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Summary:

Regulatory networks that maintain functional, differentiated cell states are often dysregulated in 

tumor development. Here, we use single-cell epigenomics to profile chromatin state transitions in 

a mouse model of lung adenocarcinoma (LUAD). We identify an epigenomic continuum 

representing loss of cellular identity and progression towards a metastatic state. We define co-

accessible regulatory programs and infer key activating and repressive chromatin regulators of 
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these cell states. Among these co-accessibility programs, we identify a pre-metastatic transition, 

characterized by activation of RUNX transcription factors, which mediates extracellular matrix 

remodeling to promote metastasis and is predictive of survival across human LUAD patients. 

Together, these results demonstrate the power of single-cell epigenomics to identify regulatory 

programs to uncover mechanisms and key biomarkers of tumor progression.

Graphical Abstract

Introduction:

Cancer occurs through the acquisition of genetic mutations (Vogelstein et al., 2013) leading 

to the disruption of lineage-specifying transcription factors (TFs), among other effects 

(Bradner et al., 2017; Spitz and Furlong, 2012). Dysregulation of these regulatory programs 

is influenced by extensive selection in response to genetic, epigenetic, and environmental 

factors (Flavahan et al., 2017; Hanahan and Weinberg, 2000), which promote tumor 

development by altering lineage restriction and cell identity (Flavahan et al., 2017; Lee and 

Young, 2013; Spitz and Furlong, 2012; Sur and Taipale, 2016). These selective pressures 

begin during the initial transformation of normal cells and continue through all stages of 

tumor development, resulting in a diverse and heterogeneous regulatory landscape (Chen et 

al., 2014; Dagogo-Jack and Shaw, 2018).
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Genetically-engineered mouse models (GEMMs) of cancer provide an opportunity to study 

tumor development in experimentally-defined conditions. Mice from the 

KrasLSL(lox-stop-lox)-G12D/+ Trp53fl/fl (KP) model develop LUAD and progress to metastasis 

in the absence of frequent additional driver somatic mutations (McFadden et al., 2016; 

Westcott et al., 2015; Birkbak and McGranahan, 2020). This model reproducibly mirrors 

human LUAD progression (Jackson et al., 2001, 2005), which is one of the leading causes of 

cancer-related deaths worldwide (Dietel et al., 2016; Herbst et al., 2018). During tumor 

development, KP cancer cells exhibit substantial transcriptional dysregulation including 

altered expression of the lung lineage factor Nkx2.1 (Chen et al., 2014; Winslow et al., 

2011). However, the full repertoire of TFs driving the disruption of these regulatory 

programs has not been established. Further characterization of these regulatory transitions 

would provide mechanistic insights and opportunities for the identification of novel 

biomarkers and treatment strategies for LUAD patients.

Epigenomic analysis can help define regulatory state transitions dictating normal and altered 

cellular programs. For example, studies measuring DNA methylation (Klughammer et al., 

2018), histone modifications (Dubuc et al., 2013; Noberini et al., 2018) and chromatin 

accessibility (Corces et al., 2018; Denny et al., 2016; Latil et al., 2017; Roe et al., 2017) 

have defined cell state changes during tumor progression and metastasis. However, these 

prior studies have predominantly measured bulk profiles that average over the genetic and 

regulatory heterogeneity of tumor cells present in the sample. Single-cell methods have 

provided new insights into the genetic and transcriptional states of primary tumors (Flavahan 

et al., 2017; Ren et al., 2018). Recent advances in single-cell epigenomics have opened new 

possibilities to further define regulatory states within single-cells (Buenrostro et al., 2015a; 

Cusanovich et al., 2015; Gaiti et al., 2019; Hou et al., 2016; Shema et al., 2019). In 

particular, methods to measure chromatin accessibility using single-cell Assay for 

Transposase Accessible Chromatin (scATAC-seq) provide an opportunity to map the activity 

of cis- and trans-regulators through tumor development (Buenrostro et al., 2018; Cusanovich 

et al., 2018).

Here, we use scATAC-seq to characterize tumor development from initiation to metastasis in 

the KP model. To do this, we first optimized single-cell combinatorial indexing ATAC-seq 

(sciATAC-seq) (Cusanovich et al., 2015) to profile normal lung cells and cancer cells 

derived from primary tumors and metastases. We utilize these single-cell profiles to identify 

modules of differential TF activity, assign relevant module-associated peaks to genes, and 

create a framework to explore TF-regulated chromatin accessibility patterns in KP tumor 

development. Overall, we characterize heterogeneous phenotypic landscapes that arise in 

cancer which can lead to plastic cell states and selection for epigenomic alterations, serving 

as drivers for tumor progression and metastasis.

Results

Epigenomic analysis of KP cancer cells at single-cell resolution

To generate single-cell epigenomic data from KP-derived cancer cells, we developed an 

improved protocol for sciATAC-seq, which utilizes dual barcoding during transposition and 

PCR (Figure 1A,B) (Cusanovich et al., 2015). This method provides a flexible platform for 
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multiplexing samples using barcoded Tn5 transposition in each single-cell experiment. To 

increase the throughput and yield of previously described methods (Cusanovich et al., 2015; 

Pliner et al., 2018; Preissl et al., 2018), we i) removed fluorescence-activated cell sorting 

(FACS) of nuclei, ii) combined recent protocol developments (Chen et al., 2018; Lake et al., 

2018; Preissl et al., 2018), iii) expanded the barcoding space, and iv) optimized fixation 

(0.1% formaldehyde), transposition, and reverse crosslinking conditions (Figure S1A-G, 

STAR Methods, Table S1). In species mixing experiments, this approach captured 33,663 

fragments per cell, with a cell doublet rate of 7.3% (Figure 1C-E and Figure S1F-G).

We then used this approach to study tumor development in the KP model. To isolate cancer 

cells by FACS, we introduced a Rosa26-LSL-tdTomato reporter allele into KP mice (KPT) 

(Figure 1A) (Madisen et al., 2010). We performed intratracheal instillation with adenovirus 

(Ad5-SPC-Cre) to initiate lung tumors in alveolar type II (AT2) cells where mice developed 

late-stage tumors and metastases 30-35 weeks post-infection. Analysis of late-stage 

histological sections using a deep learning-based algorithm (STAR Methods) identified 

extensive intratumoral heterogeneity, reflecting a range of tumor grades (grades 1-4) (Figure 

1F) (DuPage et al., 2009). We also performed immunohistochemistry (IHC) on KPT tumors 

for the well-studied tumor progression markers NKX2.1 and HMGA2 (Winslow et al., 2011) 

as well as tdTomato to confirm tumors retain expression (Figure 1F; Figure S1H; 

Supplementary Data 1).

To investigate the diversity of cell states in the KPT model, we applied the improved 

sciATAC-seq protocol to normal lung and FACS-isolated tdTom+ cancer cells in late-stage 

tumors (Figure S2A) derived from either individually dissected tumors (Figure 1G), whole 

tumor-bearing lungs, or metastases (thymus, lymph node, liver) (Table S1). Altogether, we 

collected a total of 17,274 high-quality epigenomic profiles across 44 individual samples, 

comprising 13,670 cancer cells (13,070 tumor-derived and 600 metastatic cells) and 3,604 

normal lung cells (STAR Methods). From these data, we obtained an average fraction of 

reads in peaks (FRIP) of 63.7% and 18,312 unique nuclear fragments per cell. We 

qualitatively confirmed the high-purity of cancer cells by visually inspecting the Trp53 locus 

(Figure S2B). To analyze cell state diversity, we first computed the chromatin accessibility 

across all possible sequence k-mers and TF motifs per cell (Schep et al., 2017), which we 

refer to as the “TF motif score” in the remainder of the text. We visualized these data using 

Uniform Manifold Approximation and Projection (UMAP) (STAR Methods) (McInnes et 

al., 2018) (Figure 2A and Figure S2C); single-cell data can be explored interactively using 

our web resource: https://buenrostrolab.shinyapps.io/lungATAC/). Single-cell grouping in 

UMAP space was not driven by FRIP or sequencing depth (Figure S2D,E).

Cell types and states across normal and cancer cells from the lung

In order to compare KPT cancer cells to normal cell states, we first annotated the normal cell 

population which clustered into 12 distinct subsets (Figure S2G and Table S1). To identify 

each cluster, we quantified chromatin accessibility surrounding annotated transcription start 

sites (TSSs) to infer differences around individual genes (hereafter referred to as “gene 

score”) using an exponential decay scoring function that weights aligned transposase 

fragments by their proximity to each gene’s TSS (Figure 2B) (Granja et al., 2019; Satpathy 
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et al., 2019) (STAR Methods). To validate this approach, we found that transcriptional 

activity largely correlated with calculated gene scores in published bulk ATAC-seq and 

RNA-seq data from LUAD tumors (Figure S2F) (Corces et al., 2018). For visualization, we 

smoothed gene scores using a k-nearest-neighbor (k-NN) approach (k = 10; STAR 

Methods). Gene scores of known marker genes of distinct cell types followed expected 

patterns across clusters, including Cd45 (immune), Cd19 (B cells), and Vimentin 
(mesenchymal and macrophage cells) (Figure 2C-E). We then used gene scores for de novo 
assignment of cell identities for each cluster including Epcam-positive lung cells, namely, 

alveolar type II (AT2) (Sftpc), alveolar type I (AT1) (Hopx), club (Foxj1), and ciliated 

(Scgb1a1) cells (Figure 2F,G, Figure S2G,H and Table S1) (Cohen et al., 2018; Lambrechts 

et al., 2018; Treutlein et al., 2014) and confirmed the assignments by computationally 

matching these data to single-cell RNA-seq (scRNA-seq) data from normal lung tissue 

(Figure S2I) (Cohen et al., 2018).

The sciATAC-seq profiles of single cancer cells isolated from the KPT model largely 

spanned a continuous epigenomic progression from profiles reflecting normal AT2 cells (the 

presumed cell-of-origin in this model (Sutherland et al., 2014)) to profiles present in thymic, 

lymph node and liver metastases (Figure 2A,G). The epigenomic states present in cancer 

cells from KPT tumors were highly heterogeneous, while metastatic cancer cells exhibited 

reduced heterogeneity (Figure 2G and Figure S2J). Interestingly, rare primary tumor-derived 

populations across individual samples overlapped with cancer cells isolated from metastases 

and, strikingly, there were no apparent motif differences between the “metastatic-like” and 

distal metastatic cancer cells (Figure 2H and Figure S2K). IHC analyses confirmed that 

Grade 4 regions were commonly small, located at central regions of the tumor, and positive 

for VIM (a gene score feature that specifically marks the metastatic cluster) (Figure 2E,I). 

These results suggest that cells activate a metastatic regulatory program within the primary 

tumor, supporting data that metastatic seeding occurs late in KP progression and requires 

local remodeling prior to dissemination (Caswell et al., 2014). However, we cannot exclude 

a model in which these metastatic-like cells arise from reseeded metastatic cells. Altogether, 

our analysis of KPT tumors shows a high degree of heterogeneity, with cancer cells isolated 

from primary tumors occupying a continuum of epigenomic states from the cell-of-origin to 

cells with presumed metastatic potential.

Loss of lineage identity during tumor development

AT2 cells are believed to be a common cell-of-origin in LUAD, as evidenced predominantly 

by the finding that SPC-expressing cells can give rise to LUAD in GEMMs (Cheung and 

Nguyen, 2015; Lin et al., 2012; Mainardi et al., 2014; Sutherland et al., 2014; Xu et al., 

2012). The alveolar differentiation hierarchy remains an active area of investigation, 

including studies describing rare bipotent progenitor cells as sharing expression of AT1 and 

AT2 markers (Figure 3A) (Treutlein et al., 2014). Notably, AT2 cells can transdifferentiate 

into AT1 cells in response to injury, cell death and altered WNT-signaling in the niche 

(Desai et al., 2014; Jain et al., 2015; Nabhan et al., 2018; Wang et al., 2018). In the UMAP 

embedding, we found a subset of KPT cells overlapped with normal AT2 cells and others 

with normal AT1 cells, motivating an analysis of cell identity during tumor development 

(Figure 2A,G).
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In order to characterize KP epigenomic states with respect to alveolar identity, we first 

defined gene and TF motif score differences between normal AT1 and AT2 cells. Differential 

TF motif score analysis and hierarchical clustering identified higher CEBPA TF motif 

accessibility in AT2 cells, in contrast to higher TEAD and GATA TF motif scores in AT1 

cells (Figure 3B and Figure S3A,B). Furthermore, differential analysis of gene scores 

between AT1 and AT2 cells revealed Cebpa (a lineage-defining TF) and Cav1 (a caveolae-

associated protein) as the most significant AT2 and AT1-specific gene score markers, 

respectively (Figure 3C, Figure S3C and Table S2) (Campbell et al., 1999; Treutlein et al., 

2014; Wang et al., 2018). We used AT1, AT2 and tumor gene score signatures (n = 1,393 

genes) to compare KPT-derived cancer cells to alveolar cells. Interestingly, cancer cells at 

the left side of the continuum scored highly for both AT1- and AT2-like signatures, while 

cancer cells with late-stage features show reduced correlation, suggesting a global loss of 

lineage identity (Figure 3D-F and Figure S3D). KPT cancer cells expressed markers of both 

AT1 (HOPX, PDPN) and AT2 (SPC, SFTPB) cell identity, including at earlier time points, 

suggesting that transformation induces lineage infidelity (Figure 3G-I and Figure S3E-G) 

(Ge et al., 2017). Analysis of marker gene scores and TF motif scores, as well as scoring 

cancer cells with scRNA-seq signatures from normal lung development (Figure S3H-J), 

were consistent with this finding (Cohen et al., 2018; Mund et al., 2008). Together, these 

data show that KP cancer cells lose AT2 lineage identity through tumor progression.

Based on these findings, we propose that primary cancer cells adopt an altered identity 

arising from either (1) transformation of an immature cell, (2) transdifferentiation of AT2-

like cells during tumor progression, or (3) dedifferentiation. To assess these possibilities, we 

performed a droplet-based scATACseq experiment on 4,610 cancer cells isolated at 8 weeks 

post-tumor initiation (Figure 3H-J) (Lareau et al., 2019) and projected these epigenomic 

profiles onto the coordinates of the original UMAP (Figure 3J). Cancer cells from the early 

time point exhibited epigenomic profiles that largely overlapped with normal AT2 cells, 

suggesting that early cancer cells maintain an AT2 identity and heterogeneity arises over 

time in the KPT model. To further validate this finding, we performed multiplexed IHC in 8-

week tumors and found that KPT tumors were largely SPC-positive (Figure 3I and Figure 

S3G) (Mainardi et al., 2014; Sutherland et al., 2014; Xu et al., 2012). Altogether, we 

propose that an immature alveolar cell identity likely arises across tumor development, 

consistent with scRNA-seq analyses performed along a tumorigenesis time course in the KP 

model (Marjanovic et al., see accompanying paper).

Co-accessibility modules reveal epigenomic dysregulation in cancer cells

Epigenomic profiling of KPT-derived cancer cells identified a spectrum of cell states 

indicating substantial heterogeneity in tumors. To study the regulatory programs underlying 

these epigenomic states, we performed unsupervised hierarchical clustering of all cancer 

cells based on significant TF motif accessibility scores (n = 350 motifs) and found that 

cancer cells reflected differences across many TF motifs including NKX2.1, CEBPA, 

TEAD4, FOS and RUNX2 (Figure 4A and Figure S4C). Importantly, the NKX2.1 TF motif 

score clearly demarcated early versus late epigenomic states (Figure 4B). To determine the 

extent of chromatin change reflected by the NKX2.1 TF score at individual peaks, we 

grouped cells as “high” or “low” for the NKX2.1 TF motif score (defined as being above or 
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below the median score, respectively). We next identified differential peaks across these two 

groups revealing extensive chromatin accessibility changes associated with tumor 

progression (n = 38,164 peaks; FDR < 10−6; Figure 4B-D).

The analysis of TF motif scores revealed numerous putative cancer cell regulators (Figure 

4A); however, TFs typically function combinatorially to drive distinct regulatory programs 

(Gerstein et al., 2012). We therefore reasoned that classification of chromatin accessibility 

changes by multiple differential TF motifs may better serve to uncover regulatory programs 

underlying disease progression. As such, we developed a computational strategy to identify 

chromatin accessibility peaks that are co-accessible and concordant with changes in TF 

motif scores (STAR Methods). Briefly, we grouped cancer cells as TF “high” or “low” based 

on each TF motif score, and for each TF motif we tested all peaks for differential 

accessibility between the “high” versus “low” cells. Next, we repeated this procedure 

independently for each non-redundant and variable TF motif (n = 67; Figure 4D,E and 

Figure S4A,B). Finally, to define co-accessibility modules, we took the union of all 

differential peaks, resulting in 74,732 chromatin accessibility changes (FDR q < 10−6), and 

clustered these differential peaks using their fold-change in mean chromatin accessibility for 

each TF “high” versus “low” comparison. This approach resulted in 11 distinct clusters of 

peaks (henceforth referred to as ‘modules’) (Figure 4F) that demonstrated extensive 

reorganization within cancer cells across tumor evolution.

Next, we sought to determine the functional identity of each module in tumor development. 

To this end, using a similar approach to determining TF motif scores, we first computed the 

enrichment of accessibility for each module’s peaks across single cells (Schep et al., 2017), 

which we refer to as module scores (STAR Methods, Figure 4G). To determine the 

biological relevance of each module, we first performed de novo assignment of well-

established KPT cancer progression markers (TF motif scores and gene scores) to modules 

(Table S3). In addition, we generated a set of module-associated genes by assigning gene 

scores to their most correlated modules. Together with further analyses later described in the 

manuscript, we assigned functional identities to the 11 modules (Figure 4F,G). Modules 6, 5, 

11, and 7 were associated with alveolar identity and earlier stages of KP transformation, 

with modules 5 and 11 most associated with tumor cells isolated from the 8-week time point 

(Figure 4G and Figure S4D,E; see Table S3 for relevant gene scores and motifs used for 

module assignments). In addition, modules 1, 9, 2, and 4 exhibited features of late-stage 

tumor progression. Interestingly, modules 1 and 9 coincided most closely with loss of 

NKX2.1 TF motif accessibility and marked all late-stage-like cancer cells, while modules 2 

and 4 were most closely associated with progression toward metastasis. To further delineate 

the identity of each module, we ranked genes by the correlation of their gene scores to 

module accessibility scores across all cancer cells and performed gene set enrichment 

analysis (GSEA) for each module-ranked gene list (Table S3). These analyses confirmed 

progressive enrichment of gene sets associated with TGF-beta signaling, secreted factors, 

and extracellular matrix (ECM) in later stage modules, with EMT hallmark genes among 

module 2- and 4-associated genes (GSEA FDR q = 0.001 and q ≤ 0.001, respectively) 

(Figure S4F,G) (Heldin et al., 2012; Katsuno et al., 2019). Modules 7 and 10 were associated 

with high HNF4A TF motif scores and gastric gene signatures, consistent with a known 

gastric-like state in the KP model (Figure S4F,H) (Snyder et al., 2013). Furthermore, module 
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8 was enriched for immune and senescence TF motifs (IRF1, SFPI1 and MITF) (Giuliano et 

al., 2010), while module 3 delineated a transition between early and late stages of cancer 

progression. Overall, we identified extensive gene regulatory alterations across the tumor 

progression spectrum that clearly delineates key protumorigenic programs.

Combined gene and motif scores reveal regulators of tumor progression

We next examined the relationship between gene activity and motif accessibility of TFs in an 

effort to determine their regulatory activity. Notably, using published bulk ATAC-seq and 

RNA-seq data (Corces et al., 2018), we found that gene scores for TFs had a stronger signal 

relative to gene expression (Figure S5A) compared to non-TF-encoding genes, likely 

because TF gene expression tends to be controlled by several layers of regulatory control 

(González et al., 2015). Aggregated single-cells with high activity for representative 

modules described above revealed significant chromatin accessibility changes surrounding 

TFs at different cell states, including the 8-week cancer cells (ETP), alveolar identity 

modules (modules 5, 6, and 11) and late-stage modules (modules 9, 2, and 4) (Figure 5A). 

To investigate the function of these TFs, we reasoned that correlation of TF motif scores to 

TF gene scores (referred to hereafter as TF motif-gene pairs) may identify activating 

(positive correlation) or repressive (negative correlation) regulators of chromatin 

accessibility genome-wide (STAR Methods). Indeed, correlating TF motif-gene pairs across 

cancer cells revealed 85 (n = 63 positive, n = 22 negative) putative TF regulators of 

chromatin accessibility (Figure 5B-D, Figure S5B and Table S4).

The significantly correlated and anti-correlated TF motif-gene pairs included a number of 

known and novel regulators of KP cancer cell states. Among them were key lineage 

regulators of AT1 (Tead4), AT2 (Cebpa), lung (Nkx2.1, Gata6) and gastric (Hnf4a) 

development (Li et al., 2000; Treutlein et al., 2014; Zhang et al., 2007) as well as known 

tumor progression activators (Fosl1, Myc) and repressors (Zeb1) (Caramel et al., 2018; 

Gabay et al., 2014; Vallejo et al., 2017). We next assigned each significant TF to modules by 

correlating TF gene scores to module scores across cancer cells (Figure 5E). We identified 

novel Nkx-family activators (gain of non-lung-lineage Nkx-family members Nkx6.2 and 

Nkx2.9), likely reinforcing the NKX motif activity early in tumor progression (Figure 5E). 

Further, NKX2.1 motif accessibility was repressed prior to loss of the Nkx2.1 gene score, 

suggesting that the NKX2.1 TF motif score may be modulated by additional chromatin 

regulators or post-transcriptional regulation (Figure 4B and Figure S4H). Runx factors were 

associated with modules 9 and 2, suggesting RUNX-mediated changes occur late in cancer 

progression and metastasis (Figure 5E). The activators RUNX1 and RUNX2 have been 

found to be upregulated in several cancer types and are associated with metastatic 

progression, including in LUAD, breast, and prostate cancers (Bai et al., 2017; Li et al., 

2013; Ramsey et al., 2018; Xie et al., 2016; Zheng et al., 2016). Onecut2 and Sox9 were 

associated predominantly with module 2, while Sox2 was most correlated with module 4 

(Figure 5E). Onecut2 has been identified as a master regulator of androgen signaling and is a 

mediator of metastasis (Chuang et al., 2017; Guo et al., 2019; Ma et al., 2019; Rotinen et al., 

2018) while Sox2 and Sox9 activity have been associated with the emergence of primitive 

epithelial programs during metastatic progression in studies of human LUAD (Laughney et 

al., 2020).
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To validate the expression of these putative regulators, we performed IHC on advanced KP 

tumors and lymph node metastases. Similar to our gene score analysis, we found 

heterogeneous protein expression of RUNX1, RUNX2 and ONECUT2 in KP primary lung 

tumors, with near ubiquitous staining of these factors in late-stage cancer cells (defined as 

cells marked by ZEB1 or HMGA2 expression) (Figure 5F and Figure S5C). Regions in the 

KP primary tumors and lymph node metastases with low NKX2.1 and high HMGA2 

expression exhibited the most robust staining of RUNX1 and RUNX2 expression, suggesting 

that these regulatory drivers initiate programs that mediate progression (Figure 5G,H). While 

RUNX expression was largely restricted to late-stage tumors, we also found RUNX1 

expression in the airway (which lacked RUNX2 staining), suggesting differential RUNX 

expression patterns during normal lung development (Figure S5D). In addition, two of the 

predicted early-stage repressors, BATF and ZKSCAN5, were expressed in early-stage 

tumors, but not in late-stage tumors, suggesting that these repressors, among others, may 

restrict tumor progression (Figure S5E). Lastly, module analysis of microRNA (miRNA) 

gene scores, which function to modulate gene expression and are not detected from scRNA-

seq analyses, identified known (Han et al., 2014; Kolesnikoff et al., 2014; Li et al., 2017) 

and novel miRNA regulators (Figure S5F,G). To date, the comprehensive identification of 

master regulator activators and repressors that drive tumor progression has been challenging; 

we suggest that these strategies outlined here may be used to identify tumor development 

regulators in other cancer subtypes.

Disruption of RUNX family transcription factors activate gene programs that drive tumor 
progression and metastasis

One striking finding of the module analyses was that the regulatory transition associated 

with loss of NKX-mediated regulation could be explained by a progressive gain of several 

late-stage co-accessibility modules. Importantly, we found that Runx1/2 gene scores and 

RUNX TF motif scores were strongly correlated with module 9 (Figure 4G and Figure 5C). 

Given the demonstrated role of RUNX TFs in tumor progression in other settings (Ge et al., 

2016; Pratap et al., 2005, 2008), we next sought to functionally characterize the regulatory 

role of RUNX factors on chromatin accessibility surrounding genes associated with cancer 

progression. To establish a system to test this, we derived KP cancer cell lines from primary 

tumors and found increased expression of RUNX2 in metastatic (low NKX2.1 expression) 

compared to non-metastatic cell lines (high NKX2.1 expression) (Winslow et al., 2011) 

while RUNX1 was ubiquitously expressed (Figure S6A-C). To interrogate RUNX-mediated 

regulation in KP cancer cells, we engineered KP cell lines to express Cas9 and utilized 

CRISPR-based perturbation (knockout and activation) to modulate the expression of 

RUNX1, RUNX2, and RUNX3 (Figure 6A; STAR Methods). Perhaps because RUNX1 is 

already highly expressed in KP cell lines, we were unable to further increase RUNX1 

expression via CRISPR activation. CRISPR knockout (KO) and CRISPR activation 

(CRISPRa) were achieved by transducing cell lines with guides targeting Runx1 and Runx2 
and with truncated guides recruiting the HSF-MS2-p65 complex to the promoter of Runx2 
and Runx3 (Horlbeck et al., 2016). Knockout was performed in RUNX high metastatic cell 

lines (n = 2) and overexpression was performed in a RUNX low non-metastatic cell line (n = 

1) and a metastatic line (n = 1). We confirmed activation and knockout of RUNX proteins by 
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western blot (Figure 6B,C and Figure S6D) and performed bulk ATAC-seq to determine the 

impact of RUNX family activity in KP cell lines.

To analyze chromatin-induced changes associated with RUNX family perturbation, we 

performed TF motif and gene score regression analyses on RUNX-altered cell lines 

compared to sgRNA controls. Strikingly, overexpression (OE) guides increased the RUNX 

TF motif score and, in contrast, knockout guides decreased the score (Figure 6B). 

Importantly, RUNX protein OE and KO resulted in anti-correlated chromatin accessibility 

changes at RUNX TF motifs around relevant genes, suggesting that RUNX family members 

have functional overlap (Figure 6B and Figure S6E). We next defined differential gene 

scores associated with RUNX TF perturbation by correlating each gene score (normalized to 

controls) to the RUNX TF motif score across KO and OE conditions. GSEA of RUNX 

perturbation score associations against module-associated genes revealed that these gene 

signatures were significantly correlated with late-stage modules 9 and 4 and known 

oncogenic gene programs, including TGF-beta signaling (FDR q ≤ 0.001; Figure S6F-H and 

Table S5-6).

In further functional studies, we focused our attention on RUNX2 due to differential protein 

expression in tumor-derived cell lines. KP cancer cells have been found to secrete and 

differentially regulate ECM in late stages of the disease, which is thought to reshape the 

local environment and provide signals to adjacent cells (Brady et al., 2016; Gocheva et al., 

2017; Reticker-Flynn and Bhatia, 2015). Therefore, we hypothesized that RUNX2 activity 

might affect extracellular secretion. To assess this directly, we analyzed the conditioned cell 

culture media from RUNX2-altered cell lines using extracellular protein antibody arrays 

(Figure 6D, Figure S6I,J and Table S5). We confirmed that RUNX2 KO cells have reduced 

secretion of well-studied ECM proteins, first identified using chromatin accessibility gene 

scores, including Lgals3 (Figure 6D). Genes associated with ECM components, cytoskeletal 

remodeling, and altered RUNX activity were upregulated in the single-cell data, including 

PODNL1 and LGALS1 (galectin-1), among others (Figure 6E,F and Figure S6K). Using 

multiplexed IHC, we found that RUNX2 positive tumor cells colocalized with LGALS1 

expression, demonstrating the utility of chromatin accessibility studies to identify 

downstream targets of transcription factors (Figure 6G and Figure S6L-N). Finally, we 

performed tail vein injections of control and RUNX2 KO cancer cell lines to assess their 

metastatic potential. Notably, deletion of RUNX2 in metastatic KP cells resulted in 

significantly fewer lung metastases as well as increased survival of injected mice (Figure 6H 

and Figure S6O). This functional validation of RUNX2 biology demonstrates the utility of 

TF motif-gene analyses for discovering master regulators and provides an analytical 

framework for characterizing downstream changes induced by TF perturbations.

Regulatory networks derived from mouse KP cancer cells predict survival in human LUAD 
patients

We next investigated whether RUNX-mediated dysregulation might be relevant to human 

LUAD tumor progression. To this end, we performed IHC on human LUAD tissue 

microarrays (TMAs). Increased RUNX1 and RUNX2 staining was observed in higher grade 

lesions and confirmed in TMAs from the Human Protein Atlas, consistent with the role of 

LaFave et al. Page 10

Cancer Cell. Author manuscript; available in PMC 2021 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RUNX in tumor progression (Figure 7A, Figure S7A, Figure S7B). We next tested whether 

module-associated gene scores defined in our study could represent new signatures with 

prognostic value in human LUAD patients. We determined representative gene signatures for 

each module by assigning the top 200 genes whose gene scores were most correlated with 

the module accessibility scores (Figure 7B, Figure S7C and Table S6). This analysis 

identified several expected gene associations, such as Sftpc with the AT2-like module 11 and 

EMT genes Vimentin and Twist1 with AT1-like module 6 (Figure 7B). To test if genes 

associated with each of the 11 co-accessibility modules were predictive of clinical outcome 

in human LUAD, we queried them against The Cancer Genome Atlas (TCGA) collection of 

bulk primary LUAD RNA-seq profiles (n = 506) (Figure 7B) (Campbell et al., 2016; Cancer 

Genome Atlas Research Network, 2014). We stratified patients by high versus low average 

expression of each module gene signature and tested for association with overall patient 

survival. Genes associated with late-stage module 3 and 9 were the most predictive of poor 

survival (logrank test p = 0.0031 and 0.0035, respectively) independent of patient genotype 

(Figure 7C,D and Figure S7D-F). We also found that modules highlighted in the early stages 

of tumor progression (module 11, 7, 5) were associated with better prognosis (p < 0.05), 

with module 11 having the greatest prognostic relevance (p = 2x10−6) (Figure 7C, Figure 

S7D). The module 9 gene signature outperformed NKX2.1 expression in predicting overall 

patient survival (Figure S7G), suggesting that regulatory analyses of single-cell epigenomics 

data can serve as surrogate markers for underlying processes defining tumor development 

and, thus, can more accurately predict survival in human patients.

Discussion:

This single-cell epigenomics study adds to an increasing body of evidence that a common 

feature of tumor development is intratumoral heterogeneity, including at the chromatin level 

(Hinohara and Polyak, 2019; Lawson et al., 2018). Here we use a single-cell approach to 

determine the epigenomic evolution in a well-established GEMM of lung adenocarcinoma 

with limited confounding somatic variation. Together with Marjanovic et al. (see 

accompanying paper), we provide a deep characterization of the chromatin accessibility and 

transcriptional changes that drive cancer progression in this model. Single-cell epigenomic 

profiling provides a complementary approach to the study of gene regulation, as 

transcription factors are susceptible to technical drop-out in scRNA-seq approaches. In this 

study, we utilized the full epigenome as markers for cell state, rather than limiting our 

analysis to individual gene markers, powering robust cell state assignments. We identify 

heterogeneous cell states that reveal a diverse and continuous landscape of regulatory 

transitions. Within this diverse landscape, we find evidence of lineage infidelity (Ge et al., 

2017) and cellular plasticity, as demonstrated by cells reflecting AT2, mixed, and AT1-like 

states through tumor progression, consistent with cell identities shown in the accompanying 

scRNA-seq study (Marjanovic et al.) and recently reported cell states in human LUAD 

tumors (Laughney et al., 2020). Furthermore, we find evidence of the high plasticity state 

described in Marjanovic et al., with chromatin state changes surrounding cell surface genes 

Slc4a11, Tigit, and Itga2 (Figure 7B).

Interestingly, we identified cells in primary tumors with regulatory states resembling those 

of cells isolated from metastatic sites. These metastatic-like cells exist within the primary 
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tumors at a low frequency in a subset of tumors, indicating that transformation to this state is 

rare and stochastic. Cells isolated from metastases were less heterogeneous than primary 

tumors, consistent with the notion that cancer cells ultimately funnel toward a stable 

epigenomic state and add a regulatory context to prior reports demonstrating metastatic cells 

as more genetically homogeneous than primary tumors (Turajlic et al., 2018). Importantly, 

we also find that the heterogeneity observed across a collection of tumors was largely 

reproducible across individual tumors. These data support a model of a rather constrained set 

of cell state progressions that lead toward a metastatic state. Our data are also compatible 

with the emergence of non-productive paths in tumor development that do not ultimately 

result in metastasis.

In order to characterize this diverse regulatory landscape, we developed a computational 

framework for determining co-accessible modules using TF motif-driven chromatin changes. 

We also used gene scores to infer i) the upstream TF regulators of these modules and ii) the 

downstream target genes they regulate. This analytical approach allowed us to collapse the 

diverse spectrum of tumor states into 11 coherent co-accessibility programs–defined by the 

combinatorial activity of transcription factors–that we posit to represent meaningful 

regulatory transitions across the heterogeneous landscape. Altogether, our co-accessibility 

analysis largely uncovered developmental and lineage-identity regulators, adding to the 

concept that chromatin accessibility-mediated regulation is predominantly linked to 

developmental processes (González et al., 2015; Hnisz et al., 2013). By contrast, gene 

expression analysis integrates RNA processing, RNA stability, cell size and proliferation 

programs along with lineage identity (Shema et al., 2019). Altogether our data reveal 

massive reprogramming of the regulatory landscape within LUAD tumors, without direct 

genetic alteration of transcription factor function.

In this study, we define a co-accessibility module (module 9) representing a key and 

previously undefined transition between Nkx2.1 loss and EMT induction. We utilize 

CRISPR strategies to show that RUNX2 drives ECM-related gene expression and is a 

critical regulator of this module. Notably, remodeling of tumor-derived ECM is considered 

to be an important aspect of EMT in relation to tumor progression, promoting sequestration 

of cancer cells from immune responses and the microenvironment (Naba et al., 2012). 

Therefore, we propose that activation of RUNX2 functions in LUAD to initiate the 

expression of ECM proteins to develop a niche that sensitizes cells for EMT. We anticipate 

that further elucidation of this mechanism and other regulatory programs associated with key 

steps in tumor progression will reveal epigenetic and other cellular processes that could be 

targeted for intercepting the progression of human LUAD.

Single-cell technologies provide new opportunities to better understand primary tumor 

development. By improving experimental and computational workflows, our study has 

provided an atlas of the regulatory landscape of LUAD in a well-studied model system. 

However, additional work is needed to determine which selective pressures drive individual 

cells to undergo these regulatory state transitions; for example, the role of the tumor 

microenvironment (Altorki et al., 2019; Azizi et al., 2018) and of chromatin-modifying 

proteins (Rowbotham et al., 2018; Serresi et al., 2016; Zhang et al., 2017). To this end, we 

expect lineage-tracing approaches to be paired with single-cell approaches to determine how 
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cells navigate these regulatory transitions toward productive or non-productive paths of 

cancer (Woodworth et al., 2017). Importantly, we find these regulation-derived co-

accessibility modules can be used to score RNA expression from LUAD patients to provide 

highly predictive markers of survival. We anticipate additional efforts towards the 

characterization of direct epigenomic biomarkers using either ATAC-seq or DNA 

methylation will be valuable for the discovery of regulatory patterns across genes or 

regulatory elements providing a more robust strategy to define cell state regulators useful for 

the diagnosis and treatment of cancer.

STAR Methods.

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Tyler Jacks (tjacks@mit.edu).

Materials Availability—All unique/stable reagents generated in this study are available 

from the Lead Contact with a completed Materials Transfer Agreement.

Data and Code Availability—The datasets generated during this study are available at 

Gene Expression Omnibus (GEO) under GSE134812, GSE145192, and GSE151403. The 

raw single-cell ATAC-sequencing files and processed data files generated in this study are 

available in GEO under the super series GSE145194. Single-cell combinatorial indexing 

data is available under GSE134812 and ETP data is available under GSE145192. Bulk 

ATAC-sequencing raw and processed files are available under accession GSE151403. The R 

Shiny-based web application for data visualization is accessible here: https://

buenrostrolab.shinyapps.io/lungATAC/

UCSC genome browser tracks associated with this study are made available with the 

following weblinks: Normal cells cluster: http://genome.ucsc.edu/s/lmlafave/

normal_lung_scATAC KPT modules: http://genome.ucsc.edu/s/lmlafave/KPT_modules

Code used for the analysis of scATAC-seq data in this study is available on Github (https://

github.com/buenrostrolab/lungATAC_analysis_code).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice—All mouse experiments described in this study were approved by the Massachusetts 

Institute of Technology Institutional Animal Care and Use Committee (IACUC) 

(institutional animal welfare assurance no. A-3125-01). LSL-KrasG12D/+; Trp53fl/fl mice 

have been described previously (Jackson et al., 2001, 2005). Mice were crossed with the 

tdTomato Ai9 reporter allele from Jackson laboratory (stock 007905) to generate LSL-
KrasG12D/+; Trp53fl/fl; Rosa26tom/+ mice. All mice were maintained on a mixed C57BL/

6-129/Sv background. Mice with appropriate genotypes were aged 8-12 weeks and 

randomly selected for tumor initiation studies. Mice were infected intratracheally with 

Adenoviral SPC-Cre (Ad5-SPC-Cre) virus (Iowa) as described with viral titers 1x108 or 

2.5x107 TTU to allow for the development of metastases (Sutherland et al., 2011). Normal 

lungs were collected from wild-type mice from a mixed C57BL/6-129/Sv background in 
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mice aged to 6-8 weeks. Mice of both sexes were used for experiments, but predominantly 

male mice were profiled for single-cell analyses.

Isolation of normal lung and primary lung adenocarcinoma cells from mice—
LUAD cells were isolated from mice as described previously, with a few modifications 

(Tammela et al., 2017). Genotyping primers are listed in Table S7. Briefly, KrasG12D/+; 
Trp53−/−; Rosa26tom/+ mice were euthanized 30-35 weeks after tumor initiation. Whole 

tumor burdened lungs or individually plucked tumors were dissociated with fine scissors and 

then proteolytic digestion was performed using the Lung Dissociation kit (Miltenyi Biotech) 

following the manufacturer’s instructions. Dissociated cells were then incubated at 37°C for 

20 minutes with rotation, then filtered using a 100-μm strainer. Red blood cells were lysed 

using ACK buffer (Thermo Scientific) and stained with APC-conjugated CD45 (BD, 

559864), CD11b (eBioscience 17-0112-82), CD31 (Biolegend, 102510), Ter119 (BD, 

557909), and DAPI (Sigma-Aldrich). FACS of immuno-stained primary cells was performed 

using a FACSAria sorter (BD) to isolate tdTomato+; DAPI-; APC- tumor cells for sciATAC-

seq. Normal lungs from mice were processed similarly to tumor-burdened tissue. CD45 

depletion was conducted using CD45 microbeads (Miltenyi Biotec) following ACK Lysis.

For early time-point analyses, mice were euthanized 8 weeks following tumor initiation in 

an isoflurane chamber. Lungs were inflated by injecting digestion buffer (Adv DMEM/F12, 

5uM HEPES, DNase, 1mg/mL Collagenase, 0.36mM CaCl2) into the trachea. Lungs were 

dissociated with fine scissors and proteolytic digestion was performed using the lung 

digestion buffer. Dissociated cells were incubated at 37° for 1 hour with rotation. Cells were 

washed in 1x PBS and red blood cells were lysed using ACK lysis buffer (Thermo 

Scientific) for 3 minutes at room temperature. Cells were filtered using a 100um strainer and 

stained with DAPI (Sigma-Aldrich). FACS was performed using a FACSAria sorter (BD) to 

isolate tdTomato+ cells for single-cell droplet ATAC-seq.

Cell culture and cell line generation—Individual tumors were dissected, digested in an 

enzymatic buffer (1X HBSS, 5mM HEPES, DNasel, Collagenase IV), and incubated with 

rotation at 37°C for 30 minutes. The enzymatic buffer was quenched with DMEM and spun 

at 1000 rpm. Cell pellets were resuspended in DMEM and plated in 6-well plates to allow 

for attachment. Cell lines were genotyped for Kras, p53, and tomato after 5 passages in 

culture. The cell lines used in this study were established from mouse LUAD over the course 

of the study. All lines were grown in DMEM, 10% FBS, and 1% pen-strep. KP cell lines 

have not been authenticated because the cell lines are not found in established databases. 

The KP cell lines were tested for mycoplasma and found to be negative. GM12878 cells 

were grown in DMEM, 10% FBS, and 1% pen-strep and 3T3 cells were grown in RPMI 

1640, 10% FBS, and 1% pen-strep. GM12878 cells were authenticated by STR Profiling 

Service from ATCC.

METHOD DETAILS

Lentiviral vectors and sgRNA cloning for CRISPR and CRISPRa—For CRISPR 

knockout experiments, guides were cloned into the lentiCRISPR-V2 lentiviral vector (Joung 

et al., 2017). The lentiCRISPR-V2 vector was digested with Fast Digest EspI and ligated 
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with EspI-compatible annealed oligonucleotides for sgRNAs. KP cell lines were infected 

with constructs containing guides and selected with puromycin after 48 hours. After 

puromycin selection, guide performance was tested by western blotting. For CRISPR 

activation (CRISPRa) experiments, the Lenti-Sam-puro construct was used (developed in the 

Jacks lab), an adaption of the previously published Lenti-Sam activation construct 

(Pentinmikko et al., 2019). EspI-compatible cloning was completed and cells were infected 

with constructs containing guides based on CRISPRa prediction software. Truncated guides 

of 15 bp were cloned into a lentiviral based expression construct which also encodes for a 

transcriptional activation complex (MS2-P65-HSF1) and a puromycin selection cassette. 

Non-metastatic and metastatic cell lines were engineered to express Cas9 following stable 

selection of a Cas9-Blast construct.

Western blots—Cells were lysed in RIPA buffer supplemented with protease inhibitors 

(Halt™, Thermo Scientific) and phosphatase inhibitors (Thermo Scientific) and incubated at 

4°C for 20 minutes and were then cleared by spinning maximum speed for 10 minutes. The 

protein concentration of lysates was determined using the Pierce BCA Protein Assay 

(Thermo Scientific). Total protein concentrations of 40 μg were run on NuPage 4-12% Bis-

Tris gradient gels (Thermo Scientific) by SDS-PAGE and transferred to nitrocellulose 

membranes. All western blots were imaged with a BioRad ChemiDoc MP imager. The 

following antibodies were used for immunoblotting: anti-Hsp90 (1:10000); BD Biosciences 

610418, anti-Runx1 (1:1000), Cell Signaling Technology, 8529S, anti-Runx2 (1:1000), Cell 

Signaling Technology, 12556S, and anti-Runx3 (1:1000) Abcam, ab23981.

Immunohistochemistry—Individual lung tumors were fixed overnight in zinc formalin 

and embedded in paraffin. Tissue sections were dewaxed using a Thermo Autostainer 360. 

All sections from the same tumor regions were serially sectioned. Slides were then stained 

using antibodies against Nkx2.1 (1:1000), Hmga2 (1:1000), Onecut2, Proteintech, 21916-1-

AP, 1:500 (in 1X PBST); Runx1, Cell Signaling Technology, 8529S, 1:500; Runx2, Cell 

signaling,12556S, 1:1000; Cav1, Sigma, C3237, 1:1000; Sftpb, ThermoFisher, PA5-42000, 

1:200; Zeb1, Abcam, ab87280, 1:500; BATF, Sigma, SAB4500122, 1:100; Zfp95, Novus 

Biologicals, NBP2-20947, 1:200; RFP, Rockland, 600-401-379, 1:400; Fra1, ThermoFisher, 

PA5-40361, 1:100; CD45, Abcam, ab10558, 1:1000, Cell signaling technology 12556S, 

1:1500; Sftpc, Millipore sigma AB3786, 1:5000; LGALS1, Cell Signaling Technology, 

1388S, 1:1000. Slides were also counterstained with haematoxylin.

Opal Four-Color anti-Rabbit Manual Immunohistochemistry—Lung tissue was 

fixed overnight in zinc formalin and embedded in paraffin. Tissue sections were dewaxed 

using a Thermo Austostainer 360 and then fixed in 10% neutral buffered formalin for 20 

minutes. Slides were stained sequentially using antibodies against Nkx2.1, Abcam ab76013, 

1:250 (in Perkin Elmer Antibody Diluent/Block); Runx2, Cell Signaling Technology 

12556S, 1:250; Pdpn, Abcam ab109059, 1:250; Hopx, Proteintech 11419-1-AP, 1:100; SPC, 

Millipore Sigma AB3786, 1:400; Lgals1, Cell Signaling Technology 13888S, 1:100. After 

detection with an Opal fluorophore (1:100 in Perkin Elmer 1X Amplification Diluent), the 

primary and secondary antibodies were stripped using a pressure cooker, followed by 

another round of staining. Slides were counterstained with DAPI and coverslipped using 
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ProLong Diamond Antifade Mountant (Thermofisher). Slides were scanned using 

Pannoramic 250 Flash III at 20X or 40X.

Human lung adenocarcinoma arrays and Human Protein Atlas—The human lung 

adenocarcinoma microarrays used were LC1005A and LC2083 (Biomax) and were stained 

as described above in immunohistochemistry. Representative tissue sections from patients on 

the Human Protein Atlas (http://proteinatlas.org) were also included for RUNX1 and 

RUNX2 (Uhlén et al., 2015). Images can be found online at the following links (RUNX1; 

2438; https://images.proteinatlas.org/4176/12280_B_1_1.jpg); (RUNX1; 2403; https://

images.proteinatlas.org/4176/12280_B_3_4.jpg), (RUNX2; 4883; https://

images.proteinatlas.org/22040/140406_B_1_8.jpg), (RUNX2; 4873; https://

images.proteinatlas.org/22040/140406_B_2_4.jpg), (RUNX3; 4866; https://

images.proteinatlas.org/25416/151928_B_1_2.jpg), (RUNX3; 1327; https://

images.proteinatlas.org/25416/151928_B_1_4.jpg) available at v19.proteinatlas.org.

Quantitative PCR—RNA was isolated from cells using the RNeasy Plus kit (Qiagen) as 

specified by the manufacturer’s instructions. cDNA was synthesized from 1 μg of RNA 

using the High-Capacity cDNA reverse transcription kit (Thermo Scientific) and RNase 

inhibitor (Thermo Scientific). qPCR experiments were performed in triplicate with SYBR 

fast master mix (Kapa Biosystems) on a Roche Lightcycler 480 qPCR machine. Expression 

was normalized to Actb. All experiments were performed with three replicates.

Bulk-ATAC—For bulk-ATAC, the previously published ATAC-seq protocol was adapted 

from (Buenrostro et al., 2013; Ludwig et al., 2019). Briefly, 25,000-50,000 cells were 

trypsinized and washed twice in PBS. Pelleted cells were then directly transposed using an 

all-in-one transposition buffer (Tris pH 7.5, MgCl2, DMF 5%, PBS 0.3X, NP-40 0.1%, 

Illumina Tn5 1X, ddH20 to 50 uL). The transposition reaction was completed with 

thermomixing at 37°C for 30 minutes at 300 rpm on a thermoshaker. Transposed DNA was 

purified with MinElute column cleanup (Qiagen), then minimally amplified for sequencing 

as previously described (Buenrostro et al., 2015b). Prepared libraries were purified with 

MinElute column clean-up (Qiagen) and digested with ExoI (NEB). Libraries were 

quantified with a Qubit dsDNA HS Assay kit (Invitrogen) and sequenced on the Next-seq 

platform (Illumina) using a 75-cycle kit. Bulk ATAC-seq data was processed as previously 

described (Buenrostro et al., 2015a). Briefly, reads were trimmed and aligned using Bowtie 

2 (v2.3.3.1) and the same peakset was utilized for single-cell ATAC sequencing experiments.

Extracellular secreted protein array—Extracellular protein antibody arrays were 

conducted using an L-308 mouse protein array (RayBiotech) following manufacturer 

instructions. Briefly, cells were seeded at a density of 1 x 106 in DMEM with 10% FCS for 

48 hours. The media was then replaced with DMEM containing 0.2% FCS and collected 

after 48 hours of incubation. Supernatants were centrifuged at 1000 x g for 10 minutes and 

dialyzed overnight in dialysis buffer (2.6 mM KCl, 137 mM NaCl, 1.5 mM KH2PO4, and 

8.1 mM Na2HPO4, pH=8) using dialysis vials (RayBiotech). The dialyzed media was then 

quantified and protein was labeled with biotin based on protein concentration. Excess biotin 

was removed from the media via spin filtration. Filtered biotin-labeled protein was incubated 
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on arrays overnight. The arrays were then blocked and incubated with HRP-Streptavidin. 

Antibody arrays were imaged with the BioRad ChemiDoc MP imager and quantified using 

the protein microarray plugin on ImageJ (v1.52k) (Carpentier 2010, Schneider et al., 2012) 

with two replicates. Log2fold change was calculated for each spot on the array (in duplicate) 

and standard deviation across duplicate spots.

Aiforia—Histological quantification of mouse lung tumor grade was performed by an 

automated deep neural network (unpublished) developed by Aiforia Technologies in 

collaboration with the Jacks lab, and in consultation with veterinarian pathologist Dr. 

Roderick Bronson. We trained a convolutional neural network (CNN) for semantic multi-

class segmentation using the Aiforia(R) platform. The CNN was trained to classify and 

detect lung parenchyma, NSCLC tumors, and NSCLC tumor grades (grade 1-4). For 

supervised training, we used selected areas from 93 hematoxylin and eosin stained slides. 

The algorithm performed consistently and with high correlation with human graders across 

multiple validation datasets independent of the training dataset. For grade calling, the 

NSCLC_v25 algorithm was used.

Tail vein injections—B6129SF1/J (Jackson lab, stock 101043) male mice were injected 

with between 100K-150K cells intravenously via the tail vein. Experiment in triplicate with 

control guides and RUNX2 guides. Mice were euthanized at experiment endpoint (3-4 

weeks following cell line injection) and tumor burden was determined by organ weight and 

immunohistochemistry. Experiment was replicated three times with one replicate presented. 

Tumor volume was quantified using percentage of total tumor tissue area divided by normal 

tissue area.

Methods for sciATAC-seq

sciATAC-seq sample processing

Fixation: Normal or tumor-derived lung cells were transferred to centrifuge tubes that were 

pre-coated with 7.5% BSA. Cells were centrifuged at 300g for 5 min, washed once in PBS, 

and resuspended to 1 million cells/ml. Cells were then fixed with 0.1% formaldehyde and 

incubated at room temperature for 5 min. The fixation was stopped by adding glycine to the 

final concentration of 125 mM. The sample was incubated at room temperature for 5 min 

and then centrifuged at 500g for 5 min to move supernatant. The cell pellet was washed 

twice with 1 ml of PBS and centrifuged at 500g for 5 min between washes. The cells were 

resuspended to 1-2 million cells/ml in PBS.

Transposition: All the oligonucleotides used in this protocol can be found in Table S1. The 

100 μM Ad1 or Ad2 oligos that have unique barcodes were annealed with an equal amount 

of 100 μM blocked ME-compliment oligo by heating at 85°C for 2 min and slowly cooling 

down to 20°C at a ramp rate of −1 °C/min. The annealed oligos were mixed with an equal 

volume of cold glycerol and stored at -80°C until use. In-house produced Tn5 (Picelli et al., 

2014), was mixed with an equal volume of dilution buffer (50 mM Tris, 100 mM NaCl, 0.1 

mM EDTA, 1 mM DTT, 0.1% NP-40, and 50% glycerol). The diluted Tn5 was then mixed 

with an equal volume of annealed oligos and incubated at room temperature for 30 min 

before transposition.
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Fixed cells (1 μl) and 7 μl of 1.25x transposition buffer (41.25 mM Tris-acetate, 82.5 mM K-

acetate, 12.5 mM Mg-acetate, 20% DMF, 0.125% NP-40, 0.5% Protease Inhibitor Cocktail) 

were distributed onto a 96-well plate. The plate was incubated at room temperature for 10 

min. The assembled Tn5 was diluted with an equal volume of 1.25x transposition buffer. 1 μl 

of diluted Tn5 containing Ad1 oligo and 1 μl of diluted Tn5 containing Ad2 oligo were 

distributed onto a 96-well plate. The transposition was carried out at 37°C for 30 min with 

shaking at 300 rpm. The reaction was stopped by adding 1 μl of 0.5 M EDTA and incubated 

at 37°C for 15 minutes with gentle shaking at 300 rpm. All the cells were then pooled and 

38.4 μl of 1 M MgCl2 was added to the pooled sample. The sample was centrifuged at 500g 

for 2 min and then washed with 1 ml of EB buffer (Qiagen) with 0.1% Triton X-100. The 

sample was resuspended to 0.5 ml of EB buffer with 0.1% Triton X-100. The sample was 

passed through a 50 μm filter to remove clumps and diluted to 6.7 or 13.3 cell/μl with the 

same buffer.

Reverse crosslinking and PCR: 2 μl of the sample was re-distributed onto another 96-well 

plate with 1.5 μl sample on each well. 2.5 μl of 2x reverse crosslinking buffer (100 mM Tris 

pH 8.0, 400 mM NaCl, 2 mM EDTA pH 8.0, 2% SDS, and 40 μg/ml proteinase K), 0.5 μl of 

10 μM P2 oligo, and 0.5 μl of 10 μM P1 oligo were added to each well. The plate was 

incubated at 55°C for 16 hours for reverse crosslinking. 5 μl of 10% Tween-20 was then 

added to quench SDS. 12.5 μl 2x NEBnext PCR mix and 2.5 μl H2O were added to each 

well.

The PCR reaction was carried out at the following conditions: 72°C for 5 min (extension), 

98°C for 5 min, and then thermocycling at 98°C for 10 s, 70°C for 30 s and 72°C for 1 min. 

After thermocycling for 5 cycles, we took a 5 μl sample from a few randomly selected wells 

and added 10 μl of PCR cocktail with 0.6x SYBRgreen. The 15 μl reactions were amplified 

to saturation to determine the number of cycles required for the remaining samples on the 

plate. Libraries were amplified for 13-14 cycles in total. Libraries were pooled and purified 

using Qiagen MinElute PCR purification column. The libraries were quantified using KAPA 

library quantification kit (Buenrostro et al., 2013). Libraries were sequenced on the Next-seq 

platform (Illumina) using a 150-cycle kit (Read 1: 47 cycles, Index 1: 36 cycles, Index 2: 36 

cycles, Read 2: 47 cycles).

Read alignment and pre-processing: Base calls were converted to fastq format using 

bcl2fastq. Raw sequencing reads were trimmed using custom python scripts to remove 

adapter sequences. The reads were aligned to hg19 or mm10 genome using Bowtie2 

(Langmead et al. 2012) with maximum fragment length set to 2 kb, and all other default 

settings (bowtie2 - X2000 --rg-id). The data were demultiplexed tolerating one mismatched 

base within barcodes. Mitochondrial, discordant and low quality reads were removed using 

SAMtools v1.9 (Li et al. 2009) (samtools view -b -q 30 -f 0x2). Duplicate sequences were 

removed using the picard toolkit (2.14.1-SNAPSHOT) (http://broadinstitute.github.io/

picard/).

Peak calling: sciATAC-seq profiles for all cells were first merged into a single alignment 

(.bam) file and used as input for peak calling with MACS v2.1.2 (MACS2) (Zhang et al., 
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2008). All default options were used, with the following flags explicitly set: --nomodel, --

nolambda, --keep-dup all, --call-summits. This returned a list of single base pair peak 

summits with associated significance scores (corresponding to log FDR q-value from 

MACS2). Only peak summits with FDR < 0.01 were retained. Next, a previously described 

iterative filtering approach was implemented to obtain a list of significant, non-overlapping 

fixed-width peak windows (Lareau et al., 2019). Briefly, the called peak summits were first 

padded with 150 base pairs (bp) at either end to generate evenly sized 301 bp window peak 

regions. Peaks were then sorted in decreasing order of their significance scores. Keeping the 

most significant peak, overlapping peak windows that had lower significance scores were 

identified and then removed. This was repeated for the next most significant peak window. 

Through this iterative process, lower significance overlapping peak regions were filtered out, 

resulting in 285,956 disjoint 301 bp peak windows.

sciATAC-seq counts generation and QC: Using the generated peak region list, the number 

of reads overlapping a given peak window (n = 285,956 peaks) was determined for each 

unique cell barcode tag. This generated a peak by cell counts matrix corresponding to ATAC 

reads in peaks for each cell profiled. Only cells having FRIP ≥ 0.4 and a minimum of 2000 

unique nuclear reads per cell were retained for downstream analyses, resulting in a total of 

17,274 cells.

ETP single-cell droplet ATAC-seq and analysis: ETP cells were profiled using the Whole 

Cell Tagmentation protocol as described previously (Lareau et al., 2019) using the SureCell 

ATAC-Seq Library Prep Kit (17004620, Bio-Rad). Briefly, cells were washed with 1mL 1x 

PBS + 0.1% BSA and resuspended in cold Whole-Cell Tagmentation Mix (ATAC 

Tagmentation Buffer, ATAC Tagmentation Enzyme, 0.5% Digitonin, 5% Tween-20, 

nuclease-free water). The cell suspension was incubated at 37° for 30 minutes with shaking. 

Barcode Suspension Mix and Enzyme Suspension Mix were prepared and kept on ice for 

droplet encapsulation. Tagmented nuclei were resuspended in the Enzyme Suspension Mix. 

Droplet encapsulation was performed using the Bio-Rad ddSEQ Single-Cell isolator. The 

encapsulated samples were transferred to a chilled 96-well plate for barcoding and 

amplification. The incubation protocol was as follows: 37° for 30 minutes, 85° for 10 

minutes, 72° for 5 minutes, 98° for 30 seconds, eight cycles of 98° for 10 seconds, 55° for 

30 seconds, 72° for 60 seconds, then 72° for 5 minutes. Emulsions were broken with the 

Droplet Disruptor and fragments were purified using AMPureXP beads. Barcoded fragments 

were amplified using the ATAC PCR Supermix and ATAC Primer Mix with the following 

incubations: 98° for 30 seconds, 7 cycles of 98° for 10 seconds, 55° for 30 seconds, 72° for 

60 seconds, then 72° for 5 minutes. PCR products were cleaned up a second time using 

AMPure XP beads. scATAC-seq paired-end reads were first debarcoded using the bap-

barcode utility as part of the bead-based ATAC-seq processing (BAP) pipeline (v0.5.9i; 

https://github.com/caleblareau/bap), allowing for 1 base mismatch. The resulting sequencing 

read files were aligned to the mm10 mouse reference genome assembly using BWA v0.7.15, 

and the corresponding alignment files processed to handle droplet bead multiplet merging 

using bap, with the following parameter specifications: -r mmio -bf 500 -bt XB. The same 

peak set derived using the mouse lung sciATAC-seq data was used to generate a reads in 
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peaks counts matrix for ETP cells. Only cells with FRIP ≥ 0.4, unique nuclear fragments > 

2,000 and a sequence duplication rate of at least 40% were retained (n = 4,610 cells).

SciATAC-seq data analysis and visualization

TF motif and k-mer scoring in single cells using chromVAR: TF motif and sequence k-

mer accessibility scores were computed for single cells using chromVAR (Schep et al., 

2017). The filtered accessibility counts matrix of peaks (n = 285,956) by cells (n = 17,274) 

was used as input data, along with binary overlap annotation matrices of either peaks by TF 

motifs (for TF motif scores) pertaining to a curated list of mm10 cisBP motifs (n = 797) or 

all possible 6-mers (n = 2,080; for k-mer scores) as previously described (Schep et al., 

2017). Background peaks were sampled (n = 250 iterations) to adjust for GC bias and 

overall accessibility across all cells for each peak, and were used to compute motif and k-

mer accessibility deviation Z-scores using the computeDeviations function in chromVAR 

(v0.2.0).

Single-cell clustering and visualization: The matrix of k-mer accessibility deviation Z-

scores was first column-scaled and centered (using the scale function in R v.3.5.3) (R Core 

Team, 2019), and run through a principal component analysis (PCA) dimensionality 

reduction. The Uniform Manifold Approximation and Projection (UMAP) algorithm 

(McInnes et al., 2018) was then applied to project single cells in two dimensions using the k-

mer PC scores for the first 20 PCs (implemented using the uwot package (v0.1.4) in R with 

the following non-default clustering parameters: n_neighbors = 20, min_dist = 0.4, metric = 

“cosine”). To further cluster the normal lung cellular populations into distinct subgroups, we 

applied the same PCA and UMAP clustering strategy, using only the k-mer accessibility Z-

scores for normal lung cells (n = 3,604 cells). The Louvain method for network community 

detection (Blondel et al., 2008) was then applied on a k-nearest neighbor (k-NN) graph built 

using the normal cell PC scores (k = 50), identifying 12 distinct normal cell clusters that 

were then annotated and visualized in the original UMAP space (see Table S1).

Early time point (ETP) single-cell projection: Projection of ETP cells was performed 

using k-mer accessibility Z-scores derived from scATAC-seq data generated for 8 weeks 

tumor ETP cells, and the k-mer PC coefficients from the PCA run of all the lung cells used 

to produce the original UMAP clustering (Figure 2A). First, the matrix of ETP cell k-mer Z-

scores (n = 2,080 k-mers and 4,610 cells) was multiplied with the PC coefficients matrix 

(2,080 k-mers x 20 PCs) to get a cells by PC scores matrix. We then projected the ETP cell 

PC scores onto the UMAP space of all lung cells using the umap_transform function in the 

uwot package in R.

Chromatin module definitions and single-cell scoring: Modules or groups of peaks 

exhibiting similar changes in accessibility with respect to TF motif deviation across tumor 

and metastatic cells (n = 17,274) were defined as follows. First, TFs were first grouped into 

‘bags’ based on their motif sequence correlation levels (Pearson r cut-off = 0.7), with bag 

leaders determined as the TF with the most variable accessibility Z-score (from chromVAR) 

within a given TF bag. We then applied a jackstraw PCA (Chung and Storey, 2015) approach 

to filter for only those TFs whose motif accessibility significantly contribute to the 
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systematic variation captured by PCA (as implemented using the Jackstraw function in the 

Seurat package (Satija et al., 2015) for gene filtering). Jackstraw PC coefficients were 

determined by randomly sampling 20% of the TF bag leader motifs and running PCA on 

their chromVAR deviation Z-scores, with motif accessibility scores independently permuted 

across all tumor and metastatic cells (i.e. any association of the feature sets and cells is 

distorted), keeping only the first 20 PCs. Doing this for n = 1000 iterations, permutation p 

values for each TF motif and each PC are determined by comparing PC coefficients from 

running PCA on the true unaltered dataset with the jackstraw PCA coefficients. Only TF 

motifs with p value < 0.1 among the first 10 PCs were kept, resulting in 67 TFs. Next, for 

each of these TF motifs, cells were binned as either motif-“high” or “low” based on whether 

their motif scores were above or below the median motif accessibility Z-score for all tumor 

cells, respectively. Counts of single-cell reads in peaks, normalized by the mean counts per 

cell across all peaks, were then used to test for differential accessibility between the high vs 

low cells for each peak using a two-sample Student’s t-test. Peaks that were significantly 

differentially accessible at FDR q < 10−6 for each TF were then retained to yield a set of 

74,732 unique peaks. Log-2 fold-change of the mean accessibility for each of these peaks 

between the high and low groups was then computed for each motif. The resulting matrix of 

fold-changes of peaks (rows) across motifs (columns) was converted to a k-NN graph (k = 

30) which was used to cluster the peaks using the Louvain method. This yielded 11 unique 

peak clusters (which we refer to as ‘modules’), which were used as peak annotations for 

chromVAR (see Table S3), along with scATAC-seq reads in peaks counts to score all single 

cells based on their enriched chromatin accessibility within module-specific peaks. For 

tracks, cells were defined as ‘module-high’ if their module accessibility score was greater 

than 2 standard deviations above the mean module score across all cells.

Gene activity scoring in single cells: Single-cell chromatin accessibility signal around gene 

TSSs was used to compute gene scores. TSS annotation pertaining to the RefSeq mm10 

genome build (http://genome-euro.ucsc.edu/cgi-bin/hgTables) was obtained and processed 

into single base-pair, strand-aware coordinates (n = 35,856 genes). Scores were then 

computed per gene TSS as previously described, with slight modifications (Lareau et al., 

2019). Briefly, an exponential decay function with a half-life of 1 kb was used to weight 

aligned sciATAC-seq reads based on the distance of aligned fragment centers to the TSS for 

a given gene. The total distance considered was set to 4,606 bp on either side of the TSS, 

determined to be the distance at which the decay weight equals 1%. These weights are then 

summed per cell for all fragments overlapping the 9,212 bp window around the TSS, to give 

the gene score for each cell. The equation below summarizes how gene score gaX for gene a 
in cell X is computed:

N : Total number of aligned fragments overlapping the TSS window for cell X

di : Distance (in bp) of the ith fragment center to the TSS

wi: Weight of ith fragment
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gaX = ∑
i = 1

N
wi ; wi = e−di ∕ 1000

Single-cell gene scores were then normalized to the mean gene score per cell, and used for 

downstream analysis. For visualization of gene scores in single cells (UMAP plots), 

normalized gene scores for cells were smoothed based on their nearest-neighbors (k = 10) 

defined using the k-mer PC scores for all cells being clustered.

Gene-module associations and gene set enrichment analyses: For each module (k = 1 to 

11), the correlation coefficient (Pearson r) was computed between their module accessibility 

Z-scores and the gene scores for all TSSs (n = 35,856 genes) for all tumor and metastatic 

cells (n = 13,670). For module-wise gene set enrichment analyses, these gene-module 

correlations were first ranked based on the correlation coefficient per module. Mouse gene 

symbols were then lifted over to human HGNC symbols using the biomaRt R package 

(v2.34) specifying the ensembl mart database. The resulting ranked lists of mapped human 

gene identifiers and their correlation values (see Table S3) were then used to perform a pre-

ranked gene set enrichment analysis per module using GSEA (Subramanian et al., 2005) 

against hallmark (h), canonical pathway (c2cp), chemical and genetic perturbation (c2cgp), 

and oncogenic (c6) annotated gene sets included in the molecular signature database 

(MSigDB v7.0) (Liberzon et al., 2015). To derive module-specific gene signatures, each 

gene was assigned to the module with the largest Pearson correlation coefficient. The top 

200 genes for each module were retained (n = 2,200 genes), and were mapped to their 

human orthologs using biomaRt as described above (see Table S6). These mapped module 

gene signatures were then used for survival analysis, and for interrogation against RUNX TF 

perturbation effects (see below).

TF activator and repressor analysis: To calculate correlation between TF motif scores and 

TF gene scores, we first matched gene names to obtain 769 TF motif-gene feature pairs. 

Mean-normalized gene scores and TF motif scores (see methods above for how these were 

computed) for these TF genes were then used to compute the Pearson correlation coefficient 

between matched TF motif scores and TF gene scores across all cancer cells and normal 

AT1 and AT2 cells, reflecting a total of 13,923 cells. To calculate the statistical significance 

of the correlation, a permutation test was performed whereby the cell labels were permuted 

(n = 100 permutations with replacement). Permutation p values were calculated using a Z-

test comparing the observed TF motif-gene correlation coefficient to the permuted 

correlation coefficients. TF motif variability was computed by taking the standard deviation 

of the TF motif scores across cells (n = 13,923). TF motif-gene pairs with p value < 0.001 

and TF motif variability of >= 1.2 are considered significant. Activators and repressors are 

defined as TF motif-gene pairs where correlations are either positive or negative, 

respectively.

TCGA Survival and mutation analysis: Survival and normalized RNA-seq gene 

expression data for primary LUADs profiled as part of The Cancer Genome Atlas (TCGA) 

were obtained using Firehose for the July 15th, 2016, release as previously described 
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(Kartha et al., 2018). Module-specific gene signatures were determined as described above. 

Then, for each module, the average expression of genes was computed for TCGA LUADs 

having paired RNA-seq and survival outcome information (n = 506). Patients were grouped 

as either module “high” or “low” if their module expression was above or below the median, 

respectively, and the overall survival (OS) of patients was compared between the two groups 

using a logrank test. Kaplan-Meier curves comparing OS in high versus low module groups 

for highlighted modules were generated using the survival (v2.41-3) and ggfortify (v0.4.10) 

packages in R. To test for association between module scores and KRAS and TP53 mutation 

status, binary somatic mutation calls for TCGA LUADs were obtained as previously 

described (Kartha et al., 2019). Standardized module expression Z-scores were then 

compared between LUADs with (n = 23) and without (n = 198) any KRAS and TP53 
mutations using a Wilcoxon rank sum test.

RUNX TF perturbation analyses—To determine changes in chromatin accessibility 

induced by either overexpression or knockout of Runx2, perturbations were first normalized 

to their respective controls. Controls represent bulk ATAC-seq for guides targeting tdTomato 

for each cell line. For TF motif scores, the difference between the perturbation and control 

was determined. However, gene scores were first quantile normalized, then the difference 

between perturbation and controls was computed. To ensure the efficacy of the 

perturbations, we confirmed that i) every validated guide either increased or reduced the 

RUNX TF motif score as expected (see Figure 6B), and ii) that the perturbation was specific 

to the RUNX TF motif score (see Figure S6E). Next, we reasoned that CRISPRa 

overexpression would induce different levels of RUNX protein activation, therefore to 

determine differential gene scores, the RUNX TF motif score was used as a measure of the 

efficacy of the perturbation. The effect size (slope) from a linear regression between the 

differential RUNX TF motif score and each gene score was used to determine differential 

gene scores associated with RUNX perturbation. To determine gene set enrichments, gene 

scores were ranked by the calculated effect size. Following ranking, gene set enrichment was 

performed as described above. All experiments completed were shown with technical 

replicates.

Gene accessibility score and RNA expression correlations in TCGA LUAD—To 

investigate the relation between gene accessibility score and RNA expression estimates in 

human primary LUADs, bulk tumor ATAC-seq profiles generated for a subset of the TCGA 

LUADs, for whom paired RNA-seq information also existed (n = 21) (Corces et al., 2018) 

were obtained. This ATAC-seq data comprised a total of 139,135 peaks, with the reads in 

peaks counts matrix quantile-normalized. Gene activity scores were then computed using the 

normalized counts as described earlier (see section “Gene activity scoring in single cells”), 

with the following modifications: i) gene annotations corresponding to the hg38 genome 

build were used; ii) peaks overlapping the fixed window per TSS (9212 bp), and the 

corresponding read counts per peak were used to compute weighted gene scores per sample. 

To contrast gene expression and activity profiles for genes encoding TFs relative to non-TF-

encoding genes, the top 10,000 genes were selected based on either total RNA expression or 

gene score across the samples assessed. The intersect of the two ranked gene lists (n = 6,191 

genes) was then used to determine the fold-change of either mean gene score or mean RNA 
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expression levels for TF (n = 228) versus non-TF (n = 5,963) annotated genes (determined 

by whether the gene was part of the human_pwms_v2 motif list from the chromVARmotifs 

package in R). To measure the association between gene expression and gene activity for 

genes of different gene activity levels, all genes that have expression and gene activity in at 

least 1 sample (n = 14,380 genes) were considered; the Pearson correlation of gene activity 

score to RNA expression per gene was then calculated. Correlation values were then 

visualized for different gene score percentiles (10 percentile bins).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Methods—All of the statistical details for experiments can be found in the 

figure legends as well as the Method Details section. For all comparisons of independent 

observations between two groups, two-tailed t-tests were performed, with p values unless 

otherwise specified. Z-tests were used to describe variance across groups. For all figures, 

**** represents p<0.0001, *** represents p<0.001, ** represents p<0.01, and * represents 

p<0.05. Additional details are described below.

Reads in peaks counts for ATAC-seq data—To generate count matrixes for all single-

cell and bulk ATAC-seq data, the number of reads overlapping a given peak window in the 

determined peak set (see Method Details) was calculated for each unique cell barcode 

(sciATAC-seq and ETP data) or sample (cell line bulk ATAC-seq). FRIP was computed as 

the fraction of the total number of sequenced reads per cell that fall in peaks and was used, 

along with total unique nuclear reads per cell, to filter scATAC-seq cell barcodes.

TF motif scores, gene scores, and module associations—Quantification of 

chromatin accessibility features associated with sequence k-mers (used for single cell 

UMAP projection), TF motifs (used for annotating cell clusters and peak modules), and 

modules was performed using chromVAR (Schep et al., 2017), and is described under the 

Method Details sections and figure legends. For all these features, accessibility deviation Z-

scores across mouse lung cells (for scATAC-seq), or cell line (for bulk ATAC-seq) were 

used. Gene scores were computed for single cells or cell lines as described earlier (Method 

Details). Gene scores were normalized by dividing by the mean gene score per cell 

(scATAC-seq), or quantile-normalized (bulk ATAC-seq), prior to downstream analyses. The 

significance of TF-motif gene score correlations was determined using permutation tests. 

Permutation p values were calculated using a Z-test comparing the TF-motif gene 

correlation coefficient to the permutated correlation coefficients. TF motif-gene pairs with 

permutation p value < 0.001 and TF motif variability of ≥ 1.2 are considered significant. 

Activator and repressor TFs were represented with max/min-normalized correlation of TF 

gene scores to module scores. Differential genes scores (AT1 and AT2 cells comparison) 

were represented as gene scores with absolute fold-change value greater than 1.8. Peak 

modules were determined using tumor and metastatic cell sciATAC-seq data as described 

under the Methods Detail section, and clustered and visualized using the log fold-change in 

mean module peak accessibility between motif-high vs motif-low cell groups. Module-gene 

associations were determined by assigning each gene to the module with the highest Pearson 

r correlation (gene score to module Z-score correlation). Gene signatures per module were 
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obtained by selecting the top 200 genes basked on their associated correlation coefficients in 

a given module.

scATAC-seq matching to scRNA-seq datasets—Analysis of published scRNA-seq 

data was performed using the described meta-clusters (n = 260) representing clusters of cells 

across different lung developmental time points (Cohen et al., 2018). To match epigenomic 

profiles to these meta-clusters, scATAC-seq data were first filtered for highly variable gene 

scores and gene expression. The coefficient of variation (CV) of each gene was computed 

for each data set and filtered for genes with a CV > 1 in both data sets, resulting in a total of 

6,888 genes. To match scATAC cells to meta-clusters, the most correlated (Pearson r) for 

each scATAC-seq cell was determined by matching gene scores to gene expression across 

the two data sets.

GSEA analyses and survival analysis—Gene set enrichment analysis was carried out 

using the pre-ranked GSEA mode as part of publicly available GSEA software (v3.0) (http://

www.broadinstitute.otherg/gsea/index.jsp), with default settings. For module enrichment 

analyses, ranked lists of human gene identifiers and their correlation values (Pearson 

correlation of gene scores to module Z-scores) were used as input to test for enrichments per 

module against annotated gene sets included in the MsigDB database. For CRISPR 

perturbation enrichment analyses, slope coefficients of gene scores associated with 

differential perturbations were used to rank genes, and were queried against either MsigDB 

gene sets or module gene signatures. For module-associated survival analysis in TCGA 

LUADs, gene signatures per module were first averaged, and then tested for association with 

overall patient survival using a log-rank test comparing high vs low patient groups 

(determined based on the median module expression level). For testing association with 

oncogene mutational status, a Wilcoxon rank-sum test was used to compare module 

expression Z-scores between TCGA LUADs with and without KRAS and TP53 mutations.

Immunohistochemistry quantification—Immunohistochemistry images were 

converted to .tif format using CaseViewer (v2.2.1). Each image was split into multiple non-

overlapping tiles and corrected for background fluorescence using a 2D Gaussian filter via a 

custom MATLAB script. Tiles with DAPI staining were then processed using Ilastik Pixel + 

Object Classification (v1.3.3) to generate nuclear segmentation masks (Berg et al., 2019). 

The resulting masks were loaded back into MATLAB (v2019a) and used to quantify the 

fluorescence within defined nuclear regions for the other protein markers. For each nucleus, 

the pixel values for each marker were summed and log normalized before visualization of 

the overall tissue distribution.

Tail vein experiments.—Each tail vein experiment was conducted with n = 5 animals in 

each group (control and RUNX2 KO). Survival significance was calculated using the 

survival log-rank (Mantel-Cox) test. Tumor burden studies were conducted with n = 5 

animals in each group (control and RUNX2 KO). Total tumor burden was calculated using 

the Aiforia machine learning algorithm and significance was determined using Student t-

tests.
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Significance:

Here we describe a generalizable framework to leverage single-cell chromatin 

accessibility data to investigate nuanced cell state transitions across tumor evolution in a 

mouse model of lung adenocarcinoma. Using an improved combinatorial indexing 

approach to study chromatin reorganization, we found that epigenomic state changes 

across cancer progression occupy a continuum, rather than discrete transitions, which 

makes characterization of these cell states particularly challenging. We developed a 

module-based approach to assess coordinated regulatory programs which are mediated by 

aberrant transcription factor activity. We elucidate a pre-metastatic cell state that arises in 

primary tumors prior to metastasis. Importantly, these epigenomic profiles serve as clear 

prognostic signatures in human malignancies, and these strategies can be adapted to other 

cancer studies.
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Highlights

• Cancer progression is marked by a continuum of heterogeneous epigenomic 

states

• Lung cancer cells adopt features of other cell identities across tumor evolution

• RUNX2 transcription factor activity is associated with a pre-metastatic cell 

state

• Regulatory programs defined from mouse models are useful predictive 

biomarkers

Using a generalizable framework to leverage single-cell chromatin accessibility data to 

investigate cell state transitions across tumor evolution in a mouse model of lung 

adenocarcinoma, LaFave et al. elucidate a pre-metastatic cell state that arises in primary 

tumors prior to metastasis.
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Figure 1. An optimized single-cell ATAC-seq approach enabled analyses of single KP tumor cells.
(A) Schematic of alleles in the KPT model, LSL: lox-stop-lox; loxp (blue arrows); FRT site 

(orange arrows). Inset immunofluorescence (IF) image of a tdTom positive (tdTom+) tumor. 

(B) Schematic of sciATAC-seq strategy for single-cell profiling of tdTom+ cancer cells. (C) 

Unique fragments from species-mixing experiment of GM12878 (n = 1) and 3T3 cells (n = 

1). (D) Estimated library sizes of published data (Cusanovich et al., 2015; Pliner et al., 2018; 

Preissl et al., 2018) and this study, derived from GM12878 cells. Box intervals represent 

25% and 75% bounds. (E) FRIP by total fragments recovered from GM12878 and 3T3 cells. 

(F) IHC of a tumor-burdened lung at 30 weeks after tumor initiation in KPT model, 

representing H&E with Aiforia defined grades (top) and NKX2.1 IHC (scale bar; bottom, 

left 400 μm and right 100 μm). (G) Chromatin accessibility tracks generated from bulk 

ATAC-seq of a KPT tumor (red) (n = 1) and aggregated single-cell from a primary KPT 

tumor (n = 13,070; orange) at the S100 gene family locus. see also Fig. S1 and Table S1.
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Figure 2. Single-cell chromatin accessibility data defined heterogeneous normal and KP cell 
states.
(A) UMAP visualization of normal and KPT cancer cells profiled by sciATAC-seq. 

Individual samples are labeled by mouse number (M1-M12), primary tumor (T1-T5, pool), 

or metastatic tumor number (N1-N5); color codes represent normal (n = 2), immune-

depleted normal lung (n = 1), tdTom+ cells isolated from lung tumors (n = 23), lymph node 

or thymic metastases (n = 15), and liver metastases (n = 3). Two examples highlighted in red 

of individual tumors are shown (right). (B) Schematic of approach to calculate gene scores 

using an exponential decay function. Individual fragments are weighted based on the inverse 

distance to the TSSs, then summed across the chosen window (9,212 bp) reflecting 1% of 

the total weight for the chosen exponential half-life (1 kb). (C-E) Example gene scores are 

shown on the UMAP for Cd45 (C), Cd19 (D) and Vim (E). (F) Chromatin accessibility 

tracks for normal cell clusters at lineage-defining marker genes; track with associated 

genomic location shown (bottom). (G) Normal cell-type cluster identities shown on the 

UMAP of single-cells, tumor and metastatic cells labeled in gray and red, respectively, with 

inset zoom of the metastatic-like cluster. (H) Fractions of cancer cells within individual 

tumors that cluster with metastatic cells (red) or with cells derived from the primary tumor 

(gray) (n = 35). (I) Images of NKX2.1, VIM and H&E staining of a representative grade 4 

region (zoom 9.5X; scale bar, 100 μm). see also Fig. S2, Table S1 and Data S1.
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Figure 3. KPT cancer cells reflected AT1 and AT2 epigenomic states.
(A) Schematic of epithelial cell types and alveolar differentiation hierarchy. (B) Hierarchical 

clustering of AT1 (n = 67) and AT2 (n = 186) cells based on top significant TF motif scores, 

labeled by AT1 and AT2 cluster identity (bottom). (C) Volcano plot of differential gene 

scores between AT1 versus AT2 cells. Genes with a differential gene score greater than 1.8 

or less than −1.8 are highlighted in red with −log10 p value shown. (D) Correlation of each 

cancer cell to normal AT1 and AT2 cells using gene score signatures. Cells are colored by 

their Pearson r differential correlation coefficients. (E) Images of serial sections of early KP 

tumors (n = 2), late KP tumors (n = 2), and lymph node metastases (n = 2) stained for 

SFTPB (AT2 marker) and CAV1 (AT1 marker) (scale bar, 250 μm except Met tumor 2 125 

μm; inset, 50 μm). (F) Fraction of single cancer cells per sample that resemble AT1-like, 

AT2-like or late-stage cells; red=AT1, orange=AT2 and gray=late (n = 23). (G) Multiplexed 

IHC in a late-stage tumor sample; whole lung and two individual tumors shown; red (SPC; 

AT2), yellow (NKX2-1), green (HOPX; AT1), and overlay with DAPI (scale bar; whole 

lung, 0.5x, 2000 μm; tumor 1; 7.5x, 200 μm; tumor 2; 4.5x, 200 μm). (H) Aiforia graded 8-

week tumor-burdened lung (red=grade 1, green=grade 2, blue=grade 3, and orange=grade 

4). (I) Multiplexed IHC staining of an exemplar lung lobe at 8 weeks post-initiation stained 

with SPC (red), NKX2-1 (yellow), HOPX (green) and overlaid channels with DAPI. tdTom+ 

cells from entire lung used for scATAC-seq profiling (scale bar; whole lung, 0.7x, 1000 μm; 

tumors; 10x, 100 μm). (J) scATAC-seq profiling and projection of early time point (ETP) 
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cells (n = 4,610) onto the original UMAP clustering of all lung cells (gray points). ETP cells 

are colored by cluster density. see also Fig. S3 and Table S2.
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Figure 4. Chromatin co-accessibility modules defined cell state transitions during tumor 
progression.
(A) Hierarchical clustering of cancer cells (n = 13,670) using significant TF motif scores (n 

= 350 motifs) associated with tumor progression score as calculated by a distance from a fit 

polynomial line (bottom). (B) UMAP of cancer cells colored by NKX2.1 TF motif score. 

(C) Histogram of NKX2.1 TF motif scores for all cancer cells. Cells are delineated as “high” 

or “low” based on the median motif score across cancer cells (blue dashed line). (D) 

Differential chromatin accessibility for each peak between NKX2.1 TF motif “high” or 

“low” cells. Peaks with a significant FDR (q < 10−6) calculated by a two-sample Student’s t-
test are shown in dark blue. (E) Schematic depicting the co-accessibility module analysis 

workflow. (F) Clustering of differential TF motif associated peaks (n = 74,732 rows) using 

the log2 fold-change (FC) of mean accessibility between “high” versus “low” cell groups 

per TF motif (n = 67 columns). Clustering is performed based on the Louvain method. Peaks 

are hierarchically clustered per module for visualization. (G) UMAP plots highlighting 

single-cell module scores for cancer cells. see also Fig. S4 and Table S3.
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Figure 5. Regulatory analysis of cancer cells identified chromatin activators and repressors.
(A) Chromatin accessibility tracks for cells with high module scores and normal AT1/AT2 

cells respectively at key transcription factors. Modules include early time point (ETP), early-

stage (5, 11) and late-stage (9, 2, 4) modules. Module high was defined as two standard 

deviations above the mean module score across cells. (B-C) UMAP highlighting single-cell 

TF motif scores and motif logos (left), and gene scores (right) for FOSL1 (B) and RUNX2 

(C) in cancer cells. (D) Correlation of TF motif scores with gene scores for each TF (n = 

769) plotted against the TF motif score variability. Significantly variable TF motifs (motif 

score s.d. ≥ 1.2) correlated with their gene score (permutation p < 0.001) are shown in red; 

TFs with positive or negative correlation are highlighted as activators or repressors, 

respectively. Permutation p values were calcuated using a Z-test between the observed TF-

motif gene correlation coefficient to the permuted correlation coefficients. TF motif scores 

signficiance was computed with deviation Z-scores across cells. (E) Normalized correlation 

(max/min normalized using Pearson r correlations) of TF gene scores to module scores 

delineated by activators (n = 58) and repressors (n = 14). (F) IHC of heterogeneous late-

stage TFs stained for NKX2.1 (module 5), RUNX1 (module 9/2), RUNX2 (module 9/2), 

ONECUT2 (module 2), and ZEB1 (module 4) at 250 μm, inset 50 μm (n = 1). (G) Grade 4 
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regions stained for RUNX1, RUNX2 and HMGA2 (n = 1). (H) Lymph node tumors stain for 

RUNX2 and ZEB1 (250 μm, inset 50 μm; n = 1). see also Fig. S5 and Table S4.
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Figure 6. CRISPR perturbation revealed RUNX TFs regulate extracellular matrix remodeling.
(A) Schematic of the strategy used to OE or KO TFs in tumor-derived KP cell lines. (B) 

Hierarchical (KO or OE vs control) RUNX TF motif scores (defined by RUNX perturbation 

score; top, bar plot) and associated differential gene scores (KO or OE vs control; bottom, 

heatmap) for each RUNX1, RUNX2, or RUNX3 KO (1183T3 and 860T3; metastatic) or OE 

(853T2; non-metastatic) bulk ATAC-seq experiment. RUNX perturbation score was 

determined using the slope from a linear regression. Samples include 1183T3: controls 

(n=10), RUNX1 KO (n = 10), RUNX2 KO (n = 6), RUNX3 KO (n = 1), RUNX2 OE (n = 2), 

RUNX3 OE (n = 3); 860T3: controls (n=10), RUNX1 KO (n = 15), RUNX2 KO (n = 7), 

RUNX3 KO (n = 3); 853T2 controls (n = 5), RUNX2 OE (n = 10), 853T2 RUNX3 OE (n = 

3). (C) RUNX1 and RUNX2 expression in CRISPR KO cells from two independent guides 

as assessed by western blot; HSP90 shown as a loading control. (D) Log2 fold-change 

(RUNX KO vs control) of extracellular matrix proteins from a metastatic cell line (1183T3) 

with control (sgCON) (n = 1) or sgRunx2 (n = 1). Arrays with duplicate antibody spots and 

p values were determined by a Z-test (p<0.01*). (E) Chromatin accessibility tracks at 

differential RUNX genes (identified in panel B) for representative metastatic sgCON 

(control), metastatic sgRunx2 (KO), non-metastatic sgCON (control), and non-metastatic 

Runx2 (OE), and module-high cells (for comparison to KPT model). (F) Gene score for 
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Lgals1 derived from cancer cells. (G) Multiplexed IHC for late-stage region in KPT tumor. 

Overlaid image (left), individual channel insets: green (NKX2-1), yellow (RUNX2), and red 

(LGALS1) (scale bar; whole tumor 2.4x, 500 μm; zoomed region, 7.5x, 200 μm). (H) 

Intravenous metastasis experiments with schematic for tail vein injection (left top). 

Exemplar IHC stains for example control and sgRUNX2 KO tumors (left bottom) (n = 5 per 

arm, repeated in triplicate). Survival curve (right) with log-rank p value (n = 5 per arm) with 

survival log-rank (Mantel-Cox) test. ** represents p<0.01. see also Fig. S6 and Table S5.
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Figure 7: Module-associated genes were predictive of survival across human LUAD cases.
(A) LUAD tumor microarray (TMA) map stained with RUNX1. Individual images of tumor 

sections with grade indicated on tumor image. (B) Schematic of human module survival 

analyses. Module-specific genes from mouse cancer cells were used to score RNA-seq data 

from primary human LUADs in TCGA (n = 506) to determine association with patient 

survival. (C) Significance of module-associated genes with overall survival (OS) based on a 

logrank test (dashed lines: logrank p = 0.01). Positive values denote decreased survival, 

negative values denote increased patient survival for patients with higher median module 

expression. For p value significance, **** represents p<0.0001, *** represents p<0.001, ** 

represents p<0.01, and Represents p<0.05. (D) Kaplan-Meier plots for human LUAD 

patients with respect to expression of module 11 (left) or module 9- (right) associated genes. 

Curves are shown comparing OS of high (red) versus low (blue) patient groups, determined 

based on the median module expression. p values determined by a logrank test. **** 

represents p<0.0001 and ** represents p<0.01. see also Fig. S7 and Table S6.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

NKX2.1 Abcam Cat# ab76013; RRID:AB_1310784

RUNX2 Cell Signaling Technology Cat# 12556S; RRID:AB_2732805

LGALS1 Cell Signaling Technology Cat# 13888S; RRID:AB_2798338

HMGA2 Cell Signaling Technology Cat# 8179S; RRID:AB_11178942

ZEB1 Abcam Cat# ab87280; RRID:AB_2040541

RUNX1 Cell Signaling Technology Cat# 8529S; RRID:AB_10950225

SFTPC Millipore Sigma Cat# AB3786; RRID:AB_91588

SFTPB ThermoFisher Cat# PA5-42000; RRID:AB_2609628

BATF Sigma Aldrich Cat# SAB4500122; RRID:AB_10745033

CAV1 Sigma Aldrich Cat# C3237; RRID:AB_476842

HOPX Proteintech Cat# 11419-1-AP; RRID:AB_10693525

HSP90 BD Biosciences Cat# 610418; RRID:AB_397798

RUNX3 Abcam Cat# ab135248; RRID:AB_2848183

RFP Rockland Cat# 600-401-379; RRID:AB_2209751

Zfp795 Novus Biologicals Cat# NBP2-20947; RRID:AB_2848184

Fra1 ThermoFisher Cat# PA5-40361; RRID:AB_2609389

Onecut2 Proteintech Cat# 21916-1-AP; RRID:AB_2848180

PDPN Abcam Cat# ab109059; RRID:AB_2848181

RUNX2 Abcam Cat# ab23981; RRID:AB_777785

CD45 Abcam Cat# ab10558; RRID:AB_442810

CD11B-APC eBioscience Cat# 7-0112-82; RRID:AB_469344

TER119-APC BD Biosciences Cat# 557909; RRID:AB_398635

CD45-APC BD Biosciences Cat# 559864; RRID:AB_398672

CD31-APC Biolegend Cat# 102510; RRID:AB_312917

Bacterial and Virus Strains

Ad5-Sftpc-Cre University of Iowa viral vector core 
facility

Cat# VVC-Berns-1168

Biological Samples

Lung adenocarcinoma, 75 cases, tumor and matched 
NAT*, unstained slide

biomax Cat# HLugA150CS02

Lung cancer progression tissue array, including TNM, 
clinical stage and pathology grade, 100 cases/100 cores, 
replacing LC1005

biomax Cat # LC1005a

Lung disease spectrum (pulmonary cancer progression) 
tissue array, 193 cases/208 cores

biomax Cat# LC2083

Chemicals, Peptides, and Recombinant Proteins

NP-40 Surfact-Amps Detergent Solution Thermo Scientific Nalgene Cat# 28324

Thermo Scientific Pierce Sequencing Grade 
Dimethylformamide

Thermo Fisher Scientific Cat# 20673
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REAGENT or RESOURCE SOURCE IDENTIFIER

0.5M EDTA pH 8.0 Thermo Fisher Scientific Cat# 15575-020

Triton X-100 Sigma Aldrich Cat# T8787-50ML

HEPES (1M) Life Technologies Cat# 15630-080

Tween(R)20, SigmaUltra Sigma-Aldrich Cat# P7949-100ML

NuPAGE MOPS SDS Running Buffer Invitrogen Cat# NP0001

TBS Buffer 20X Liquid, 4L Amresco Cat# J640-4L

RIPA Buffer Thermo Fisher Scientific Cat# 89900

Halt Phosphatase Inhibitor Thermo Scientific Cat# PI-78420

Halt Protease Inhibitor Cocktail (100X) Thermo Scientific Cat# 78430

NuPAGE LDS Sample Buffer (4X) Life Technologies Cat# NP0007

NuPAGE Sample Reducing Agent (10X) Invitrogen Cat# NP0009

NuPAGE Transfer Buffer (20X) Life Technologies Cat# NP0006-1

Blotting-Grade Blocker Bio-Rad Cat# 170-6404

Ponceau S Sigma Aldrich Cat# P7170-1L

NuPAGE Novex 4-12% Bis-Tris Protein Gels, 1.5mm, 10 
well

Life Technologies Cat# NP0335BOX

Amersham ECL Prime Western Blotting Detection 
Reagent

GE Healthcare Cat# RPN2232

Dual Endogenous Enzyme Blocking Kit Agilent Technologies Cat# S200389-2

2.5% Normal Horse Serum Blocking Solution Vector Laboratories Cat# S-2012

ImmPRESS HRP Anti-Rabbit IgG (Peroxidase) Polymer Vector Laboratories Cat# mp-7401

ACK lysing buffer Thermo Fisher Scientific Cat# a10492-01

DMEM with L-Glutamine VWR Cat# 10-013-CV (45000-304)

0.25% Trypsin-EDTA (1X) Phenol Red Invitrogen Cat# 25200-114

RPMI 1640 VWR Cat# 15-040-CV

Tet System Approved FBS Clontech Cat# 631106

Penicillin-Streptomycin VWR Cat# 45000-652

S-MEM Life Technologies Cat# 11380-037

RNase inhibitor Thermo Fisher Scientific Cat# N8080119

DPBS, 1X without calcium and magnesium VWR Scientific Inc Cat# 21-031-CV

10X PBS VWR Cat# AAJ67653-AP

Bovine Albumin Fraction V (7.5% solution) Thermo Fisher Scientific Cat# 15260037

Glycine VWR Cat# 97061-128

Collagenase from Clostridium histolyticum Sigma-Aldrich Cat# C9407-500MG

MgCl2 (1M) Thermo Fisher Scientific Cat# AM9530G

NaCl, 5M ThermoFisher Scientific Cat# AM9759

Tris, Hydrochloride Santa Cruz Biotechnology Cat# sc-216106A

Sodium Dodecyl Sulfate Bio-Rad Cat# 161-0302

Sybr Fast 2X MM LC480 Kapa Biosystems Cat# KK4611

Thermo Scientific Pierce Methanol free Formaldehyde 
Ampules

Thermo Fisher Scientific Cat# 28908
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REAGENT or RESOURCE SOURCE IDENTIFIER

Proteinase K, Recombinant, PCR grade solution Sigma-Aldrich Cat# 3115828001

HBSS, no Calcium, no Magnesium, no Phenol Red Thermo Fisher Scientific Cat# 14175-079

Invitrogen DNase I Thermo Fisher Scientific Cat# 18-047-019

Collagenase, Type 4 Worthington Biochemical Cat# LS004189

FastDigest Esp3I Thermo Fisher Scientific Cat# FD0454

Puromycin Invitrogen Cat# a11138-02

Zinc formalin fixative, pH 6.25 Electron Microscopy Sciences Cat# 21516.375

Exonuclease I New England Biolabs (NEB) Cat# M0293S

Collagenase from Clostridium histolyticum Sigma-Aldrich Cat# C9407-500MG

ProLong Glass Antifade Mountant Thermo Fisher Scientific Cat# P36980

Digitonin Promega Cat# G9441

Critical Commercial Assays

Opal 4-Color Manual IHC Kit 50 slides Akoya Biosciences Cat# NEL810001KT

DAB Peroxidase Substrate Kit Vector Labs Cat# SK-4100

NEBNext High-Fidelity 2X PCR Master Mix New England Biolabs (NEB) Cat# M0541L

Pierce BCA Protein Assay Kit Thermo Fisher -- Pierce Cat# 23227

KAPA Library Quant for Illumina Sequencing Platforms Kapa Biosystems Cat# KK4824

MinElute PCR Purification Kit Qiagen Cat# 28006

Lung Dissociation Kit, mouse Miltenyi Biotec Cat# NC0315167

RNeasy Plus Mini Kit Qiagen Cat# 74134

High-Capacity cDNA reverse transcription kit Thermo Fisher Scientific Cat# 4368814

Qubit dsDNA HS Assay Kit Thermo Fisher Scientific Cat# Q32854

QIAGEN Plasmid Plus Midi Kit (25) Qiagen Cat# 12943

QIAquick Gel Extraction Kit (250) Qiagen Cat# 28706

SMARTer ThruPLEX DNA-Seq Kit - 24 Rxns Takara Bio Cat# R400674

ECM Cell Adhesion Array Kit, colorimetric Millipore Sigma Cat# ECM540

CD45 microbeads mouse Miltenyi Biotec Cat# 130-052-301

Mouse L308 Array, Membrane RayBiotech Cat# AAM-BLM-1A-2

Nextera DNA Library Preparation Kit Illumina Cat# FC-121-1030

NextSeq 500/550 High Output Kit v2 Illumina Cat# FC-404-2002

NextSeq Illumina Cat# FC-404-2005

SureCell ATAC-Seq Library Preparation Kit Bio-Rad Cat# 17004620

Agencourt AMPure XP Beckman Coulter Cat# A63880

SureCell ddSEQ Index Kit Bio-Rad Cat# 12009360

Agilent High Sensitivity DNA Kit Agilent Cat# 5067-4626

TC20 Cell Counting Kit, with Trypan Blue Bio-Rad Cat# 1450003

Deposited Data

ScATAC-seq data This manuscript GSE134812

Early time point single cell data This manuscript GSE145192
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REAGENT or RESOURCE SOURCE IDENTIFIER

Bulk-ATACseq This manuscript GSE151403

Visualization of UMAP scATAC-seq This manuscript https://buenrostrolab.shinyapps.io/
lungATAC/

UCSC genome browser tracks for normal cells This manuscript http://genome.ucsc.edu/s/lmlafave/
normal_lung_scATAC

UCSC genome browser tracks for tumor modules This manuscript http://genome.ucsc.edu/s/lmlafave/
KPT_modules

Experimental Models: Cell Lines

860T3 KP cell line This manuscript N/A

1183T3 KP cell line This manuscript N/A

853T2 KP cell line This manuscript N/A

860T1 KP cell line This manuscript N/A

1183T4 KP cell line This manuscript N/A

932T2 KP cell line This manuscript N/A

932T3 KP cell line This manuscript N/A

932LN KP cell line This manuscript N/A

779T1 KP cell line This manuscript N/A

779T2 KP cell line This manuscript N/A

779LN KP cell line This manuscript N/A

Experimental Models: Organisms/Strains

KP mouse Jackson et al., 2001, 2005 stock 008179, stock 008462

Tomato mouse (Ai9) Jackson Labs stock 007905

B6129SF1/J Jackson Labs stock 101043

Oligonucleotides

Genotyping primers Table S7 N/A

RUNX2 control g1f: 
CACCGGGCCACGAGTTCGAGATCGA

This manuscript N/A

RUNX2 control g1r: 
AAACTCGATCTCGAACTCGTGGCCC

This manuscript N/A

RUNX2 OE sg1a: CACCGGAGGAGGAAATCGA This manuscript N/A

RUNX2 OE sg1b: AAACTCGATTTCCTCCTCC This manuscript N/A

RUNX2 OE sg2a: CACCGGGCGGAGTCTGCTG This manuscript N/A

RUNX2 OE sg2b: AAACCAGCAGACTCCGCCC This manuscript N/A

RUNX1 KO sg1a: 
CACCGAGGAGTACCTTGAAAGCGAT

This manuscript N/A

RUNX1 KO sg1b: 
AAACATCGCTTTCAAGGTACTCCTC

This manuscript N/A

RUNX1 KO sg4a: 
CACCGTAGCGAGATTCAACGACCTC

This manuscript N/A

RUNX1 KO sg4b: 
AAACGAGGTCGTTGAATCTCGCTAC

This manuscript N/A

RUNX2 KO sg3a: 
CACCGTGCGGACCAGTTCGGCCGGG

This manuscript N/A
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RUNX2 KO sg3b: 
AAACCCCGGCCGAACTGGTCCGCAC

This manuscript N/A

RUNX2 KO sg4a: 
CACCGGCCCTCGGAGAGGTACCAGA

This manuscript N/A

RUNX2 KO sg4b: 
AAACTCTGGTACCTCTCCGAGGGCC

This manuscript N/A

RUNX3 KO sg1a: 
CACCGGGACGTGCTGGCCGACCACG

This manuscript N/A

RUNX3 KO 
sg1b:AAACCGTGGTCGGCCAGCACGTCCC

This manuscript N/A

Recombinant DNA

lentiCRISPR-V2-puro Joung et al., 2017 Addgene #98290

Lenti-Sam-puro This manuscript N/A

Lenti-Cas9-blast Sanjana et al., 2014 Addgene #52962

Software and Algorithms

Aiforia (NSCLC_v25 algorithm) This manuscript https://www.aiforia.com/

R (v3.5.3) R Core Team, 2019 https://www.R-project.org

chromVAR R package (v0.2.0) Schep et al., 2017 https://github.com/GreenleafLab/
chromVAR

uwot R package (v0.1.4) McInnes et al., 2018 https://github.com/jlmelville/uwot

survival R package (2.41-3) Therneau and Grambsch, 2000 https://cran.r-project.org/web/packages/
survival/index.html

GSEA (v3.0) Subramanian et al., 2005 https://www.gsea-msigdb.org/gsea/
index.jsp

ImageJ (v1.52k) Schneider, et al., 2012 https://imagej.net/

ImageJ Protein Array Analyzer (v1.1.c) Carpentier, 2010 https://imagej.net/macros/toolsets/Protein
%20Array%20Analyzer.txt

FlowJo (v10.6.2) N/A www.flowjo.com

CaseViewer (v2.2.1) N/A https://www.3dhistech.com

MATLAB (v2019a) Higham and Higham, 2016 https://www.mathworks.com

Ilastik (v1.3.3) Berg et al., 2019 https://www.ilastik.org

MSigDB (v7.0) Liberzon et al., 2015 https://www.gsea-msigdb.org/gsea/
msigdb/index.jsp

bowtie2 (v2.3.3.1) Langmead et al., 2012 http://bowtie-bio.sourceforge.net/
bowtie2/index.shtml

MACS2 (v2.1.2) Zhang et al., 2008 https://github.com/taoliu/MACS/

samtools (v1.9) Li et al., 2009 http://samtools.sourceforge.net

Picard toolkit (2.14.1-SNAPSHOT) N/A http://broadinstitute.github.io/picard

biomaRt (v2.34) Durinck et al., 2005 https://bioconductor.org/packages/
release/bioc/html/biomaRt.html

ggfortify R package (v0.4.10) Tang et al., 2016 https://github.com/sinhrks/ggfortify

BAP (v0.5.9i) Lareau et al., 2019 https://github.com/caleblareau/bap

BWA (v0.7.15) Li, 2013 https://github.com/lh3/bwa

QuPath (0.1.2) Bankhead et al., 2017 https://qupath.github.io
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Code generated for this manuscript This study https://github.com/buenrostrolab/
lungATAC_analysis_code
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