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ABSTRACT
Just 11 weeks after the confirmation of first infection, one team had already discovered and published [D. Wrapp et al., “Cryo-EM structure
of the 2019-nCoV spike in the prefusion conformation,” Science 367(6483), 1260–1263 (2020)] in exquisite detail about the new coron-
avirus, along with how it differs from previous viruses. We call the virus particle causing the COVID-19 disease SARS-CoV-2, a spherical
capsid covered with spikes termed peplomers. Since the virus is not motile, it relies on its own random thermal motion, specifically the
rotational component of this thermal motion, to align its peplomers with targets. The governing transport property for the virus to attack
successfully is thus the rotational diffusivity. Too little rotational diffusivity and too few alignments are produced to properly infect. Too
much, and the alignment intervals will be too short to properly infect, and the peplomer is wasted. In this paper, we calculate the rotational
diffusivity along with the complex viscosity of four classes of virus particles of ascending geometric complexity: tobacco mosaic, gemini,
adeno, and corona. The gemini and adeno viruses share icosahedral bead arrangements, and for the corona virus, we use polyhedral solu-
tions to the Thomson problem to arrange its peplomers. We employ general rigid bead–rod theory to calculate complex viscosities and
rotational diffusivities, from first principles, of the virus suspensions. We find that our ab initio calculations agree with the observed com-
plex viscosity of the tobacco mosaic virus suspension. From our analysis of the gemini virus suspension, we learn that the fine detail of
the virus structure governs its rotational diffusivity. We find the characteristic time for the adenovirus from general rigid bead–rod theory.
Finally, from our analysis of the coronavirus suspension, we learn that its rotational diffusivity descends monotonically with its number
of peplomers.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0031875., s

I. INTRODUCTION

Shortly after the confirmation of first infection, one team had
already discovered and published1 in exquisite detail about the new
coronavirus, along with how it differs from previous viruses. We
call the virus particle causing the COVID-19 disease SARS-CoV-2, a
spherical capsid covered with hollow spikes termed peplomers. Since
the virus is not motile, it relies on its own random thermal motion,
specifically, the rotational component of this thermal motion, to
align its peplomers with targets. From Fig. 1(B) of Ref. 2, we learn
that to perfuse capsid contents into a cell, precisely two adjacent
peplomers must align with a dimeric target, nominally rectangular
(110 × 160 Å2). Furthermore, this alignment must be long enough
for fusion. Once fused, perfusion progresses to infection.

Whereas much of the prior work on flow and the virus focuses
on infection of the organism,3–21 this work targets the transport
properties of the coronavirus particle and their implications in trans-
port phenomena of cellular infection. Although our work is mainly
driven by curiosity, it may deepen our understanding or even accel-
erate drug treatment or vaccine development, especially where these
interfere with cellular infection.

The governing transport property for the virus to attack suc-
cessfully is the rotational diffusivity of the SARS-CoV-2 particle
(see Footnote 2 in p. 62 of Ref. 22). Too much rotational diffusiv-
ity and the alignment intervals will be too short to properly infect,
and the peplomer is wasted. Too little rotational diffusivity, and
too few alignments are produced to properly infect. The rotational
diffusivity of a particle depends intimately on its shape.
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Whereas in engineering, the complex viscosity function has
a broad diversity of applications including polymer or suspension
processing, for virus suspensions, its main use is for determining
rotational diffusivity. In this paper, we calculate the complex viscos-
ity and thus the rotational diffusivity of four classes of virus par-
ticles of ascending geometric complexity: tobacco mosaic, gemini,
adeno, and corona. The gemini23 and adeno24 viruses share icosahe-
dral bead arrangements, and for the corona virus, we use polyhedral
solutions to the Thomson problem to arrange its peplomers.25,26 We
employ general rigid bead–rod theory to calculate complex viscosi-
ties and rotational diffusivities, from first principles, of the virus sus-
pensions (Refs. 27–34; see EXAMPLE 16.7-1 of Ref. 22 or EXAMPLE
13.6-1 of Ref. 35).

We are attracted to general rigid bead–rod theory first for its
flexibility. We design each macromolecular structure, here virus
particles, by rigidly connecting nearest bead centers with massless
dimensionless rods. We are attracted to general rigid bead–rod the-
ory second for the accuracy of its simplest special cases, the rigid
dumbbell suspensions, for which many transport properties are
predicted (see this reviewed in Sec. I of Ref. 31).

General rigid bead–rod theory proceeds from the continuity
equation for the macromolecular configuration, called the diffu-
sion equation [Eq. (13.2-13) of Ref. 22]. By continuity, we mean
that the diffusion equation conserves orientation, preserving one
and only one orientation per macromolecule. Hassager solves the
diffusion equation for the configuration distribution function in
small-amplitude oscillatory flows, which, for rigid macromolecules,
reduces to the orientation distribution function, ψ(θ, ϕ, t).

Consider, for instance, a coronavirus particle close enough to
fuse with a dimeric receptor.2 We refer the coronavirus particle to
spherical coordinates and consider the receptor target orthogonal to
its equator (θ = π/2) with the long axis of the dimeric receptor along
the longitudinal direction. For this special infection opportunity, the
probability of finding a peplomer aligned with said receptor is given
by [see Eq. (9) of Ref. 36]

p ≡
ϕr

∫

−ϕr

θr

∫

−θr

ψ(θ,ϕ, t) sin θdθdϕ, (1)

where for the nominally rectangular binding target,

θr
ϕr
=

110 Å
160 Å

=
11
16

. (2)

For fusion, we, of course, require two peplomers with said
alignment,2 and thus, the probability of finding this falls well
below p.

General rigid bead–rod theory connects ψ with macromolecu-
lar shapes, including those of viruses. In this way, the virus shape
confers the transport properties to its suspension, including viscos-
ity, elasticity, and diffusivities, be they rotational or translational.
Little is known experimentally about the diffusivity of viruses, espe-
cially the rotational diffusivity. For instance, the translational diffu-
sivity of the adenovirus has been measured by photon-correlation
spectroscopy.37 The rotational diffusivity of tobacco mosaic viruses
has also been measured by light scattering,38–41 transient electric
birefringence,42 and flow birefringence.43 The rotational diffusivity
is deducible from the translational one by the identity given in Sec. II
below.

One of the challenges of ab initio calculations from gen-
eral rigid bead–rod theory on coronaviruses is that the peplomer
arrangement is not known. However, we do know that the spikes
are charge-rich,44,45 and we can presume, charged identically. Fur-
thermore, we know that the coronavirus spikes are anchored into
its viral membrane and not into its capsid (Sec. 1. of Ref. 46),
unlike the adenovirus spikes. Hence, the coronavirus spikes are
free to be rearranged by their electrostatic repulsions. We thus
expect the peplomers to arrange themselves by repelling one another
into the polyhedral solutions to the Thomson problem.25,26 By
the Thomson problem, we mean how identically charged parti-
cles will organize themselves onto a sphere by minimizing sys-
tem potential energy. In this work, we are thus using mini-
mum potential energy peplomer arrangements for our coronavirus
model particles.

The rotational alignment of the virus particle studied herein
is prefusion and not to be confused with the postfusion diffusive
rotational search of the spike-protein unfolding that accompanies
binding.47

II. METHOD
Using general rigid bead–rod theory, we propose the con-

struction of virus particles from sets of beads whose positions are
fixed relative to one another. For example, the SARS-CoV-2 parti-
cle geometry is a spherical capsid surrounded by a constellation of
protruding peplomers. We understand that the number of peplom-
ers per virus particle differs from particle to particle and seems
to decrease with time after inoculation. We suspend our bead–
rod models of virus particles into a Newtonian solvent. We begin
by neglecting interactions of the solvent velocity fields, be they (i)
between nearest beads within the virus particle48,49 or (ii) between
nearest virus particles. To any such collection of bead masses, we
can associate a moment of inertia ellipsoid (MIE) whose center is
the center of mass and whose principal moments of inertia match
those of the virus particle. The MIE thus determines the orientabil-
ity of the virus particle and thus the virus rotational diffusivity.
Our use of moment of inertia ellipsoids is not to be confused with
replacing the virus particle with an ellipsoid of revolution, with its
own hydrodynamic environment.50 We know of no previous cal-
culation of the moments of inertia ellipsoid of virus particles, and
we think that this missing physics can deepen our understanding
of SARS-CoV-2.

To model the virus particle, we locate each bead of mass mi with
the position vector of the ith bead ri, where the virus particle center
of mass R satisfies

N

∑
i=1

mi(ri − R) = 0 (3)

so that

R =
1
M

N

∑
i=1

miri, (4)

where N is the total number of beads and M ≡ ∑N
i=1 mi is the virus

particle mass. Since we construct our virus particles with identical
beads of diameter d and mass m, then M. . .mN, and thus, the center
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of mass is

R =
1
N

N

∑
i=1

ri, (5)

which we will use below.
We next install viral coordinates at the center of mass of the

virus, and we orient these Cartesian coordinates such that δ̂3 is along
the polar axis of the moment of inertia ellipsoid. For our virus parti-
cles, δ̂3 is through the particle. In this study, to allow us to explore
the surface density of peplomers, the peplomer arrangement, and
even the triadic details of the three-glycoprotein spikes, we will use
a finely beaded sphere for the capsid. By necessity of general rigid
bead–rod theory, our capsid and peplomer beading must be equally
fine.

The position vector of the ith bead with respect to the virus
center of mass is given by

Ri ≡ [Ri1,Ri2,Ri3]. (6)

We define the principal moments of inertia I1, I2, and I3 by
[Eqs. (16.7-17) and (16.7-18) of Ref. 22 or (13.6-17) and (13.6-18)
of Ref. 35]

I1 ≡ m
N

∑
i=1
(R2

i2 + R2
i3), (7)

I2 ≡ m
N

∑
i=1
(R2

i1 + R2
i3), (8)

I3 ≡ 2m
N

∑
i=1

R2
i1, (9)

where the subscript i is the bead number. We design each virus par-
ticle structure by first rigidly connecting nearest bead centers with
massless widthless rods. Throughout our work, L is the distance
between the nearest bead centers. We then complete the general
rigid bead–rod construction by rigidly connecting the remaining
bead centers to their nearest neighbors. For the SARS-CoV-2 par-
ticle, L is the center to center distance between osculating beads
forming the capsid. Although the peplomer is a spike with a bul-
bous triadic head, in this work, we will model it as a single bead not
touching the capsid.

Since the virus particle structure is axisymmetric, so will be its
moment of inertia ellipsoid. By axisymmetric, we mean that both
the virus particle and its moment of inertia ellipsoid have at least
one axis of symmetry.27 Furthermore, if the virus particle struc-
ture is axisymmetric, at least two of its principal moments of iner-
tia equate, at any angle from the molecular axis, so that I1 = I2.
Our usage of axisymmetric is not to be confused with the com-
mon geometric meaning of continuous rotational symmetry about
an axis.

Hassager derives the expression for the dimensionless shear
relaxation function for general rigid bead–rod theory,

G(s)
nkT

=
δ(s)
kT
(

2ηs
n

+ ζL2a) + be−s/λ, (10)

in which [Eq. (16.7-38) of Ref. 22 or Eqs. (13.6-44), (13.6-45), and
(13.6-46) of Ref. 35]

a ≡
2I1 + I3

6mL2 −
(I1 − I3)

2

5mL2I1
, (11)

b ≡
3(I1 − I3)

2

5I2
1

(12)

and the particle rotation constant is29,31

ν ≡
6mL2

I1
, (13)

where 0 ≤ b ≤ 3/5 and 0 ≤ aν ≤ 7/2. The three quantities a, b,
and ν thus define completely the differences in linear viscoelastic
behaviors arising between different axisymmetric macromolecular
structures. Whereas we associate awith the Dirac delta function con-
tribution to the relaxation function, we associate b with the dying
exponential.

The relaxation time of the corresponding virus particle suspen-
sion can be expressed as

λ ≡
ζI1

6mkT
≡
ζL2

νkT
(14)

in which the bead friction coefficient is given by

ζ ≡ 3πdηs. (15)

We define a characteristic time for all virus particle suspensions as

λ0 ≡
ζL2

12kT
=
πdηsL2

4kT
, (16)

which nondimensionalizes as

nkTλ0

ηs
≡

3
4
φ(

L
d
)

2
, (17)

where φ is the bead volume fraction, and for osculating beads, where
L = d,

λ0 =
πd3ηs
4kT

(18)

and

nkTλ0

ηs
≡

3
4
φ. (19)

Dividing Eq. (14) by Eq. (16) normalizes the relaxation time,

λ
λ0
≡

12
ν

. (20)

We can then use Eq. (10) to calculate the polymer contribu-
tion to the stress tensor in any linear viscoelastic flow, including
oscillatory shear flow, from [Eq. (1) of Ref. 30]

τp ≡ −∫
t

−∞
G(t − t′) γ̇(t′)dt′, (21)

where all symbols are defined in Tables I and II.
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TABLE I. Dimensional variables M ≡ mass, L ≡ length, and t ≡ time.

Name Unit Symbol

Angular frequency t−1 ω
Avogadro constant mol−1 Ñ
Bead diameter L d
Bead friction coefficient [Eq. (15)] M/t ζ
Capsid radius (see Figs. 4 and 8) L rc
Cartesian coordinates L x, y, z
Cartesian coordinates with respect to the center of mass L δ̂1, δ̂2, δ̂3
Characteristic time for each virus particle suspension s λs
Characteristic time, zero-shear t λc
Complex viscosity [Eq. (36)] M/Lt η∗

Density M/L3 ρ
Edge vector pointing from adenovirus vertex i to vertex j L Eij

Element for Kronecker delta [Eq. (10)] t−1 δ(s)
Energy values in molecular-scale systems ML2/t2 kT
Intrinsic minus imaginary part of non-linear complex viscosity L3/M [η

′′

]
Intrinsic real part of non-linear complex viscosity L3/M [η′]
Intrinsic zero-shear viscosity L3/M [η]0
Macromolecular center of mass [Eq. (5)] L R
Mass concentration M/L3 c
Mass of each bead M mi

Minus imaginary part of non-linear complex viscosity [Eq. (35)] M/Lt η
′′

Moments of inertia [Eqs. (7)–(9)] ML2 I1, I2, I3

Number of dumbbells per unit volume 1/L3 n
Peplomer bulb center radial position (see Fig. 8) L rp ≡ rv − rb
Peplomer bulb radius (see Fig. 8) L rb
Polymer contribution to the stress tensor [Eqs. (21) and (33)] M/Lt2 τp
Position vector of the ith bead and jth element with respect to the center of mass [Eq. (6)] L Rij
Position vector of the ith bead with respect to the center of mass [Eq. (6)] L Ri
Position vector of the ith bead [Eq. (5)] L ri
Position vector of adenovirus vertex i with respect to the center of mass L Vi
Real part of non-linear complex viscosity [Eq. (34)] M/Lt η′

Reduced angular frequency M/L3 ωR
Relaxation time of rigid dumbbell [Eq. (16)] t λ0
Relaxation time of solution Eq. (14) t λ
Rotational diffusivity s−1 Dr

Rotatory diffusivity L2/t Drot

Shear rate amplitude [Eq. (29)] t−1 γ̇0

Shear rate at specific time t
′

[Eq. (21)] t−1 γ̇(t′)
Shear rate tensor [Eq. (29)] t−1 γ̇(t)
Shear rate [Eq. (29)] t−1 γ̇(t)
Shear relaxation function [Eq. (10)] M/Lt2 G(s)
Solvent viscosity M/Lt ηs
Specific time [Eq. (21)] t t′

Temperature T T
Time t t
Time difference t s ≡ t − t′

Total mass M M
Translational diffusivity L2/t Dtr
Virus radius (see Figs. 4 and 8) L rv ≡ rp + rb
Viscosity, zero-shear M/Lt η0
Zero-shear first normal stress difference M/L Ψ0,1
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TABLE II. Dimensionless variables and groups.

Name Symbol

Bead volume fraction [Eq. (17)] φ
Coefficient in Eq. (11) a
Coefficient in Eq. (12) b
Coefficient in Eq. (13) ν
Deborah number, oscillatory shear De ≡ λω
Golden Ratio β
Relaxation time ratio Λ ≡ λ/λ0
Total number of beads N
Total number of peplomers Np
Total number of capsid beads Nc

Weissenberg number Wi ≡ λγ̇0

Probability p
Orientation distribution ψ(θ, ϕ, t)
Spherical coordinate, latitudinal θ
Spherical coordinate, longitudinal ϕ
Spherical coordinate, latitudinal receptor θr
Spherical coordinate, longtitudinal receptor ϕr

In this work, we apply these derivations to virus particles,
specifically to the calculation of the rotational diffusivity, given by
the identity (see Footnote 2 of p. 62 of Ref. 22)

Dr ≡
1

6λ
(22)

about which, for virus particles, remarkably little is known. Substi-
tuting Eq. (20) into Eq. (22) and nondimensionalizing,

λ0Dr =
ν

72
. (23)

Substituting Eq. (17) into this and rearranging gives the dimension-
less rotational diffusivity

λsDr ≡
ηs
nkT

Dr =
ν

54φ
(
d
L
)

2

(24)

from which we uncover a characteristic time for each virus particle
suspension λs. The quantity ν thus defines completely the rotational
diffusivity of a virus particle.

TABLE III. Bead positions for tobacco mosaic and gemini viruses.

Macromolecule L[Ri1, Ri2, Ri3]

[0, 0,−
11
2
]; [0, 0,−

9
2
]; [0, 0,−

7
2
]; [0, 0,−

5
2
]; [0, 0,−

3
2
]; [0, 0,−

1
2
];

[0, 0,
11
2
]; [0, 0,

9
2
]; [0, 0,

7
2
]; [0, 0,

5
2
]; [0, 0,

3
2
]; [0, 0,

1
2
]

[0, 0, x1]; [−x2, 0,
1
2
]; [x2, 0, x3]; [x4,−

1
2

,
1
2
];

[x4,
1
2

,
1
2
]; [−x4,−

1
2

, x3]; [−x4,
1
2

, x3];

[−x5,−x6,
1
2
]; [−x5, x6,

1
2
]; [x5,−x6, x3];

[x5, x6, x3]; [0, 0,−x1]; [−x2, 0,−
1
2
]; [x2, 0,−x3];

[x4,−
1
2

,−
1
2
]; [x4,

1
2

,−
1
2
]; [−x4,−

1
2

,−x3];

[−x4,
1
2

,−x3]; [−x5,−x6,−
1
2
]; [−x5, x6,−

1
2
];

[x5, x6,−x3]; [x5, x6,−x3]

where

x1 ≡
1
2

+
5

√
50 − 10

√
5

+
1

√
10 − 2

√
5

, x2 ≡

√
2

5 −
√

5
,

x3 ≡
1
2

+
2

√
10 − 2

√
5

, x4 ≡
1
2

√
5

10 − 2
√

5
+

1

2
√

10 − 2
√

5
,

x5 ≡
1

2
√

10 − 2
√

5
−

1
2

√
5

10 − 2
√

5
, x6 ≡

1
2

¿
Á
ÁÀ 5 +

√
5

5 −
√

5
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In the tradition of the transport sciences, we define the rotatory
diffusivity as (see Footnote 2 of p. 62 of Ref. 22)

Drot ≡
2kT
ζ

, (25)

which, for any axisymmetric macromolecule, from general rigid
bead–rod theory, gives

Drot ≡
12L2

ν
Dr , (26)

which has the dimensions of diffusivity and which is four times the
translational diffusivity,

Drot ≡ 4Dtr (27)

or

Dr ≡
ν

3L2 Dtr . (28)

In this paper, we depart from said transport tradition of using
the rotatory diffusivity, Drot, and frame our results in terms of the
rotational diffusivity, Dr .

The challenge in determining the rotational diffusivity of a
virus particle, from first principles, begins with modeling its intri-
cate geometry with beads, locating the position of each bead. Once
overcome, the next challenge is to use this geometry to arrive at the
transport properties for the SARS-CoV-2 particle. From these, we
will deepen our understanding of how these remarkable particles
can align their peplomers both for long enough and often enough
to infect.

For this work, we chose general rigid bead–rod theory for
its flexibility and accuracy (Sec. I of Ref. 31). However, for bead–
rod structures as complex as coronaviruses, drawing the bead–rod
models presented a challenge, which we met using solid modeling
computer-aided design.51 This challenge arises when progressing
from the R values in Eq. (5) to bead–rod imagery, for instance, when
going from Table III for the R values of our tobacco mosaic and
gemini viruses to our images in Figs. 1–5, respectively.

In Secs. IV–VII, we calculate the rotational diffusivity along
with the complex viscosity of four classes of virus particles of
ascending geometric complexity: tobacco mosaic, gemini, adeno,
and corona. Section IV affords a comparison of our general bead–
rod theory with measured behavior of the complex viscosity.

FIG. 1. General rigid bead–rod model of tobacco mosaic virus, N = 12.

FIG. 2. General rigid bead–rod model of gemini virus, N = 22. See Fig. 2 of Ref. 23.

FIG. 3. General rigid bead–rod model of adenovirus, Nc = 252, Np = 12, and
rv /rc = 5/4.

FIG. 4. Connections between adenovirus particle dimensions and its general rigid
bead–rod model.
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FIG. 5. General rigid bead–rod model of coronavirus, Nc = 256, Np = 74, and rv /rc

= 5/4.

Section V is purposed to explore how fine structural detail affects
virus rotational diffusivity. Section VI affords a comparison with the
measured value of the translational diffusivity, and Sec. VII, affords
an exploration of how the detailed structure of SARS-CoV-2 affects
its rotational diffusivity.

III. OSCILLATORY SHEAR FLOW
One measures the complex viscosity in oscillatory shear flow

generated by confining the fluid to a simple shear apparatus and then
by subjecting one solid–liquid boundary to a coplanar sinusoidal
displacement, generating the corresponding cosinusoidal shear rate

γ̇(t) = γ̇0 cosωt (29)

such that the rate of deformation tensor is given by

γ̇(t) =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 γ̇0 cosωt 0
γ̇0 cosωt 0 0

0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (30)

Using the characteristic relaxation time of the virus suspension, λ,
we can nondimensionalize Eq. (29) as

λγ̇(t) = λγ̇0 cos λω(t/λ), (31)

where λω and λγ̇0 are the Deborah and Weissenberg numbers.
In this paper, we focus on small-amplitude oscillatory shear flow
(SAOS). For this flow field, for the molecular definition of small
amplitude, general rigid bead–rod theory yields

λγ̇0
≪

1
ν
√

2
(32)

whose left side is the macromolecular Weissenberg number. From
Eq. (32), we learn that structures with higher ν will have lower limits
for linear viscoelasticity.

Substituting Eqs. (10) and (29) into Eq. (21) yields the polymer
contribution to the shear stress

τp = γ̇0
{[η′(ω) − ηs] cosωt + η′′(ω) sinωt} (33)

in which [Eqs. (40) and (41) of Ref. 31]

η′ − ηs
η0 − ηs

= (
1

2b/aν
+ 1)

−1

(
1

2b/aν
+

1
1 + (λω)2 ), (34)

η′′

η0 − ηs
= (

1
2b/aν

+ 1)
−1 λω

1 + (λω)2 , (35)

where

η∗ ≡ η′ − iη′′ (36)

is the complex viscosity.52,53 In this paper, we plot the real and imag-
inary parts of the responses as functions of frequency, following the
work of Ferry (Secs. 2.A.4–2.A.6 of Ref. 54) or Bird et al. (Sec. 4.4 of
Ref. 55).

As ω → 0, for the polymer contribution to the zero-shear
viscosity, we get

η0 − ηs
nkTλ

=
aν
2

+ b = b[1 +
2b
aν
](

2b
aν
)

−1

, (37)

which we use for Tables VI–IX.
Following EXAMPLE 5.2-6 of Ref. 55 and specifically by set-

ting n′ = n = 1 in Eq. (5.2-4) of Ref. 55, we can define a structure-
dependent characteristic time,

λc ≡
Ψ0,1

η0 − ηs
, (38)

which is the ratio of the first normal stress coefficient to the viscosity
at zero shear rate and thus reflects fluid elasticity. We insert Eq. (44)
of Ref. 31 to get the structure-dependent characteristic time

λc = 2λ(
1

2b/aν
+ 1)

−1

(39)

into which we insert Eq. (20) to get

λc
λ0
=

24
ν
(

1
2b/aν

+ 1)
−1

, (40)

which we will use below.

IV. TOBACCO MOSAIC
In this section, we test the use of general rigid bead–rod theory

for predicting the complex viscosity of viruses by comparing with
the measured values for tobacco mosaic virus suspensions. Although
this particular virus has the form of a nanotube (see Fig. 1 of Ref. 24),
since its bore is narrow, we shall approximate this rigid and rod-like
virus with an osculated shish-kebab (see Table VI). From general
rigid bead–rod theory we know that, for the osculated shish-kebab
(TABLE XV of Ref. 31),

λ
λ0
=

1
6
N(N2

− 1) (41)

in which λ0 is given by Eq. (18) and d is the diameter of the tobacco
mosaic virus (d ≃ 18 nm from Ref. 56).

We will next test Eqs. (34) and (35) against the well-known
behaviors of the complex viscosities of the tobacco mosaic suspen-
sions (see Ref. 57 and Fig. 9-3 of Ref. 54). Proceeding specifically
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from the data in Fig. 14.5-1 of Ref. 22 and mindful of [Eq. (14.4-23)
of Ref. 22],

λ =
η0 − ηs
nkT

=
[η]0ηsM
ÑkT

(42)

so that

λω =
[η]0ηsM
ÑkT

ω = [η]0ωR, (43)

and mindful of Eqs. (4.4-16) and (4.4-17) of Ref. 55,

[η]0 ≡ lim
c→0

η0 − ηs
cηs

, (44)

[η′] ≡ lim
c→0

η′ − ηs
cηs

, (45)

[η′′]
ω
≡ lim

c→0

η′′/ω
cηs

(46)

so that for dilute virus suspensions, where

c
ρ
≪ 1, (47)

we get

[η]0 ≃
η0 − ηs
cηs

, (48)

[η′] ≃
η′ − ηs
cηs

, (49)

[η′′]
ω
≃
η′′/ω
cηs

(50)

so that

[η′]
[η]0

≃
η′ − ηs
η0 − ηs

, (51)

[η′′]
[η]0

≃
η′′

η0 − ηs
. (52)

We construct Fig. 6 using the best fit values of [η]0 = 23.35 and, at T
= 310.0 K, λ = 5.20 × 10−4 s and, at T = 298.2 K, λ = 8.10 × 10−4 s. By
Eq. (22), these correspond to rotational diffusivities at T = 310.0 K
and Dr = 321 s−1 and at T = 298.2 K and Dr = 206 s−1.

In passing, mindful of the caption of Fig. 14.5-1 of Ref. 22, we
calculate the dimensional relaxation times for the tobacco mosaic
virus suspensions in Fig. 6 at T = 310.0 K,

λ =
[η]0ηsM
ÑkT

=
20(cm3

/g)3.43 × 10−3
(Pa s)3.9 × 107

(g/mol)

6.022 × 1023(mol−1)1.380 × 10−23(J/K)310.0(K)

= 1.04 × 10−3 s, (53)

FIG. 6. The dimensionless complex viscosity of tobacco mosaic virus suspension
predicted by the general rigid bead–rod theory vs experimental data (Fig. 14.5-1
of Ref. 22). The data are for solutions of tobacco mosaic virus of M = 3.9 × 107

g/mol. The red points represent data taken at 310 K, and the blue ones are taken at
298.2 K. The solvent viscosity at the two temperatures is ηs = 3.43× 10−3 Pa s and
ηs = 5.16 × 10−3 Pa s, respectively. The general rigid bead–rod theory predictions
are computed using a value [η]0 = 18 cm3/g as the best fit with the data. The solid
curve describes (η′ − ηs)/(η0 − ηs), and the dashed one describes η

′′

/(η0 − ηs).

and at T = 298.2 K,

λ =
[η]0ηsM
ÑkT

=
20(cm3

/g)5.16 × 10−3
(Pa s)3.9 × 107

(g/mol)

6.022 × 1023(mol−1)1.380 × 10−23(J/K)298.2(K)

= 1.62 × 10−3 s. (54)

The fitted value [η]0 = 23.35 falls below the reported theoretical value
of [η]0 = 27 (see the caption of Fig. 14.5-1 of Ref. 22).

Solving Eq. (52) for the integer number of beads in the oscu-
lated shish-kebab,

N =
(
√

243Λ2 − 1 + Λ
√

35)
2/3

+ 1
√

3(
√

243Λ2 − 1 + Λ
√

35)
1/3

, (55)

where

Λ ≡
λ
λ0

(56)

and where the right side of Eq. (55) is rounded to the nearest integer.
Using Eq. (18) and for d ≃ 18 nm, at T = 310.0 K, we get

λ0 =
π
4
(18 × 10−9

)
3
3.43 × 10−3

(Pa s)
1.380 × 10−23(J/K)310.0(K)

= 3.67 × 10−6 s, (57)
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and at T = 298.2 K,

λ0 =
π
4
(18 × 10−9

)
3
5.16 × 10−3

(Pa s)
1.380 × 10−23(J/K)298.2(K)

= 5.74 × 10−6 s. (58)

Thus, using Eq. (57) with the fitted value of λ = 5.20 × 10−4 s for
T = 310.0 K gives Λ = 283, and so, Eq. (55) gives N = 12. Similarly,
using that with λ = 8.10 × 10−4 s for T = 298.2 K gives Λ = 282, and
so, N = 12. From this, we learn that the tobacco mosaic virus can
be modeled with an osculated shish-kebab of 12 beads, for which
Table III lists the position vectors (see Fig. 1).

Recall that, below Eq. (52), we found that at T = 310.0 K,
Dr = 321 s−1 (or λ0Dr = 1.17 × 10−3), and at T = 298.2 K,
Dr = 206 s−1 (or λ0Dr = 1.18 × 10−3). These values compare closely
with the value predicted by Eq. (23) for an osculated shish-kebab
of N = 12. Furthermore, from the available measurements (all non-
rheological), the rotational diffusivity range for the tobacco mosaic
virus at room temperature (20○C–25○C) is38–43

285 ≤ Dr ≤ 400 s−1. (59)

Our value of Dr = 206 s−1, fitted to complex viscosity measurements
(Fig. 6), falls just below this range.

In this section, we have approximated this rigid and rod-like
virus with an osculated shish-kebab. However, its detailed structure
of a narrow-bore nanotube consisting of the osculated helix of beads
shown in Fig. 1. of Ref. 24 can be captured using Eqs. (5) and (6) of
Ref. 28, where L = d. We leave this for another day.

V. GEMINI
In this section, we use general rigid bead–rod theory to model

the gemini virus as twin truncated icosahedra. To illustrate these

FIG. 7. Gemini virus complex viscosity comparison: two osculating beads (green)
and twin icosahedra (blue). The solid curve describes (η′ − ηs)/(η0 − ηs), and the
dashed one describes η

′′

/(η0 − ηs).

twin truncated icosahedra, we construct Fig. 2 from the position vec-
tors in Table III. We then compare this twin icosahedral structure
to its coarser simpler cousin, two osculating beads (L = 2R). From
Table VII, we learn that the finer twin icosahedral structure of the
gemini virus increases both λ/λ0 and (η0 − ηs)/nkTλ over two oscu-
lating beads. From this, we deepen our understanding of the role
played by the finer twin truncated icosahedral structure.

By comparing the values of λ0Dr in Table VII, we discover that
a twin icosahedral gemini model gives a lower rotational diffusiv-
ity than for twin osculating beads. Using the values of 2b/aν for
the gemini virus in Table VII, with Eqs. (34) and (35), we construct
Fig. 7 from which we first learn that for twin truncated icosahedra,
(η′ − ηs)/(η0 − ηs) descends less sharply than for twin osculating
beads. We also learn that for the twin truncated icosahedral struc-
ture, η′′/(η0 − ηs) falls below that of the twin osculating beads. We
thus find that the fine structure of the gemini virus matters, raising
viscosity and lowering elasticity.

VI. ADENOVIRUS
To arrive at the rotational diffusivity of the adenovirus, we fol-

low the method of Sec. II. The adenovirus capsid (not including
peplomers) is made up of 252 capsomers in an icosahedral arrange-
ment (plate II of Ref. 58). Twelve of these are “pentons” with five
nearest neighbors, and the other 240 are “hexons” with six nearest
neighbors.

An icosahedron has 20 triangular faces, 30 edges, and 12 ver-
tices. Each vertex holds a penton, shared by five edges and five faces.
The faces are made of two nested triangular arrangements, the inner
triangle being made of six hexons. Each of 120 edge hexons is shared
by two faces. Each of the 120 face hexons belongs to a single face,
with all six of its neighbors lying in that face.

The edges are taken to have length 5L, with the interparti-
cle distance L equal to the diameter d of the capsomer. The 12
vertices sit on the edges of three rectangles with Cartesian coordi-
nates given by cyclic permutations of (±β, ±1, 0) scaled by 5L/2,
where β = (1 +

√
5)/2 is the golden ratio. This exploits the fact

that
√

1 + β2 + (β − 1)2
= 2. We designate the position vectors Vi of

the 12 vertices in Table IV. The edge vectors are thus Eij = Vj − Vi,
where, for example, E0111 = V11–V01.

To describe face beads, we need twelve sets of five triplets ijk
arising from a counterclockwise enumeration of the five neighboring
vertices associated with one vertex. We encode this as follows: The
notation 01: 02, 11, 06, 05, 09 means faces ijk = 010 211, 011 106,
010 605, 010 509, 010 902. Table V lists our twelve sets.

We associate two edge beads on five edges and two face beads
(this is a chiral choice) on five faces with each vertex, so that each of
the 12 vertices Vi with i = 1, 2, . . ., 12 is associated with five triplets
ijk and the following 21 points: the vertex itself, Vi, to which we add
vectors for the ten edge beads, 1

5 Eij and 2
5 Eij, and ten face beads,

1
5(Eij + Eik) and 1

5(2Eij + Eik). Following this method, we arrive at
the position vectors Ri of the adenovirus capsid beads so that i = 1,
2, . . ., 252.

Oliver, who measured the translational diffusivity of the ade-
novirus,37 overlooked the identity [Eq. (28)] when he wrote “the
rotational diffusivity of the adenovirus appears to be zero.” Perhaps
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TABLE IV. Twelve vertices of the adenovirus capsid.

Macromolecule Vi

V01 =
5L
2
(β, 1, 0), V02 =

5L
2
(β,−1, 0)

V03 =
5L
2
(−β, 1, 0), V04 =

5L
2
(−β,−1, 0)

V05 =
5L
2
(0,β, 1), V06 =

5L
2
(0,β,−1)

V07 =
5L
2
(0,−β, 1), V08 =

5L
2
(0,−β,−1)

V09 =
5L
2
(1, 0,β), V10 =

5L
2
(−1, 0,β)

V11 =
5L
2
(1, 0,−β), V12 =

5L
2
(−1, 0,−β)

this explains why the transport property, rotational diffusivity, has
been largely overlooked in virology.

From general rigid bead–rod theory [Eq. (23)], for the charac-
teristic time of the adenovirus, we get

λ0 ≡
ν

72Dr
, (60)

and then, inserting Eq. (26) gives

λ0 ≡
L2

6Drot
(61)

into which we insert the identity Eq. (27) to get

λ0

L2 ≡
1

24Dtr
(62)

into which we next insert Eq. (16),

λ0

L2 =
ζ

12kT
=
πdηs
4kT

=
1

24Dtr
. (63)

TABLE V. Twelve sets of five triplets describing the faces of the adenovirus capsid.

Vertex i Neighboring vertices jk

01 02, 11, 06, 05, 09
02 11, 01, 09, 07, 08
03 04, 10, 05, 06, 12
04 03, 12, 08, 07, 10
05 06, 03, 10, 09, 01
06 05, 01, 11, 12, 03
07 08, 02, 09, 10, 04
08 07, 04, 12, 11, 02
09 10, 07, 02, 01, 05
10 09, 05, 03, 04, 07
11 12, 06, 01, 02, 08
12 11, 08, 04, 03, 06

Now, from Ref. 37, we have the measured value of the translational
diffusivity for the adenovirus at body temperature,

Dtr ≃ 0.367 × 10−7 cm2
/s. (64)

Substituting this into Eq. (63),

λ0

L2 =
1

24(0.367 × 10−7 cm2/s)
= 1.14 × 106 s/cm2, (65)

which establishes the correspondence between our general rigid
bead–rod model of the adenovirus (see in Table VIII) and the
adenovirus particle itself.

From the available microscopy (see Fig. 11 of Ref. 59), rc ≃
116 nm (between opposing vertices), and the range for the virus
radius, made dimensionless with the capsid radius, is given by

6
5
≤
rv
rc
≤

4
3

. (66)

FIG. 8. Connections between coronavirus particle dimensions and its general rigid
bead–rod model. For the peplomer bulb, we have bead radius rb ≡ 1

2d so that for
the peplomer height, we have rv − rc = rp + rb = rp + 1

2d (see Table X). The
peplomer head radial position is thus the center to center distance between the
peplomer head and the capsid (rv − rb).
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FIG. 9. Tobacco mosaic (black), gemini (green), adeno (blue), and corona (red)
complex viscosity comparison. The solid curve describes (η′ − ηs)/(η0 − ηs), and
the dashed one describes η

′′

/(η0 − ηs).

We thus position one bead for each adenovirus spike along each of
the 12 vertices using rv/rc = 5/4 (see Fig. 3), which satisfies Eq. (66).
Using rc ≃ 116 nm and mindful of the adenovirus geometry (see
Fig. 3) and its dimensions (see Fig. 4), we get L = 12.4 nm. Inserting
this into Eq. (65) gives

λ0 = 1.75 × 10−6 s, (67)

namely, the characteristic time, from general rigid bead–rod theory,
for the adenovirus.

VII. CORONAVIRUS
The coronavirus particle is a biological material whose dimen-

sions are thus known to within biological experimental error. From
the available microscopy, rc ≃ 100 nm–133 nm,60 and thus, the range
for the virus radius, made dimensionless with the capsid radius, is

given by (see Table X and Fig. 8)
5
4
≤
rv
rc
≤

4
3

. (68)

Each trimeric peplomer head, consisting of three glycoproteins, is
equilateral triangular when viewed along the spike axis (see Fig. 14).
For the purposes of the general rigid bead–rod theory, we must
replace this trimer with a sphere of radius rb. For this sphere, we
choose a diameter, 2rb, matching the length of the equilateral tri-
angle (compare Fig. 8 with Fig. 14). From the available published
SARS-CoV spike structure, rb ≃ 6.5 nm and the peplomer height rv
− rc ≃ 13.0 nm.61 From this, we learn that the SARS-CoV spike is
equidimensional, that is, 2rb/(rv − rc) ≃ 1. In general rigid bead–
rod theory, we approximate the bulbous SARS-CoV-2 triglycopro-
tein head with a single bead so that 2rb = d. From the available
microscopy, we can see that the range for the triglycoprotein head
diameter, made dimensionless with the capsid diameter, is given by
(see Table X and Fig. 8)

35
2
≤
rc
rb
≤

41
2

. (69)

When viewed through the lens of general rigid bead–rod theory, we
learn that the rotational diffusivity of the coronavirus and its asso-
ciated rheological properties are conferred by the particle shape and
not by the ratio rc/rb.

General rigid bead–rod theory requires the particle to be mod-
eled with beads of the same size. For the coronavirus, we match this
bead size, rb, to the finest relevant part of the coronavirus struc-
ture: the peplomer head (see Fig. 8). The much larger capsid must
therefore be beaded, with beads of radii rb.

In this work, we choose the measured peplomer population
Np = 74 (Table X) over the postulated value Np = 90 (Table X). To
construct the specific coronavirus example of Fig. 5 (Nc = 256, Np
= 74, and rv/rc = 5/4), we begin by beading a unit sphere for the
capsid around which we arrange a constellation of peplomer heads.
We get position vectors for these beads by multiplying the 74 point-
charge solution to the Thomson problem extracted from Ref. 29 of
Ref. 25 by 5/4.

Since the trimeric peplomer heads are charged identically, we
expect the spikes to arrange themselves following the polyhedral
solutions to the Thomson problem.25,26 We learn that these poly-
hedral solutions are all at least nearly axisymmetric,31 but few are
exactly so. By nearly axisymmetric, we mean that the moments of
inertia about the transverse molecular axes, I1 and I2, hardly dif-
fer. In other words, nearly axisymmetric means that the average
value of the moments of inertia about the transverse molecular axes,

TABLE VI. Tobacco mosaic characteristics from general rigid bead–rod theory.

Macromolecule
I1

mL2 ,
I2

mL2
I3

mL2 a b ν
2b
aν

η0 − ηs
nkTλ

λ
λ0

λ0Dr
Ψ0,1

λ(η0 − ηs)

143 0
286
15

3
5

6
143

3
2

1 286
1

1716
6
5
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TABLE VII. Gemini characteristics from general rigid bead–rod theory: Twin icosahedra vs two osculating beads models.

Macromolecule
I1

mL2 ,
I2

mL2
I3

mL2 a b ν
2b
aν

η0 − ηs
nkTλ

λ
λ0

λ0Dr
Ψ0,1

λ(η0 − ηs)

1
2

0
1

15
3
5

12
3
2

1 1
1
6

6
5

35.02 14.47 11.67 0.2065 0.1713 0.2065 1.207 70.04 0.002 379 0.3423

TABLE VIII. Adenovirus characteristics from general rigid bead–rod theory.

Macromolecule
I1

mL2 ,
I2

mL2
I3

mL2 a b ν
2b
aν

η0 − ηs
nkTλ

λ
λ0

λ0Dr
Ψ0,1

λ(η0 − ηs)

3082 3082 1541 0 0.001 947 0
3
2

6163 0.000 027 04 0

TABLE IX. Coronavirus characteristics for different capsid beadings from general rigid bead–rod theory.

SARS-CoV-2
I1

mL2
I2

mL2
I3

mL2 a b ν
2b
aν

η0 − ηs
nkTλ

λ
λ0

λ0Dr
Ψ0,1

λ(η0 − ηs)

Nc = 16, Np = 74 87.76 87.71 87.79 43.88 9.52× 10−8 6.84× 10−2 6.34× 10−8 1.50 175.51 9.50× 10−4 1.27 × 10−7

Nc = 32, Np = 74 98.42 98.37 98.46 49.22 7.57× 10−8 6.10× 10−2 5.04× 10−8 1.50 196.85 8.47× 10−4 1.01 × 10−7

Nc = 64, Np = 74 143.77 143.66 143.80 71.90 1.86× 10−8 4.17× 10−2 1.24× 10−8 1.50 287.55 5.80× 10−4 2.48 × 10−8

Nc = 128, Np = 74 162.41 162.40 162.45 81.21 3.28× 10−8 3.69× 10−2 2.18× 10−8 1.50 324.82 5.13× 10−4 4.36 × 10−8

Nc = 256, Np = 74 247.76 247.70 247.79 123.88 1.19× 10−8 2.24× 10−2 7.96× 10−9 1.50 495.51 3.36× 10−4 1.60 × 10−8

Nc = 510, Np = 74 417.10 417.02 417.12 208.56 7.50× 10−10 1.44× 10−2 4.50× 10−10 1.50 834.21 2.00× 10−4 9.0 × 10−10
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1
2(I1 + I2), hardly differs from I1. In dimensionless terms, nearly
axisymmetric thus means

∣
I2 − I1

2I1
∣≪ 1 (70)

to which Eqs. (34) and (35) are subject. For the reported polyhedral
solutions to the Thomson problem,25,26

∣
I2 − I1

2I1
∣ = o(10−4

), (71)

which satisfies Eq. (70). The method of this section can be used
for any spiked virus with a spherical capsid, including the insect
Pariacoto virus [Fig. 22(a) of Ref. 62].

Figure 9 combines results on all four of our viruses (from
Sec. IV to the present section) using the calculated 2b/aν values from
Tables VI–IX (row 6 of Table IX). From Fig. 9, we learn that (η′
− ηs)/(η0 − ηs) curves for the adeno- and coronavirus bead–rod
models descend less sharply than those of tobacco mosaic or gem-
ini viruses. From Fig. 10, we learn that the higher the complexity
(coronavirus), the lower the η

′′

/(η0 − ηs), and thus, the lower the
dimensionless elasticity. We also learn that adenovirus is spherically
symmetrical (I1 = I2 = I3), and thus, it is not associated with η′′/(η0
− ηs).

A. Capsid beading
In this subsection, we vary the capsid beading of the coron-

avirus particle, Nc, and fix the peplomer bead number, Np = 74.
We model the different capsid beadings, Nc = 16, 32, 64, 128, 256,
510, and thus construct Table IX. By comparing the values of λ/λ0 in
Table IX, we learn that making the capsid beading finer (increas-
ing Nc) increases the relaxation time. By examining the values of

FIG. 10. Corona (red) elastic complex viscosity, η
′′

/(η0 − ηs), curve.

FIG. 11. Effect of capsid osculated beadings on complex viscosity (Nc = 16, 32,
64, 128, 256, 510, Np = 74, rv /rc = 5/4, and L = d). Nc = 16 (black), Nc = 32 (blue),
Nc = 64 (red), Nc = 128 (green), Nc = 256 (yellow), and Nc = 510 (magenta). The
solid curve describes (η′ − ηs)/(η0 − ηs), and the dashed one describes η

′′

/(η0
− ηs).

(η0 − ηs)/nkTλ in Table IX, we also learn that increasing Nc does
not affect the polymer contribution to zero-shear viscosity, since (η0
− ηs)/nkTλ remains 1.5. From Table IX, we learn that dimensionless
rotational diffusivity, λ0Dr , decreases with Nc.

FIG. 12. Dimensionless rotational diffusivity λ0Dr from Eq. (23) vs peplomer
population Np (Nc = 256).
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FIG. 13. Dimensionless structure-dependent characteristic time, λc /λ0, vs
peplomer population, Np (Nc = 256), from Eq. (40).

Using the values of 2b/aν for all coronavirus capsid beadings in
Table VII, with Eqs. (34) and (35), we construct Fig. 11 from which
we first learn that increasing Nc does not change (η′ − ηs)/(η0 − ηs).
A coronavirus model thus always gives a nearly constant viscosity
(nearly spherically symmetric).

B. Peplomer population
In this subsection, we fix the capsid beading of the coronavirus

particle atNc = 256 and vary the peplomer bead population over 10 ≤
Np ≤ 100 to get Figs. 12 and 13. From Fig. 12, we learn that rotational
diffusivities of the coronavirus, made dimensionless with the con-
stant λ0, are of order 10−4. Specifically, for the measured peplomer
population, Np = 74 (see Table X), we get λ0Dr = 3.36 × 10−4.
This value exceeds the dimensionless diffusivity of the adenovirus
(Table VIII) and falls below those of the tobacco mosaic (Table VI)
and gemini viruses (Table VII). The binding interval for the SARS-
CoV-2 particle exceeds 3 min [see Fig. 3(A) of Ref. 1 and Refs. 61 and

63], and thus, it would appear that coronavirus peplomer binding
prefers λ0Dr = o(10−4).

Equation (39) defines a structure-dependent characteristic
time, λc, and the ratio of the first normal stress coefficient to the
viscosity at zero shear rate. Specifically, we next explore how λc
depends on the peplomer population. Nondimensionalizing λc with
the constant λ0, produces the stairstep plot of Fig. 13, which is not
monotonic. From Fig. 13, we learn that the characteristic times of
the coronavirus particles, made dimensionless with the λ0, over 10 ≤
Np ≤ 100, fall below 10−4. In other words, the elasticity of the coron-
avirus particles is slight and is not monotonic with Np. Furthermore,
at the measured peplomer population of Np = 74 (Table X), λc/λ0 is
vanishingly small.

In this subsection, we have explored the role of Np on the trans-
port properties of the coronavirus particle and found that its precise
value matters. Such precise values for Np, be it for SARS-CoV-2,
SARS-CoV, or any other spiked virus with a spherical capsid, have
yet to be reported.

VIII. CONCLUSION
We find that our ab initio calculations agree with the observed

complex viscosity of the tobacco mosaic virus suspension (Fig. 6).
From our analysis of the gemini virus suspension, we learn that
the fine detail of the virus structure governs its rotational diffu-
sivity (Fig. 7). We find that combining our ab initio calculations
with the observed rotational diffusivity of the adeno suspension
yields the characteristic time, from general rigid bead–rod the-
ory, for the adenovirus (Sec. VI). Finally, from our analysis of
the coronavirus suspension (Sec. VII), we learn that its rotational
diffusivity descends monotonically with its peplomer population
(Fig. 12).

In Sec. VII, we tackled spiked viruses with spherical capsids for
which b ≃ 0. However, histologically, SARS-CoV-2 capsids present
with pleomorphism (Fig. 3 of Ref. 64). We leave the rotational dif-
fusivity of spiked viruses of non-spherical (including ellipsoidal)
capsids, for which b > 0, for another day.

In Sec. IV, we learned how to deduce the rotational diffusivity
of a virus by fitting the measured values of the real and imaginary
parts of the complex viscosity function to the main results from gen-
eral rigid bead–rod theory [Eqs. (34) and (35)]. However, complex
viscosity measurements on SARS-CoV-2 suspensions are unavail-
able, and their measurement is understandably dangerous. Perhaps

TABLE X. Physical dimensions of coronaviruses (see Fig. 8). p ≡ postulated.

Macromolecule rc (nm) rv (nm)
rv
rc

rv − rc (nm) rb (nm) Np References

SARS-CoV-2 30–70 9–12 64
SARS-CoV 39 68
SARS-CoV 44–47 Section 3 of Ref. 60
SARS-CoV 74, 90p Section 4.1 of Ref. 60
SARS-CoV 100–133 1.25–1.53 Figure 1(D) of Ref. 60
SARS-CoV 13.0 6.5 6CRZ.PDB from Ref. 61
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the method of microrheology, which requires just one drop of SARS-
CoV-2 suspension, will yield its complex viscosity measurements
(see Refs. 65 and 66 and Chaps. 4 and 5 of Ref. 67).

If the dimer target is projected onto the peplomer orientation
distribution function, the integral (in phase space) under this projec-
tion gives the probability of one spike aligning properly for fusion, p.
Since, for fusion, we need two adjacent spikes to align, the probabil-
ity falls well below p. Equations (1) and (2) consider just one special
case of alignment. We leave the integral (in phase space) over all
possible alignments for another day.

Our macromolecular bead–rod model viruses are suspended in
a Newtonian solvent. We neglect interactions of the solvent veloc-
ity fields, be they between nearest beads (see Refs. 48 and 49 and
Sec. 14.6 of Ref. 22) or nearest macromolecules. We leave the effects
of these hydrodynamic interactions on rotational diffusivity for
another day.

Whereas the bulbous head of a peplomer is trimeric and there-
fore triangular, in this work, we have represented the bulb with a
single bead. Figure 14 illustrates this model. We thus propose incor-
porating the triangularity of the bulbous peplomer by replacing its
head with three identically charged osculating beads. The potential
energy minimization for these three-beaded bulbs will, of course,
produce new and interesting polyhedra differing from the Thomson
solutions used herein.25,26 We leave this potential energy minimiza-
tion, polyhedra discovery, and corresponding ab initio rotational
diffusivity calculation for another day.

Under the microscope, we see some agglomeration of coron-
avirus particles, mechanically interlocked by interdigitation of the
bulbous spikes [see Fig. 1(D) of Ref. 60]. The simplest of these
agglomerates is a pair. We leave the calculation of the diffusiv-
ity of such interdigitated coronavirus structures from general rigid
bead–rod theory for another day.

FIG. 14. In this work, we replace the peplomer bulk with sphere (a) inscribed in
the trimer, thus neglecting its triangularity. Future work shall improve upon this by
inscribing the trimer (b) into three osculating beads.61

For this work, for both adenovirus and coronavirus, we chose
the ratio rv/rc = 5/4 (Figs. 3 and 5, respectively), which is consis-
tent with the available microscopy [Eqs. (66) and (68), respectively].
We leave the exploration of the rotational diffusivities over these
dimensionless spike length ranges for another day.

Whereas in engineering, the complex viscosity function has
a broad diversity of applications including polymer or suspension
processing, for virus suspensions, its main use is for determining
rotational diffusivity. The uninitiated might expect that our com-
plex viscosity equations for the adenovirus [Eqs. (34) and (35) with
Table VIII] or coronavirus [Eqs. (34) and (35) with Table IX] sus-
pensions might be useful for cough or sneeze cloud modeling. How-
ever, such cloud droplets are not merely virus particle suspensions
but suspend the materials that virus infected lungs or nasal passages
produce.

More broadly, our vision here is that a handbook of general
rigid bead–rod virus models be generated eventually from which the
transport properties of any included virus might be calculated and
then compared. Such a handbook might thus lead us to deepen our
understanding of the relation between the rotational diffusivities of
virus particles and their intricate shapes.
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