in the 2010s, because the pan-tropical weighted average per unit area 

sink strength declined by 33%, forest area decreased by 19%, and CO2 emissions increased 

by 46%. Although tropical forests are more immediately threatened by deforestation46 

and degradation47, and the future carbon balance will also depend on secondary forest 

dynamics48 and forest restoration plans49, our analyses show that they are also impacted 

by atmospheric chemistry and climatic changes. Given that the intact tropical forest carbon 

sink is set to end sooner than even the most pessimistic climate-driven vegetation models 

predict4,5, our analyses suggest that climate change impacts in the tropics may become more 

severe than predicted. Furthermore, the carbon balance of intact tropical forests will only 

stabilise once CO2 concentrations and the climate stabilises.

Continued on-the-ground monitoring of the world’s remaining intact tropical forests will 

be required to test our prediction that the intact tropical forest carbon sink will continue to 

decline. Such direct ground-based measurements also provide a constraint on estimating the 

size and location of the terrestrial carbon sink. In addition, our conclusion that tree mortality 

and internal forest dynamics are important controls on the future of the tropical forest carbon 

sink, may assist in improving the vegetation components of future Earth System Models50 

and contribute to reducing terrestrial carbon cycle feedback uncertainty19,20. Our findings 

also have policy implications. At the country-level: given intact tropical forests are a carbon 

sink, but the size is changing, national greenhouse gas reporting will require careful forest 

monitoring. At the international-level: given tropical forests are likely to sequester less 

carbon in the future than Earth System Models predict, an earlier date to reach net zero 

anthropogenic greenhouse gas emissions will be required to meet any given commitment to 

limit the global heating of Earth.

Online Methods

Plot Selection

Closed canopy (i.e. not woody savanna) old-growth mixed-age forest inventory plots were 

selected using commonly used criteria6,13,27: free of fire and industrial logging; all trees 

with diameter at reference height ≥100 mm measured at least twice; ≥0.2 ha area; <1500 

m.a.s.l. altitude; MAT ≥20.0°C51; annual precipitation ≥1000 mm51; located ≥50 m from 

anthropogenic forest edges. Of the 244 plots included in the study, 217 contribute to 
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the African Tropical Rainforest Observatory Network (AfriTRON; www.afritron.org), with 

data curated at www.ForestPlots.net52,53. These include plots from Sierra Leone, Liberia, 

Ghana, Nigeria, Cameroon, Gabon, Republic of Congo, Democratic Republic of Congo 

(DRC), Uganda and Tanzania52,53 (Extended Data Figure 1). Fifteen plots are part of the 

TEAM network, from Cameroon, Republic of Congo, Tanzania, and Uganda54–57. Nine 

plots contribute to the ForestGEO network, from Cameroon and DRC58 (9 plots from DRC, 

codes SNG, contribute to both AfriTRON and ForestGEO networks, included above in the 

AfriTRON total). Finally, three plots from Central African Republic are part of the CIRAD 

network59,60. The large majority of plots are sited in terra firme forests and have mixed 

species composition, although four are in seasonally flooded forest and 14 plots are in 

Gilbertiodendron dewevrei monodominant forest, a locally common forest type in Africa 

(Supplementary Table 1). The 244 plots have a mean size of 1.1 ha (median, 1 ha), with 

a total plot area of 277.9 ha. The dataset comprises 391,968 diameter measurements on 

135,625 stems, of which 89.9% were identified to species, 97.5% to genus and 97.8% to 

family. Mean total monitoring period is 11.8 years, mean census length 5.7 years, with 

a total of 3,214 ha years of monitoring. The 321 Amazon plots are published and were 

selected using the same criteria6, except in the African selection criteria we specified a 

minimum anthropogenic edge distance and added a minimum temperature threshold.

Plot Inventory and Tree Biomass Carbon Estimation

Tree-level aboveground biomass carbon is estimated using an allometric equation with 

parameters for tree diameter, tree height and wood mass density61. The calculation of each 

is discussed in turn. All calculations were performed using the R statistical platform, version 

3.2.1 (ref.62) using the BiomasaFP R package, version 0.2.1 (ref.63).

Tree Diameter—In all plots, all woody stems with ≥100 mm diameter at 1.3 m from 

the base of the stem (‘diameter at breast height’, DBH), or 0.5 m above deformities 

or buttresses, were measured, mapped and identified using standard forest inventory 

methods64,65. The height of the point of measurement (POM) was marked on the trees 

and recorded, so that the same POM is used at the subsequent forest census. For stems 

developing deformities or buttresses over time that could potentially disturb the initial 

POM, the POM was raised approximately 500 mm above the deformity. Estimates of the 

diameter growth of trees with changed POM used the ratio of new and old POMs, to 

create a single trajectory of growth from the series of diameters at two POM heights6,13,65. 

We used standardised protocols to assess typographical errors and potentially erroneous 

diameter values (e.g. trees shrinking by >5 mm), missing values, failures to find the original 

POM, and other issues. Where necessary we estimated the likely value via interpolation or 

extrapolation from other measurements of that tree, or when this was not possible we used 

the median growth rate of trees in the same plot, census and size-class, defined as DBH = 

100-199 mm, or 200-399 mm, or >400 mm65. We interpolated measurements for 1.3% of 

diameters, extrapolated 0.9%, and used median growth rates for 1.5%.

Tree height—Height of individuals from ground to the top leaf, hereafter Ht, was 

measured in 204 plots, using a laser hypsometer (Nikon forestry Pro) from directly 

below the crown (most plots), a laser or ultrasonic distance device with an electronic 
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tilt sensor, a manual clinometer, or by direct measurement, i.e. tree climbing. Only trees 

where the top was visible were selected66. In most plots, tree selection was similar: the 

10 largest trees were measured, together with 10 randomly selected trees per diameter 

from five classes: 100-199 mm, 200-299 mm, 300-399 mm, 400-499 mm, and 500+ mm 

trees, following standard protocols66. We measured actual height of 24,270 individual 

trees from 204 plots. We used these data and the local.heights function in R package 

BiomasaFP63 to fit 3-parameter Weibull relationships: Ht=a × (1-e((-b × (DBH/10)c)) (equation 

1). We chose the Weibull model as it is known to be robust when a large number of 

measurements are available66,67. We parameterised separate Ht-DBH relationship for four 

different combinations of edaphic forest type and biogeographical region: (i) terra firme 

forest in West Africa, (ii) terra firme forest in Lower Guinea and Western Congo Basin, (iii) 

terra firme forest in Eastern Congo Basin and East Africa, (iv) seasonally flooded forest 

from Lower Guinea and Western Congo Basin (there were no seasonally flooded forest plots 

in the other biogeographical regions). The parameters are: (i) terra firme forest in West 

Africa, a=56.0; b=0.0401; c=0.744; (ii) terra firme forest in Lower Guinea and Western 

Congo Basin, a=47.6; b=0.0536; c=0.755; (iii) terra firme forest in Eastern Congo Basin 

and East Africa, a=50.8; b=0.0499; c=0.706; and finally (iv) seasonally flooded forest from 

Lower Guinea and Western Congo Basin, a=38.2; b=0.0605; c=0.760. For each of these 

combinations of forest type and bioregion, the local.heights function combines all height 

measurements from all plots belonging to that forest type/bioregion and fits the Weibull 

model parameters using non-linear least squares (nls function in R with default settings), 

with starting values of a = 25, b = 0.05 and c = 0.7 chosen as they led to regular model 

convergence. We fitted these models either treating each observation equally or with case 

weights proportional to each trees’ basal area. These weights give more importance to large 

trees during model fitting. We selected the best fitting of these models, determining this as 

the model that minimised prediction error of stand biomass when calculated with estimated 

heights or observed heights. The parameters were used to estimate Ht from DBH for all tree 

DBH measurements for input into the allometric equation. Mean measured individual total 

tree height is 20.5 m; the height range is 1.5 to 72.5 m. The root mean squared error (RMSE) 

between the full dataset of measured heights and the predicted heights, is 5.7 m, which is 

8.0% of the total range. Furthermore, RMSE is 5.3 m in terra firme forest in West Africa 

(7.5% of the range; n=9771 trees); RMSE is 6.4 m in terra firme forest in Lower Guinea and 

Western Congo Basin (8.7% of the range; n=10,838 trees); RMSE is 4.8 m in terra firme 

forest in Eastern Congo Basin and East Africa (8.8% of the range; n=3269 trees); and RMSE 

is 4.1 m in seasonally flooded forest from Lower Guinea and Western Congo Basin (12.5% 

of the range; n=392 trees).

Wood Density—Dry wood density (ρ) measurements were compiled for 730 

African species from published sources and stored in www.ForestPlots.net; most were 

sourced from the Global Wood Density Database on the Dryad digital repository 

(www.datadryad.org)68,69. Each individual in the tree inventory database was matched to 

a species-specific mean wood density value. Species in both the tree inventory and wood 

density databases were standardized for orthography and synonymy using the African 

Plants Database (www.ville-ge.ch/cjb/bd/africa/) to maximize matches13. For incompletely 

identified individuals or for individuals belonging to species not in the ρ database, we 
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used the mean ρ value for the next higher known taxonomic category (genus or family, 

as appropriate). For unidentified individuals, we used the mean wood density value of all 

individual trees in the plot13,52.

Allometric equation—For each tree we used a published allometric equation61 

to estimate aboveground biomass. We then converted this to carbon, assuming that 

aboveground carbon (AGC) is 45.6% of aboveground biomass70. Thus: AGC=0.456×

(0.0673×(ρ×(DBH/10)2×Ht)0.976)⁄1000 (equation 2), with DBH in mm, dry wood density, 

ρ, in g cm-3, and total tree height, Ht, in m (ref.61).

Aboveground Carbon (AGC, in Mg C ha-1) in living biomass for each plot at each census 

date was estimated as the sum of the AGC of each living stem, divided by plot area (in 

hectares).

Carbon Gain and Carbon Loss estimation

Net Carbon Sink (in Mg C ha-1 yr-1) is estimated as carbon gains minus carbon losses. 

Calculation details are explained below.

Carbon Gains (in Mg C ha-1 yr-1) are the sum of the aboveground live biomass carbon 

additions from the growth of surviving stems and the addition of newly recruited stems, 

divided by the census length (in years) and plot area (in hectares). For each stem that 

survived a census interval, carbon additions from its growth (Mg C ha-1 yr-1) were 

calculated as the difference between its AGC at the end census of the interval and its AGC at 

the beginning census of the interval. For each stem that recruited during the census interval 

(i.e. reaching DBH≥100 mm), carbon additions were calculated in the same way, assuming 

DBH=0 mm at the start of the interval65. Carbon Losses (in Mg C ha-1 yr-1) are estimated 

as the sum of aboveground biomass carbon from all stems that died during a census interval, 

divided by the census length (in years) and plot area (in hectares). Both carbon gains 

and carbon losses are calculated using standard methods6, including a census interval bias 

correction, using the SummaryAGWP function of R-package BiomasaFP63,64,68.

As carbon gains are affected by a census interval bias, with the underestimate increasing 

with census length, we corrected this bias by accounting for (i) the carbon additions from 

trees that grew before they died within an interval (unobserved growth) and (ii) the carbon 

additions from trees that recruited and then died within the same interval (unobserved 

recruitment)65,71.

Component (i), the unobserved growth of a stem that died during a census interval, is 

estimated as the difference between AGC at death and AGC at the start of the census. These 

are calculated using equation 2, from respectively DBHdeath and DBHstart. The latter is part 

of the data, the first can be estimated as: DBHdeath = DBHstart × G × Ymean, where G is the 

plot-level median diameter growth rate (mm yr-1) of the size class the tree was in at the start 

of the census interval (size classes are defined as D < 200 mm, 400 mm > D ≥ 200 mm and 

D ≥ 400 mm) and Ymean is the mean number of years trees survived in the census interval 

before dying. Ymean is calculated from the number of trees that are expected to have died 
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in each year of the census interval, which is derived from the plot-level per-capita mortality 

rate (ma; % dead trees yr-1) calculated following equation 5 in ref.71.

Component (ii), growth of recruits that were not observed because they died during the 

census interval, is estimated by calculating the number of unobserved recruits and diameter 

at death for each unobserved recruit. The number of unobserved recruits (stems ha-1 yr-1) 

is estimated as: Nu.r = Ra – Psurv × Ra, where Ra (recruited stems ha-1 yr-1) is the per area 

annual recruitment calculated following equation 11 in ref.71 and Psurv is the probability 

of each recruit surviving until the next census: Psurv = (1-ma)T, where T is the number of 

years remaining in the census interval. Summing Nu.r for each year in a census interval gives 

the total number of unobserved recruits in that census interval. We then estimate diameter 

at death for each unobserved recruit, which is given in mm by DBHdeath,u.r = 100 + (Gs × 

Ymean-rec), where Gs is the plot-level median diameter growth rate (mm yr-1) of the smallest 

size class (i.e. D < 200 mm) and Ymean-rec is the mean life-span of unobserved recruits 

calculated as the mean life-span of recruits in a given year, weighted by Nu.r. The mean 

life-span of recruits in a given year is calculated from the number of recruits that died in that 

year, which is derived from the plot-level per-capita mortality rate (ma; % dead trees yr-1). 

Growth of each unobserved recruit (mm yr-1) is then calculated as DBHdeath,u.r divided by 

Ymean-rec.

The census interval bias correction (components i and ii together) typically add <3% to 

plot-level carbon gains. Carbon Losses are affected by the same census interval bias, hence 

we corrected this bias by accounting for (i) the additional carbon losses from the trees that 

were recruited and then died within the same interval, and (ii) the additional carbon losses 

resulting from the growth of the trees that died in the interval6,15,63. These two components 

are calculated in the same way as for Carbon gains and typically add <3% to plot-level 

carbon losses.

Carbon gains include both gains from the growth of surviving stems and new recruits. 

Separating carbon gains from tree growth of surviving stems and newly recruited stems, 

shows that carbon gains from recruitment are small overall, and are significantly lower in 

Africa than in the Amazon, likely due to the lower stem turnover rates and longer carbon 

residence time (Africa: 0.17 Mg C ha-1 yr-1; CI: 0.16-0.18 versus Amazon: 0.27 Mg C ha-1 

yr-1; CI: 0.25-0.28, p<0.001; two-way Wilcoxon test), but this is compensated by carbon 

gains from survivors being significantly larger in Africa (2.33 Mg C ha-1 yr-1; CI: 2.27-2.39) 

than in the Amazon (2.13 Mg C ha-1 yr-1; CI: 2.09-2.17, p=0.014). Therefore, gains 

overall (sum of gains from surviving stems and newly recruited stems) are indistinguishable 

between the continents (Africa: 2.57 Mg C ha-1 yr-1; CI: 2.51-2.67 vs Amazon: 2.46 Mg C 

ha-1 yr-1; CI: 2.41-2.50, p=0.460; two-way Wilcoxon test).

Long-term Gain, Loss and Net Carbon Sink Trend Estimation, 1983-2014

The estimated mean and uncertainty in carbon gains, carbon losses and the net carbon 

sink of the African plots from 1983-2014 (Figure 1, Extended Data Figure 7 and Extended 

Data Figure 8) were calculated following ref.6 to allow direct comparison with published 

Amazonian results. First, each census interval value was interpolated for each 0.1-yr period 

within the census interval. Then, for each 0.1-yr period between 1983 and 2014, we 
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calculated a weighted mean of all plots monitored at that time, using the square root of plot 

area as a weighting factor6. Confidence intervals for each 0.1-yr period were bootstrapped.

Trends in carbon gains, losses and the net carbon sink over time were assessed using 

linear mixed effects models (lmer function in R, lme4 package72), providing the linear 

slopes reported in Figure 1. These models regress the mid-point of each census interval 

against the value of the response variable for that census interval. Plot identity was included 

as a random effect, i.e. assuming that the intercept can vary randomly among plots. We 

did not include slope as a random effect, consistent with previously published Amazon 

analyses6, because models did not converge due to some plots having too few census 

intervals. Observations were weighted by plot size and census interval length. Weightings 

were derived empirically, by assuming a priori that there is no significant relation between 

the net carbon sink and census interval length or plot size, following ref.13. The following 

weighting removes all pattern in the residuals: Weight= 3√lengthint + 4√plotsize -1 (equation 

3), where lengthint is the length of the census interval, in years. Significance was assessed by 

regressing the residuals of the net carbon sink model against the weights (p=0.702).

Differences in long-term slopes between the two continents for carbon gains, carbon losses 

and net carbon sink, reported in the main text, were also assessed using linear mixed 

effects models, as described above, but performed on the combined African and Amazonian 

datasets and limited to their common time window, 1983 to 2011.5. For these three tests 

on the pooled data we included an additional interaction term between census interval date 

and continent, where a significant interaction would indicate that the slopes differ between 

continents. The statistical significance of continental differences in slope were assessed 

using the F-statistic (Anova function in R, car package73). Shortening the common time 

window to the 20 years when the continents are best-sampled, 1991.5 to 2011.5, gave very 

similar results, including a divergent continental sink (p=0.04).

Continental and Pan-Tropical Carbon Sink Estimates

The per unit area total net carbon sink (in Mg C ha-1 yr-1) for each time period in Table 1 

(each decade between 1980 and 2010; and 2010-2015) is the sum of three components. The 

first component is the per unit area aboveground carbon sink from living trees and lianas 

with DBH≥100 mm. For Africa we use the per unit area net carbon sink values presented 

in this paper. For Amazonia, we use data in ref.6. For Southeast Asia, we use inventory data 

collected using similar standardised methods from 49 plots in ref.15. For each time window, 

we use all plots for which census dates overlap the period, weighted by the square root 

of plot area, as for the solid lines in Figure 1. The second component is the per unit area 

aboveground carbon sink from living trees and lianas with DBH<100 mm. This is calculated 

as 5.19%, 9.40% and 5.46% of the first component (i.e. aboveground carbon of large living 

trees) in Africa, Amazonia and Southeast Asia respectively13,74. The third component is the 

per unit area belowground carbon sink in live biomass, i.e. roots. This is calculated as 25%, 

37% and 17% of the aboveground carbon of living trees with DBH≥100 mm in Africa13, 

Amazonia6 and Southeast Asia75 respectively.

For each time period in Table 1 we calculated the continental-scale total carbon sink (Pg 

C yr-1) by multiplying the per unit area total net carbon sink described above by the area 
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of intact forest on each continent at that time interval (in ha) reported in Extended Data 

Table 2. Decades are calculated from 1990.01 to 1999.99. For comparability with previous 

continental-sink results, we used continental values of intact forest area for 1990, 2000 

and 2010 as published in ref.1, i.e. total forest area minus forest regrowth. We used the 

1990-2010 data to fit an exponential model for each continent and used this model to 

estimate intact forest area for 1980 and 2015.

Finally, in the main text we calculated the proportion of anthropogenic CO2 emissions 

removed by Earth’s intact tropical forests, as the total pan-tropical carbon sink from Table 

1 divided by the total anthropogenic CO2 emissions. Total anthropogenic CO2 emissions are 

calculated as the sum of emissions from fossil fuel and land-use change and are estimated 

at 7.6 Pg C yr-1 in the 1990s, 9.0 Pg C yr-1 in the 2000s, and 11.1 Pg C yr-1 in the 

2010s (ref.21, assuming 1.7% growth in fossil fuel emissions in 2018 and 2019, and mean 

2010-2017 land-use change emissions for 2018 and 2019).

Carbon Sink from an Atmospheric Perspective

To estimate the evolution of the carbon sink from an atmospheric perspective, we assumed 

that the contribution to the atmosphere from carbon gains are experienced immediately, 

while the contribution to the atmosphere from carbon losses must take into account the delay 

in decomposition of dead trees. We did this by calculating total forest carbon loss (Mg C 

ha-1 yr-1) for each year between 1950-2015, using the mean 1983-2015 records from Figure 

1 and assuming constant losses prior to 1983 (1.9 and 1.5 Mg C ha-1 yr-1 for Africa and 

Amazonia respectively). Then, for each focal year between 1950-2015, we calculated how 

much carbon was released to the atmosphere in the subsequent years as: yt = x0 × e-0.17× 

(t-1) - x0 × e-0.17× t, where x0 is the total forest carbon loss of the focal year; yt is the 

carbon released to the atmosphere at t years from the focal year; and -0.17 yr-1 is a constant 

decomposition rate calculated for tropical forests in the Amazon45. For example, carbon loss 

was 1.95 Mg C ha-1 in 1990 in African forests (Figure 1), from which 0.31 Mg C ha-1 was 

released to the atmosphere in 1991; 0.26 Mg C ha-1 in 1992; 0.22 Mg C ha-1 in 1993; 0.07 

Mg C ha-1 in 2000 and 0.01 Mg C ha-1 in 2010. Hence, of the full 1.95 Mg C ha-1 dead tree 

biomass from 1990, ~50% was released to the atmosphere after 4 yrs, ~85% after 10 yrs, and 

~97% after 20 years. Finally, for each year between 1983 and 2015, the total contribution 

to the atmosphere from carbon losses was calculated as the sum of all carbon contributions 

released at that year, from all total yearly forest carbon loss pools of the previous years. 

We then calculated decadal-scale mean contributions to the atmosphere from carbon losses, 

reported in the main text.

Predictor Variable Estimates, 1983-2014

For each census interval of each plot, we examined potential predictor variables that may 

explain the long-term trends in carbon gains and carbon losses, reported in Extended Data 

Table 1 and main text Table 2. First, the environmental conditions during the census interval; 

second the rate of change of these parameters; and third forest attributes that may affect how 

different forests respond to the same environmental change. The predictor variable estimates 

for each census need to avoid bias due to seasonal variation, for example the intra-annual 

variability in atmospheric CO2 concentration. We therefore applied the following procedure 
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to avoid seasonal variability impacts on long-term trends: (i) the length of each focal census 

interval was rounded to the nearest complete year (e.g. a 1.1 year interval became a 1 year 

interval); (ii) we computed dates that minimised the difference between actual fieldwork 

dates and complete-year census dates, while ensuring that subsequent census intervals of a 

plot do not overlap. The resulting sequence of non-overlapping census intervals was used 

to calculate interval-specific means for each environmental predictor variable to remove 

seasonal effects. The mean difference between the actual fieldwork dates and the complete-

year census dates is 0.01 decimal years.

The first group of potential predictor variables, estimated for each census interval of 

each plot, are theory-driven choices: atmospheric CO2 concentration (CO2), mean annual 

temperature (MAT), and drought intensity, which we quantified as maximum climatological 

water deficit (MCWD)14,20,76,77.

Atmospheric CO2 concentration (CO2, in ppm) is estimated as the mean of the monthly 

mean values from the Mauna Loa record78 over the census interval. While atmospheric 

CO2 concentration is highly correlated with time (R2=0.98), carbon gains are slightly better 

correlated with CO2 (Radj
2=0.0027) than with time (Radj

2=0.0025).

Mean Annual Temperature (MAT, in °C) was derived from the temporally resolved 

(1901-2015) dataset of monthly mean temperature from the Climatic Research Unit (CRU 

TS version 4.03; ~3025 km2 resolution; released 15 May 2019; https://crudata.uea.ac.uk/cru/

data/hrg/)79. We downscaled the data to ~1 km2 resolution using the WorldClim dataset51,80, 

by subtracting the difference in mean monthly temperature, and applying this monthly 

correction to all months81. We then calculated MAT for each census interval of each plot 

using the downscaled monthly CRU record.

Maximum Climatological Water Deficit (MCWD, in mm) was derived from the ~3025 km2 

resolution Global Precipitation Climatology Centre dataset (GPCC version 6.0) that includes 

many more rain gauges than CRU in tropical Africa82,83. As GPCC ends in 2013 we 

combined it with satellite-based Tropical Rainfall Measurement Mission data (TRMM 3B43 

V7 product, ~757 km2 resolution)84. The fit for the overlapping time period (1998-2013) 

was used to correct the systematic difference between GPCC and TRMM: GPCC’ = 

a+b*GPCC, with GPCC’ the adjusted GPCC record and a and b different parameters 

for each month of the year and for each continent. Precipitation was then downscaled 

to ~1 km2 resolution using the WorldClim dataset51,80, by dividing by the ratio in mean 

monthly rainfall, and applying this monthly correction to all months81. For each census 

interval we extracted monthly precipitation values and estimated evapotranspiration (ET) 

to calculate monthly Climatological Water Deficit (CWD), a commonly used metric of 

dry season intensity for tropical forests14,76,77. Monthly CWD values were calculated for 

each subsequent series of 12 months (complete years)77. Monthly CWD estimation begins 

with the wettest month of the first year in the interval, and is calculated as 100 mm per 

month evapotranspiration (ET) minus monthly precipitation (P). Then, CWD values for the 

subsequent 11 months were calculated recursively as: CWDi= ET - Pi + CWDi-1, where 

negative CWDi values were set to zero77 (no drought conditions). This procedure was 

repeated for each subsequent complete 12 months. We then calculated the annual MCWD as 
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the largest monthly CWD value for every complete year within the census interval, with the 

MCWD of a census interval being the mean of the annual MCWD values within the census 

interval. Larger MCWD indicates more severe water deficits.

We assume ET is 100 mm month-1 on both continents, based on measurements from 

Amazonia76,77, more limited measurements from West Africa summarized in ref.85, 

predictive skill86, and use in past studies on both continents14,87. MCWD therefore 

represents a precipitation-driven dry season deficit, as ET remains constant. An alternative 

assessment, using a data-driven ET product88,89, gave a mean ET of 95 and 98 mm month-1 

for the African and Amazonian plot networks respectively. Using these values did not affect 

the results.

To calculate the environmental change of potential predictor variables, CO2-change (in ppm 

yr-1), MAT-change (in °C yr-1) and MCWD-change (in mm yr-1), we selected an optimum 

period over which to calculate the change, derived empirically by assessing the correlation 

of carbon gains (all plots, all censuses) with the change in each environmental variable, 

using linear mixed effects models (lmer function in R, lme4 package72). The annualised 

change in the environmental variable was calculated as the change between the focal interval 

and a prior interval (termed the baseline period) with a lengthening time window ranging 

from 1 year through to 80 years prior to the focal interval (i.e. 80 linear mixed effects 

models per variable). We calculated AIC for each model and selected the interval length 

with the lowest AIC. Thus, MAT-change (in °C yr-1) = (MATi-MATb)/(datei-dateb), where 

MATi is the MAT over the focal census interval calculated using the procedure described 

above, MATb is the MAT over a baseline period prior to the focal interval, datei is the 

mid-date of the focal census interval and dateb is the mid-date of the baseline period. The 

lmer results show that the baseline period for MAT-change is 5 years and for CO2-change 

it is 56 years, while MCWD showed no clear trend, so MCWD-change was not included in 

the models (see Extended Data Figure 3). All three results conform to a priori theoretical 

expectations. For CO2 a maximum response to an integrated 56 years of change is expected 

because forest stands will respond most strongly to CO2 when most individuals have 

grown under the new rapidly changing condition, which should be at its maximum at a 

time approximately equivalent to the carbon residence time of a forest stand30,90 (mean 

of 62 years in this dataset). For MAT, 5 years is consistent with experiments showing 

temperature acclimation of leaf- and plant-level photosynthetic and respiration processes 

over half-decadal timescales31,91. MCWD has no overall trend suggesting that once a 

drought ends, its impact on tree growth fades rapidly, as seen in other studies14,92. Also 

in the moist tropics wet-season rainfall is expected to re-charge soil water, hence lagged 

impacts of droughts are not expected.

We calculated estimates of two forest attributes that may alter responses to environmental 

change as potential predictor variables: Wood Density (WD) and Carbon Residence Time 

(CRT). In intact old-growth forests, mean WD (in g cm-3) is inversely related to resource 

availability28,93,94, as is seen in our dataset (carbon gains and plot-level mean WD are 

negatively correlated, Extended Data Figure 4). WD is calculated for each census interval 

in the dataset, as the mean WD of all trees alive at the end of the census interval, to be 

consistent with the previous Amazon analysis6. Carbon residence time (CRT, in yrs) is a 
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measure of the time that fixed carbon stays in the system. CRT is a potential correlate of 

the impact of past carbon gains on later carbon losses30. To avoid circularity in the models, 

the equation used to calculate CRT differed depending on the response variable. If the 

response variable is carbon loss, the CRT equation is based on gains: CRT=AGC/gains, with 

AGC for each interval based on AGC at the end of the interval, and the gains for each 

interval calculated as the mean of the gains in the interval and the previous intervals (i.e. 

long-term gains). If the response variable is carbon gains, the CRT equation is based on 

losses: CRT=AGC/losses. The equation employed for use in the carbon loss model (based 

on gains) is the standard formula used to calculate CRT and is retained in the minimum 

adequate model (see below and Table 2). The non-standard CRT equation (based on losses) 

used in the carbon gain model is not retained in the minimum adequate model (see below).

Statistical modelling of the Carbon Gain, Loss and Sink Trends

We first constructed two models including those environmental drivers exhibiting long-term 

change that impact theory-driven models of photosynthesis and respiration as predictor 

variables: CO2, MAT, and MCWD. One model had carbon gains as the response variable, 

the other had carbon losses as the response variable (both in Mg C ha-1 yr-1). Models were 

fitted using the lme function in R, with maximum likelihood (NLME package95). All census 

intervals within all plots were used, weighted by plot size and census length (using equation 

3 above). Plot identity was included as a random effect, i.e. assuming that the intercept 

can vary randomly among plots. All predictor variables in the models were scaled without 

centering (scale function in R, RASTER package62). Carbon gain values were normally 

distributed but carbon loss values required a power-law transformation (λ= 0.361) to meet 

normality criteria. Multi-parameter models are: carbon gains = intcp + a×CO2 + b×MAT + 

c×MCWD (model 1); carbon losses = intcp + a×CO2 + b×MAT + c×MCWD (model 2); 

where intcp is the estimated model intercept, and a, b, and c are model parameters giving 

the slope of relationships with environmental predictor variables. For multi-parameter model 

outputs see Extended Data Table 1, for single-parameter relationships, Figure 2.

The second pair of models include the same environmental predictors (CO2, MAT, MCWD), 

plus their rate of change (CO2-change, MAT-change, but not MCWD-change as explained 

above), and forest attributes that may alter how forests respond (WD, CRT), as described 

above. We also evaluated the possible inclusion of a differential continent effect of each 

variable in the full model. We first constructed models with only a single predictor variable, 

and allowed different slopes in each continent. Next, if removal of the continent-specific 

slope (using stepAIC function in R, MASS package96) decreased model Akaike Information 

Criterion (AIC) then the continent-specific slope was not included in the full model for 

that variable. Only MCWD showed a significant differential continent-specific slope. This 

implies that forests on both continents have common responses to CO2, CO2-change, MAT, 

MAT-change, WD and CRT, but respond differently to differences in MCWD. This is likely 

because wet-adapted species are much rarer in Africa than in Amazonia as a result of large 

differences in past climate variation34. Lastly, we allowed different intercepts for the two 

continents to potentially account for differing biogeographical or other continent-specific 

factors. For the carbon loss model, we applied the same continent-specific effects for slope 
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as for the carbon gain model. Carbon loss values were transformed using a power-law 

transformation (λ= 0.361) to meet normality criteria.

For both carbon gains and losses we parameterized a global model including the significant 

continent-specific effect of MCWD, selecting the most parsimonious simplified model using 

all-subsets regression97,98. To do so, we first generated a set of models with all possible 

combinations (subsets) of fixed effect terms in the global model using the dredge function 

of the MuMIn package in R99. We then chose the best-ranked simplified model based on 

the AICc criterion, hereafter called “minimum adequate carbon gain/loss model”, reported 

in Table 2. The minimum adequate models are: carbon gains = intcp×continent + a×CO2-

change + b×MAT + c×MAT-change + d×MCWD×continent + e×WD (model 3); carbon 

losses = intcp + a×CO2-change + b×MAT-change + c×MCWD + d×CRT (model 4). WD 

was retained in the carbon gain model, likely because growth is primarily impacted by 

resource availability, while CRT was retained in the carbon loss model, likely because losses 

are primarily impacted by how long fixed carbon is retained in the system.

Table 2 presents model coefficients of the best-ranked gain model and best-ranked loss 

model selected using all-subsets regression. These best-ranked gain and loss models have 

weights of 0.310 and 0.132 respectively, which is almost double the weight of the second 

ranked models (0.152 and 0.075 respectively). In Supplementary Table 2 we also used the 

model.avg function of the MuMIn package to calculate a weighted mean of the coefficients 

of the best-ranked models together representing a cumulative weight-sum of 0.95 (i.e. a 

95% confidence subset). Supplementary Table 2 (model-averaged) and main text Table 2 

(best-ranked) model parameters are very similar. Supplementary Tables 3 and 4 report the 

complete sets of carbon gains and loss models that contribute to the model average results.

The model-average results show the same continental differences in sensitivity to 

environmental variables as the best-ranked models. From 2000 to 2015, carbon gains 

increased due to CO2-change (+3.7% in both the averaged and the best-ranked models, both 

continents), while temperature rises led to a decline in gains, which especially had an effect 

in the Amazon (-1.14% and -1.07% due to MAT and MAT-change together in the averaged 

and best-ranked model respectively). Finally, both models result in similar predictions of the 

net carbon sink over the 1983-2040 period: the future net sink trend in Africa is -0.004 and 

-0.003 in the best-ranked and averaged models respectively; in Amazonia the future net sink 

trend is -0.013 and -0.011 in the best-ranked and averaged models respectively. The Amazon 

sink reaches zero in 2041 using model-averaged parameters compared to 2035 using the 

best-ranked models.

Estimating Future Predictor Variables to 2040

To calculate future modelled trends in carbon gains and losses (Figure 3), we first estimated 

annual records of the predictor variables (CO2-change, MAT, MAT-change, MCWD, WD 

and CRT) to 2040 (Extended Data Figure 5).

To do so we first calculated annual records for the period of the observed trends for each plot 

location (i.e. from 1983-2014 in Africa and 1983-2011.5 in Amazonia). For CO2-change, 

MAT, MAT-change and MCWD we extracted monthly records as described in section 
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Predictor Variable Estimates (above). For WD and CRT we interpolated to a 0.1-yr period 

within each census interval (as in Figure 1). Then, we calculated the mean annual value of 

each predictor variable from the 244 plot locations in Africa, and separately the mean annual 

value of each predictor variable from the 321 plot locations in Amazonia (i.e. solid lines in 

ED Figure 5). For each predictor variable, we calculated annual records of upper and lower 

confidence intervals by respectively adding and subtracting 2σ to the mean of each annual 

value (shaded area in ED Figure 5).

Secondly, for each predictor variable we parameterised a linear model for each continent 

using the annual records for the period of the observed trends. Then for each predictor 

variable, the continent-specific linear regression models were used to estimate predictor 

variables for each plot location from 2014 to 2040 in Africa and from 2011.5 to 2040 

in the Amazon (dotted lines in Extended Data Figure 5). For each predictor variable, we 

calculated annual records of upper and lower confidence intervals by respectively adding 

and subtracting 2σ to the slope of each linear model (shaded area around dotted lines in ED 

Figure 5).

Estimating Future Carbon Gain, Loss and Net Carbon Sink

We used the minimum adequate models (Table 2) to predict annual records of carbon 

gain, carbon loss and the carbon sink for the plot networks in Africa and Amazonia 

over the period 1983 through to 2040 (Figure 3). We extracted fitted carbon gain and 

loss values using the mean annual records for each predictor variable (predictSE.lme 

function, AICcmodavg package100). Upper and lower confidence intervals were calculated 

accounting for uncertainties in the model (both fixed and random effects) and predictor 

variables using the 2σ upper and lower confidence interval for each predictor variable (using 

predictSE.lme). Finally the net carbon sink was calculated by subtracting the losses from the 

gains. To obtain sink values in the future in Table 1, annual per unit area sink predictions, 

from Figure 3, were averaged over each decade and multiplied by the future forest area, as 

described above.

To test the sensitivity of the future predictions in Figure 3, we reran the analysis by 

modifying future trajectories of predictor variables one at a time, while keeping all others 

the same, to assess the mean C sink over 2010-15 and 2030 (averaging at 2030 is not 

necessary as trends in MAT-change and MCWD, which largely drive modelled inter-annual 

variability, are estimated as smooth trends in the future). For each predictor variable, we 

explored potential impacts of the likely bounds of possibility, (i) by taking the steepest 

slope of either continent from the extrapolated trends, doubling this slope and applying 

it on both continents; and (ii) by taking the steepest slope of either continent from the 

extrapolated trends, taking the opposite of this slope and applying it on both continents. 

These bounds represent deviations of >2 sigma from observed trends. Change in MAT also 

alters MAT-change, so we present the sensitivity of both parameters together.

Additionally, for CO2-change and MAT, we also calculated future slopes under three future 

Representative Concentration Pathway (RCP) scenarios38 with different radiative forcing in 

2100: RCP2.6, 4.5, and 8.5. Future RCP CO2-change slopes (ppm yr-1) were calculated 

using RCP CO2 concentration data for the years between 2015 and 2030 inclusive. Future 
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RCP MAT and MAT-change slopes were obtained from plot-specific MAT values extracted 

from downscaled 30 seconds resolution data for current80 and future51 climate from 

WorldClim, and averaged over 19 CMIP5 models. We subtracted the mean 2040-2060 

climate MAT (i.e. 2050) from the mean 1970-2000 climate MAT (i.e. 1985), divided by 65 

years to give the annual rate of change. We then calculated a mean slope over all plots per 

continent. Finally, to avoid mismatches between RCP-derived values of CO2 and MAT and 

the observed records we removed any difference in intercept between the RCP trends and 

observed trends, so the RCP trends were a continuation of the end-point of the observed 

trajectory in 2015. We did not estimate the sensitivity of MCWD under the RCP scenarios, 

because the CMIP5 model means do not show drought trends for our forest plot networks, 

unlike rain gauge data for the recent past, and thus would show little or no sensitivity to 

MCWD. For each modified slope, Supplementary Table 5 reports the absolute decline in 

the sink in each continent in 2030 compared to the 2010-15 mean sink. This shows that 

the future sink strength is sensitive to future environmental conditions, but within both RCP 

scenarios and our bounds of possibility we show a decline in the sink strength in both 

continents over the 2020s.

Extended Data

Extended Data Figure 1. Map showing the locations of the 244 plots included in this study.
Dark green represents all lowland closed-canopy forests, submontane forests and forest-

agriculture mosaics; light green shows swamp forests and mangroves, blue circles represent 

plot clusters, referred to by three-letter codes (see Supplementary Table 1 for the full list of 

plots). Clusters <50 km apart are shown as one point for display only, with the circlesize 

corresponding to sampling effort in terms of hectares monitored. Land cover data is from 

The Land Cover Map for Africa in the Year 2000 (GLC2000 database)101,102. This map 
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was created using the R statistical platform, version 3.2.1 (ref.62), which is under the GNU 

Public License.

Extended Data Figure 2. Long-term above-ground carbon dynamics of 244 African intact 
tropical forest inventory plots.
Points in the scatterplots indicate the mid-census interval date, with horizontal bars 

connecting the start and end date for each census interval for net aboveground biomass 

carbon change (a), carbon gains (from woody production from tree growth and newly 

recruited stems) (b), and carbon losses (from tree mortality) (c). Examples of time series 

for three individual plots are shown in purple, yellow and green. Associated histograms 

show the distribution of the plot-level net aboveground biomass carbon (d) (with a three-

parameter Weibull probability density distribution fitted in blue, showing the carbon sink is 

significantly larger than zero; one-tail t-test: p<0.001), carbon gains (e), and carbon losses 

(f).
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Extended Data Figure 3. Akaike’s Information Criterion (AIC) from correlations between 
the carbon gain in tropical forest inventory plots and changes in either atmospheric CO2, 
temperature (as MAT) or drought (as MCWD), each calculated over ever-longer prior intervals.
Panels show AIC from linear mixed effects models of carbon gains from 565 plots 

and corresponding, atmospheric CO2 (CO2-change) (a), Mean Annual Temperature (MAT-

change) (b), and Maximum Climatological Water Deficit (MCWD-change) (c). For CO2 

the AIC minimum was observed when predicting the carbon gain from the change in CO2 

calculated over a 56 year long prior interval length. We use this length of time to calculate 

our CO2-change parameter. Such a value is expected because forest stands will respond 
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most strongly to CO2 when most individuals have grown under the new rapidly changing 

condition, which should be at its maximum at a time approximately equivalent to the 

carbon residence time of a forest stand30,90 (mean of 62 years in this pooled African and 

Amazonian dataset). For MAT the AIC minimum was 5 years, which we use as the prior 

interval to calculate our MAT-change parameter. This length is consistent with experiments 

showing temperature acclimation of leaf- and plant-level photosynthetic and respiration 

processes over approximately half-decadal timescales31,91. For MCWD the AIC minimum 

is not obvious, while the slope of the correlation, shown in panel (d), shows no overall 

trend and oscillates between positive or negative values, meaning there is no relationship 

between carbon gains and the change in MCWD over intervals longer than 1 year; thus 

MCWD-change is not included in our models. This result suggests that once a drought ends, 

its impact on tree growth fades rapidly, as seen in other studies14,92. Also in the moist tropics 

wet-season rainfall is expected to re-charge soil water, hence lagged impacts of droughts are 

not expected.
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Extended Data Figure 4. Potential forest dynamics-related drivers of carbon gains and losses in 
structurally intact African and Amazonian tropical forest inventory plots.
The aboveground carbon gains, from woody production (a-b), and aboveground carbon 

losses, from tree mortality (c-d), are plotted against the carbon residence time (CRT), and 

wood density (WD), for African (blue) and Amazonian (brown) inventory plots. Linear 

mixed effect models were performed with census intervals (n=1566) nested within plots 

(n=565) to avoid pseudo-replication, using an empirically derived weighting based on 

interval length and plot area (see methods). Significant regression lines for the complete 

dataset are shown as a solid line; non-significant regressions as a dashed line. Each dot 

represents a time-weighted mean plot-level value; transparency of the inner part of the dot 

represents total monitoring length, with empty circles corresponding to plots monitored 

for ≤ 5 years and solid circles for plots monitored for >20 years. Carbon loss data are 
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presented untransformed for comparison with carbon gains; linear mixed effects models on 

transformed data to fit normality assumptions do not change the significance of the results. 

Note, CRT is calculated differently for the carbon gains and losses models (see methods).

Extended Data Figure 5. Trends in predictor variables used to estimate long-term trends in 
above-ground carbon gains, carbon losses and the resulting net carbon sink in African and 
Amazonian intact tropical forest plot networks.
Mean annual CO2-change (a), MAT (b), MAT-change (c), MCWD (d), CRT (e), and WD (f) 
for African plot locations in blue, and corresponding Amazon plots locations in brown (g-l). 
Solid lines for CO2-change, MAT, MAT-change, MCWD represent obervational data, and 

solid lines for CRT and WD represent plot means and a time window where >75% of the 

plots were monitored, long-dashed lines are plot means were <75% of plots were monitored. 

Dotted lines are future values estimated from linear trends on the 1983-2014 (Africa) or 

1983-2011 (Amazon) data (slope and p-value reported in each panel), see methods for 

details. Upper and lower confidence intervals (shaded area) for the past (Africa: 1983-2014; 

Amazonia: 1983-2011) are calculated by respectively adding and subtracting 2σ to the mean 

of each annual value. Upper and lower confidence intervals for the future were estimated by 

adding and subtracting 2σ from the slope of the regression model.
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Extended Data Figure 6. The change in carbon losses versus carbon residence time (CRT) of 
inventory plots in Africa and Amazonia.
For plots with two census intervals, we calculated the change in carbon losses (∆losses, in 

Mg C ha-1 yr-1 yr-1) as the carbon losses (Mg C ha-1 yr-1) of the second interval minus the 

carbon losses of the first interval, divided by the difference in mid-interval dates. For plots 

with more than two intervals, we calculated the change in carbon losses for each pair of 

subsequent intervals, then calculated the plot-level mean over all pairs, weighted by the time 

length between mid-interval dates. This analysis includes only plots with at least two census 

intervals and monitored for ≥20 years (i.e. roughly one-third of the mean CRT of the pooled 

African and Amazon dataset; n = 116). Breakpoint regression was used to assess the CRT 

length below which forest carbon losses begin to increase. Plots with CRT <77 years show a 
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recent long-term increase in carbon losses, longer CRT plots do not. Blue points are African 

plots, brown points are Amazonian plots.

Extended Data Figure 7. Trends in African tropical forest net aboveground live biomass carbon, 
carbon gains and carbon losses, calculated for the last 15 years of the twentieth century (left 
panels a-c) and the first 15 years of the twenty-first century (right panels d-f).
Plots were selected from the full dataset if their census intervals cover at least 50% of 

the respective time windows, i.e. they are intensely monitored (n=56 plots for 1985-2000, 

and n=134 plots for 2000-2015, respectively). Solid lines show mean values, shading 

corresponds to the 95% CI, as calculated in Figure 1. Dashed lines, slopes and p-values are 

from linear mixed effects models, as in Figure 1. The data shows a difference compared to 

Figure 1, notably the sink decline after ~2010 driven by rising carbon losses. This is because 

in Figure 1 we include all available plots over the 1983-2015 window, which includes 
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clusters of plots monitored only in the 2010s that had low carbon loss and high carbon sink 

values.

Extended Data Figure 8. Twenty-first century trends in aboveground biomass carbon losses from 
African tropical forest inventory plots with either long (left panels) or short (right panels) carbon 
residence time.
Upper panels include all plots, i.e. as in Figure 1, but split into a long-CRT group (a), and a 

short-CRT group (b), each containing half the 244 plots. Lower panels restrict plots to those 

spanning >50% of the time window, i.e. intensely monitored plots, as in Extended Data 

Figure 7, but split into a long-CRT group (c), and a short-CRT group (d), each containing 

half the 134 plots. Solid lines indicate mean values, shading the 95% CI, as for Figure 1. 

Dashed lines, slopes and p-values are from linear mixed-effects models, as for Figure 1. 

Carbon losses increase at a higher rate in the short-CRT than the long-CRT group of plots, in 

both datasets, although this increase is not statistically significant.
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Extended Data Table 1

Models to predict carbon gains and losses in African and Amazonian tropical forests, 

including only environmental variables, showing long-term trends that impact theory-driven 

models of photosynthesis and respiration. Significant values in bold.

Carbon gains, Mg C ha-1 yr-1

Predictor variable Parameter value Standard Error t-value p-value

(Intercept) 4.694 0.739 6.354 0.000

CO2 (ppm) 0.005 0.001 3.196 0.001

MAT (°C) -0.143 0.021 -6.844 0.000

MCWD (mm x1000) -1.232 0.210 -5.878 0.000

Carbon losses, Mg C ha-1 yr-1 *

Predictor variable Parameter value Standard Error t-value p-value

(Intercept) 0.926 1.854 0.500 0.617

CO2 (ppm) 0.004 0.004 0.947 0.344

MAT (°C) -0.011 0.044 -0.249 0.804

MCWD (mm x1000) -0.498 0.505 -0.985 0.325

*
Carbon loss values were normalized via power-law transformation, λ= 0.361.

Extended Data Table 2

Forest area estimates used to calculate total continental forest sink.

Period intact forest area (Mha)*

Africa Amazon Southeast Asia Pan-tropics

1980 671.5 958.3 233.6 1863.4

1985 634.3 921.1 207.4 1762.8

1990 600.2 885.2 190.6 1676.0

1995 565.9 851.1 163.5 1580.5

2000 531.8 817.2 136.9 1485.9

2005 504.8 784.5 129.2 1418.5

2010 477.8 756.3 118.4 1352.5

2015 450.5 726.7 101.5 1278.7

2020 425.5 698.5 90.1 1214.2

2025 402.0 671.5 80.0 1153.4

2030 379.7 645.4 71.0 1096.1

2035 358.6 620.4 63.0 1042.1

2040 338.8 596.4 56.0 991.1

*
Intact forest area for 1990, 2000 and 2007 is published in ref.1 (i.e. the total forest area minus forest regrowth). To 

estimate intact forest area for the other years in this table, we fitted exponential models for each continent using the 
published data. intact forest area (Mha).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Long-term carbon dynamics of structurally intact tropical forests in Africa (blue) and 
Amazonia (brown).
Trends in net aboveground live biomass carbon sink (a), carbon gains to the system from 

wood production (b), and carbon losses from the system from tree mortality (c), measured 

in 244 African inventory plots (blue lines) and contrasting published6 Amazonian inventory 

data (brown lines; 321 plots). Shading corresponds to the 95% CI, with less transparent 

shading indicating a greater number of plots monitored in that year (most transparent: 

minimum 25 plots monitored). The CI for the Amazonian dataset is omitted for clarity, but 
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can be seen in Figure 3. Slopes and p-values are from linear mixed effects models (see 

Methods).
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Figure 2. Potential environmental drivers of carbon gains and losses in structurally intact old-
growth African and Amazonian tropical forests.
Aboveground carbon gains, from woody production (a-c), and aboveground carbon losses, 

from tree mortality (d-f), presented as time-weighted mean values for each plot, i.e. 

each census within a plot is weighted by its length, against the corresponding values 

of atmospheric carbon dioxide concentration (CO2), mean annual air temperature (MAT) 

and drought (as Maximum Climatological Water Deficit, MCWD), for African (blue) and 

Amazonian (brown) inventory plots. Each data point therefore represents an inventory plot, 

for visual clarity, and the level of transparency represents the total monitoring length, with 

empty circles corresponding to plots monitored for ≤ 5 years and solid circles for plots 

monitored for >20 years. Solid lines show significant trends, dashed lines non-significant 

trends calculated using linear mixed effect models with census intervals (n=1566) nested 

within plots (n=565), using an empirically derived weighting based on interval length and 

plot area, on the untransformed pooled Africa and Amazon dataset (see Methods). Slopes 

and p-values are from the same linear mixed effects models. Carbon loss data and models 

are presented untransformed for comparison with carbon gains, but transformation is needed 

to fit normality assumptions; linear mixed effects models on transformed carbon loss data 

does not change the significance of the results, nor does including all three parameters and 

transformed data in a model (see Extended Data Table 1).
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Figure 3. Modelled past and future carbon dynamics of structurally intact tropical forests in 
Africa and Amazonia.
Predictions of net aboveground live biomass carbon sink (a,d), carbon gains (b,e), and 

carbon losses (c,f), for African (left panels) and Amazonian (right panels) plot inventory 

networks, based on CO2-change, Mean Annual Temperature, Mean Annual Temperature-

change, drought (as Maximum Climatological Water Deficit), plot wood density, and plot 

carbon residence time, using observations in Africa until 2014 and Amazonia until 2011.5, 

and extrapolations of prior trends to 2040. Model predictions are in blue (Africa) and brown 

(Amazon), with solid lines spanning the window when ≥75% of plots were monitored to 

show model consistency with the observed trends, and shading showing upper and lower 

confidence intervals accounting for uncertainties in the model (both fixed and random 

effects) and uncertainties in the predictor variables. Light grey lines and grey shading are the 

mean and 95% CI of the observations from the African and Amazonian plot networks.
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Table 1
Carbon sink in intact forests in Africa, Amazonia and the pan-tropics: 1980-2015 and 
predictions to 2040.

Mean values in bold, future predictions in italics, uncertainty in parentheses, 95% bootstrapped confidence 

intervals for 1980-2015, and 2σ for the predictions (2010-2040).

Period No. Per unit area aboveground live biomass C sink Total C sink *

plots (Mg C ha-1 yr-1) (Pg C yr-1)

Af. Am. Africa Amazon Pan-tropics† Africa Amazon Pan-tropics†

1980-1990 45 73 0.33 
(0.06-0.63)

0.35 
(0.06-0.59)

0.35 
(0.07-0.62)

0.28 
(0.05-0.53)

0.49 
(0.08-0.82)

0.87 
(0.16-1.52)

1990-2000 96 172 0.67 
(0.43-0.89)

0.53 
(0.42-0.65)

0.57
(0.39-0.74)

0.50 
(0.32-0.66)

0.68 
(0.54-0.83)

1.26 
(0.88-1.63)

2000-2010 194 291 0.70
(0.55-0.84) 0.38 (0.26-0.48) 0.50 (0.35-0.64) 0.46

(0.37-0.56)
0.45
(0.31-0.57)

0.99 
(0.70-1.25)

2010-2015 184 172 0.66 
(0.40-0.91)

0.24 
(0.00-0.47)

0.40 
(0.15-0.65)

0.40
(0.24-0.56)

0.27 
(0.00-0.52)

0.73 
(0.25-1.18)

2010-2020‡ - - 0.63 
(0.36-0.89)

0.23 
(-0.05-0.50)

0.38 
(0.11-0.65)

0.37 
(0.21-0.53)

0.25 
(-0.05-0.54)

0.68 
(0.17-1.16)

2020-2030‡ - - 0.59 
(0.24-0.93)

0.12 
(-0.29-0.51)

0.30 
(-0.08-0.67)

0.31
(0.13-0.49)

0.12 
(-0.29-0.52)

0.47
(-0.15-1.07)

2030-2040‡ - - 0.55 (
0.08-0.99)

0.00 
(-0.54-0.49)

0.21 
(-0.29-0.67)

0.26 
(0.04-0.47)

0.00 
(-0.50-0.46)

0.29 
(-0.46-0.97)

*
Total Continental C sink is the per unit area aboveground C sink multiplied by intact forest area for 1990-2010 (from ref.1, see Extended Data 

Table 2) and continent specific extrapolations to 2040. Total Continental C sink includes continentspecific estimates of trees <100 mm DBH, lianas 
and roots (see Methods).

†
Pan-tropical aboveground live biomass C sink is the area-weighted mean of African, Amazonian and Southeast Asian sink values. Southeast Asian 

values were from published per unit area carbon sink data15 (n=49 plots) for 1990-2015, with 1980-1990 assumed to be the same as 1990-2000 
due very low sample sizes. Pan-tropical total C sink is the sum of African, Amazonian and Southeast Asian total continental carbon sink values. 
The continental sink in Southeast Asia is a modest and declining contribution to the pan-tropical sink, due to the very small area of intact forest 

remaining, at 0.11, 0.08, 0.07 and 0.06 Pg C yr-1 in the 1980s, 1990s, 2000s and 2010s, hence uncertainty in the Southeast Asian sink cannot 
reverse the pantropical declining sink trend.

‡
Per unit area total C sink for 2010-2020, 2020-2030 and 2030-2040 was predicted using parameters from Table 2, except for the 2010-2020 sink 

in Africa which is the mean of the measured sink from 2010-2015 and the modelled sink from 2015-2020. For the Asian sink we assumed the 
parameters as for Africa, as Asian forest median CRT is 61 years, close to African median, 63 years.
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Table 2
Minimum adequate models to predict carbon gains and losses in African and Amazonian 
tropical forests. These are the best ranked gains and loss models.

Where continental values differ, those for Africa are reported first, followed by Amazonian values.

Carbon gains, Mg C ha-1 yr-1

Predictor variable Parameter value Standard Error t-value p-value 2000-2015 change in gains (%) *

(Intercept) 5.255 | 5.395 0.603 | 0.614 8.7 | 8.8 <0.001 -

CO2-change (ppm yr-1) † 0.238 0.096 2.5 0.013 3.69% | 3.71%

MAT (°C) -0.083 0.025 -3.3 0.001 -0.67% | -1.07%

MAT-change (°C yr-1) ‡ -1.243 0.233 -5.3 <0.001 0.58% | 0.00% §

MCWD (mm x1000) -0.405 | -1.391 0.381 | 0.24 -1.1 | -5.8 0.289 | <0.001 -0.52% | -2.73%

WD (g cm-3) -1.295 0.530 -2.4 0.015 0.05% | 0.00%

Carbon losses, Mg C ha-1 yr-1 ║

Predictor variable Parameter value Standard Error t-value p-value 2000-2015 change in losses (%) *

(Intercept) 1.216 0.086 14.1 <0.001 -

CO2-change (ppm yr-1) † 0.130 0.059 2.2 0.026 11.38% | 14.81%

MAT-change (°C yr-1) 0.766 0.162 4.7 <0.001 -1.56% | 0.00%

MCWD (mm x10000) ‡ -0.232 0.107 -2.2 0.030 -1.21% | -2.42%

CRT (yr) -0.003 0.001 -6.1 <0.001 -0.57% | 1.39%

*
The 2000-2015 change in gains/losses for each predictor variable was estimated allowing only the focal predictor to vary; this change was then 

expressed as a percentage of the annual gains/losses in the year 2000 allowing all predictors to vary.

†
Change over the past 56 years.

‡
Change over the past 5 years.

§
A positive value for Africa indicates that MAT increased more slowly over 2000-2015 compared to the mean increase over 1983-2015, therefore 

contributing to an increase in gains; a zero value fpr Amazonia indicates that the rate of MAT increase was the same over 2000-2015 as the mean 
increase over 1983-2015.

║
Carbon loss values were normalized via power-law transformation, λ= 0.361.
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