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Abstract

Nontypeable Haemophilus influenzae (NTHi) colonizes human upper respiratory airways and plays a key role in the course and 
pathogenesis of acute exacerbations of chronic obstructive pulmonary disease (COPD). Currently, it is not possible to distin-
guish COPD isolates of NTHi from other clinical isolates of NTHi using conventional genotyping methods. Here, we analysed 
the core and accessory genome of 568 NTHi isolates, including 40 newly sequenced isolates, to look for genetic distinctions 
between NTHi isolates from COPD with respect to other illnesses, including otitis media, meningitis and pneumonia. Phylog-
enies based on polymorphic sites in the core-genome did not show discrimination between NTHi strains collected from dif-
ferent clinical phenotypes. However, pan-genome-wide association studies identified 79 unique NTHi accessory genes that 
were significantly associated with COPD. Furthermore, many of the COPD-related NTHi genes have known or predicted roles in 
virulence, transmembrane transport of metal ions and nutrients, cellular respiration and maintenance of redox homeostasis. 
This indicates that specific genes may be required by NTHi for its survival or virulence in the COPD lung. These results advance 
our understanding of the pathogenesis of NTHi infection in COPD lungs.

DATA SUMMARY
Sequence read files for all 40 isolates sequenced in this work 
have been deposited in National Center for Biotechnology 
Information (NCBI) Sequence Read Archive (SRA) and 
are accessible through NCBI BioSample and SRA accession 
numbers SAMN13942196 and SRS6166046, respectively.

Two supplementary figures, five datasets and a fasta file 
of non-redundant pan-gene sequences are available on 
Figshare (https://​doi.​org/​10.​6084/​m9.​figshare.​12545957.​
v1).

Dataset 1. This dataset contains information on the clinical 
source and geographical origin of the 568 isolates of nontype-
able Haemophilus influenza (NTHi) included in this study. 
The dataset also contains the clade number and multilocus 
sequence typing allelic profile of each isolate. The 40 NTHi 
isolates newly sequenced for this study are boxed for easy 
identification.

Dataset 2. This dataset contains data on pan genes as identi-
fied by Roary from the analysis of 568 NTHi genomes. The 
dataset provides information regarding gene annotation and 

http://mgen.microbiologyresearch.org/content/journal/mgen/
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the pan gene presence and absence profile of the 568 NTHi 
isolates.

Dataset 3. This dataset lists the names of genes that were 
enriched in isolates of a particular clade. The genes enriched 
in each clade are provided in separate worksheets.

Dataset 4. This dataset lists the genes associated with chronic 
obstructive pulmonary disease (COPD) strains of NTHi. 
This first worksheet lists the 680 genes that were found to be 
over- and under-represented in COPD strains. The second 
worksheet lists the 226 genes that were over-represented 
(odds ratio ≥2) in COPD strains. The third worksheet lists 
the 145 genes that were significantly associated with COPD 
strains. The fourth worksheet lists the 122 COPD-associated 
genes that were found to be significant after 1000 random 
permutations of the phenotypic data. The fifth worksheet lists 
the 79 genes that were unique (variants of the same genes were 
excluded) and were significantly associated with the COPD 
strains of NTHi.

Dataset 5. This dataset contains information on the func-
tional annotation and classification of 79 COPD-associated 
genes. The third and fourth columns of the dataset list the 
corresponding protein IDs of the genes after querying their 
translated sequence against the UniProt database. The sixth 
and seventh columns contain information on the functional 
classification of genes based on Gene Ontology (GO) molec-
ular function and biological process, respectively. The eighth 
and ninth columns contain information on the functional 
annotation of genes based on Clusters of Orthologous Groups 
of proteins (COG) analysis.

INTRODUCTION
While nontypeable Haemophilus influenzae (NTHi) is 
a common commensal of the human nasopharynx, this 
bacterium is also associated with a spectrum of diseases 
including otitis media and sinusitis, as well as hospital- and 
community-acquired pneumonia [1]. In addition, NTHi is 
the most common bacterial cause of chronic obstructive 
pulmonary disease (COPD) exacerbations [2–4]. NTHi has 
developed mechanisms to thrive in the hostile environment 
of different anatomical regions, such as the middle ear, upper 
and lower respiratory tracts, blood and the meninges [5]. 
Evolutionary and ecological forces drive bacteria to adapt and 
grow in different niches [6–9] by utilizing the basic nutrients 
available and resisting toxic products present in its environ-
ment [10]. This evolutionary adaptation typically involves 
two fundamental processes. The first is through mutations in 
genes, such as SNPs or nucleotide insertions/deletions, which 
can potentially alter the antigenicity of surface proteins or 
change the activity of enzymes and transport proteins [11]. A 
related mechanism is phase variation in which loci susceptible 
to hypermutation can undergo slipped-strand mispairing, due 
to changes in simple sequence repeats, which can rapidly 
modulate the expression level of genes [7, 12]. The second 
process is the acquisition of entirely new genetic sequences 
via horizontal gene transfer, which can undergo homologous 

or non-homologous recombination into the recipient genome 
[13]. During homologous recombination, a chromosomal 
fragment of a genome is replaced with a homologous 
sequence from another genome, whereas non-homologous 
recombination results in gain and loss of genetic material 
[14]. These processes can contribute to phenotypic changes 
including increased virulence and antibiotic resistance, and 
adaptations to the host microenvironments such as immune 
evasion and greater metabolic capacity [7, 8, 15–19].

Conventional typing methods such as multilocus sequence 
typing (MLST) cannot distinguish between commensal and 
pathogenic strains of NTHi [20–22]. Furthermore, a previous 
study by De Chiara and colleagues reported that phylogeny 
provides insufficient resolution to discriminate between 
strains isolated from different clinical sources based on an 
analysis of 97 NTHi isolates [21]. Here, we hypothesized that 
NTHi associated with COPD may exhibit genetically encoded 
functional variances when compared to the isolates from non-
COPD clinical illnesses. Therefore, we performed an analysis 
on a larger set of 568 NTHi genomes, which included 40 
Australian isolates that were newly sequenced in this study. 
Our analyses involved the application of pan-genome-wide 
association studies (pan-GWASs) of genes to determine 
whether NTHi from COPD could be discriminated from 
isolates from other types of clinical disease.

METHODS
Bacterial strains collection, DNA extraction and 
genome sequencing
Forty NTHi isolates were retrieved from sputum samples of 
patients admitted to the Royal Hobart Hospital in Tasmania, 
Australia, from 2017 to 2018. Of these, 13 isolates were 
collected from COPD patients, with the remaining 27 
collected from patients with other non-COPD disease pres-
entations as shown in Dataset 1. DNA extraction and genome 

Impact Statement

Chronic obstructive pulmonary disease (COPD) is 
emerging as the third leading cause of human mortalities 
worldwide. Nontypeable Haemophilus influenzae (NTHi) is 
a major pathogen causing acute exacerbations resulting 
in diminished quality of life, hospitalization and increased 
risk of death in COPD patients. We analysed the core and 
accessory genome of 568 NTHi isolates, including 40 
newly sequenced isolates, to genotypically distinguish 
between NTHi from COPD and other clinical phenotypes. 
This genome-wide analysis identified accessory gene 
content differences between COPD and non-COPD strains. 
It highlighted a set of virulence and metabolic functions 
that may be differentially required by COPD strains. This 
knowledge is important for developing improvements in 
the management of NTHi infections that can cause acute 
exacerbations in COPD patients.
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sequencing were performed using the protocol that has been 
described in detail in our previous methods paper [23]. 
Briefly, for DNA preparation, pure cultures of NTHi isolates 
grown on chocolate agar were suspended in PBS. Genomic 
DNA was extracted using a DNeasy blood and tissue kit 
(Qiagen) and was treated with RNase for the removal of RNA. 
The genomic DNA was further purified using a High Pure 
PCR template preparation kit (Roche), as described previ-
ously [23]. The genomic DNA library of these isolates was 
then prepared using the Nextera XT library preparation kit 
(Illumina) and loaded into an Illumina MiSeq v2 (2×150 bp 
paired-end reads) cartridge for sequencing using an Illumina 
MiSeq platform at La Trobe University, Australia.

In addition to the 40 Australian NTHi isolates that 
were sequenced, 528 publicly available NTHi genomes 
[7, 21, 24–29] were also downloaded from the National 
Center for Biotechnology Information (NCBI) (https://​ftp.​
ncbi.​nlm.​nih.​gov/​genomes/​refseq/​bacteria/​Haemophilus_​
influenzae/​all_​assembly_​versions/) on September 10 2019 
for analysis. The collection was composed of a heterogeneous 
group of isolates, in terms of geographical coverage. Based on 
the clinical source, the isolates were classified into two groups, 
COPD (n=373 isolates) and non-COPD (n=195 isolates).

De novo genome assembly, annotation and pan-
genome analysis
Raw fastq files generated from the Illumina sequencer 
were uploaded to the Galaxy web platform [30], and the St 
Petersburg genome assembler (SPAdes) tool [31] was used 
for the de novo assembly of the sequence reads [30]. The 
default settings for all parameters were used, except for the 
size of k-mers, which were manually chosen as 21, 33, 43, 53, 
63 and 75. The quality of genome assembly was evaluated 
using the Quality Assessment Tool (quast) [32]. Coverage of 
the reference genome was determined by aligning all of the 
sequenced genomes to the reference complete genome of the 
strain 86–028 NP [24]. The 40 isolates sequenced in this study 
had on average 120 contigs (>500 bp), with a mean genome 
size of 1 906 568 bp, reference genome coverage of 87.3 % and 
a mean read depth of 118.8-fold.

The assembled fasta/fna files of the 40 Royal Hobart 
Hospital isolates and the 528 publicly available datasets were 
uploaded to the NeCTAR research cloud (http://​cloud.​nectar.​
org.​au/) for subsequent analyses. We annotated relevant 
genomic features on the assembled/downloaded contigs using 
command line software tool Prokka version 1.12 with default 
parameters [33]. An E value threshold of 10−6 was used to 
determine the best match to known proteins in the databases, 
which included UniProt, Pfam and TIGRFAMs. If no matches 
were found, an ORF was labelled as a ‘hypothetical protein’.

The annotated genome assembly outputs from Prokka (in 
GFF3 format) were aligned to build large-scale pan-genomes 
using a rapid large-scale prokaryote pan-genome analysis 
pipeline, Roary version 3.12 [34]. An additional argument 
‘-e -mafft’ was added to generate a multiFASTA alignment 
of core genes using mafft [35]. All other Roary parameters 

were used as default; minimum blastp identity of 90 %; 
Markov clustering algorithm inflation value of 1.5. The genes 
identified within the genome alignment were classified with 
respect to their presence among the isolates: core (≥95 %), 
shell (≥15 and<95 %) and unique or cloud genes (<15 %). The 
output files from Roary, ​gene_​presence_​absence.​csv (Dataset 
2) and ​accessory_​binary_​genes.​fa.​newick, were visualized 
using a Python script ​roary_​plots.​py, developed by Marco 
Galardini [36].

In silico MLST
The draft and complete genomes of 568 NTHi isolates were 
genotyped based on the allelic profile of seven housekeeping 
genes (adk, atpG, frdB, fucK, mdh, pgi and recA) hosted at 
https://​pubmlst.​org/​hinfluenzae/ [37]. Each isolate was 
assigned with a sequence type (ST) using in silico MLST typing 
[38]. A minimum spanning tree (MST) was then generated 
based on the MLST profiles using the goeBurst algorithm [39] 
and the tree was visualized using Phyloviz [40].

Core-genome SNP (cgSNP) extraction and 
identification of genetic clusters
The core-genome alignment file was converted into a genlight 
object using the function fasta2genlight in the R package 
adegenet (version 2.1.1, RStudio version 1.0.143) [41]. The 
cgSNPs were extracted and analysed to determine clusters 
of genetically related isolates using the multivariate analysis 
method called discriminant analysis of principal components 
(DAPC) [42]. The cgSNPs raw data were initially transformed 
using principal component (PC) analysis, followed by the 
identification of genetic clusters using the k-means clustering 
algorithm. k-means determines a given number of groups 
(clusters) such that sequences belonging to the same cluster 
are more similar to each other than to sequences in other 
clusters. This was achieved using the function find.clusters 
with 150 PCs retained, accounting for >90 % of the sample 
variability. The optimal number of clusters was then inferred 
using the Bayesian information criterion as eight genetic 
clusters, which were then efficiently described using the dapc 
function with 60 PCs retained. An optimal number of PCs 
was chosen to avoid both extremes of a good model: under-
fitting and overfitting of the model. The trade-off between 
power of discrimination and overfitting can be measured by 
the α-score, which is the difference between reassignment 
probabilities for the true cluster and randomly permuted 
clusters [42]. We calculated the α-score for a range of retained 
PCs by implementing a.score and selected 60 as an optimal 
number of retained PCs at which the α-score was maximum at 
0.7. The first three eigenvalues (discriminant functions) were 
then selected for visualization and interpretation.

In addition, we performed DAPC on the presence and absence 
profile of accessory genes to assess whether the composition 
of the accessory genome supports the partitioning of the 
collection into the identified clades. The same predefined 
clusters (clade I–VIII) identified by the core-genome-based 
k-means clustering were used to group the isolates. The 
accessory genome DAPC was carried out using the same 

https://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/Haemophilus_influenzae/all_assembly_versions/
https://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/Haemophilus_influenzae/all_assembly_versions/
https://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/Haemophilus_influenzae/all_assembly_versions/
http://cloud.nectar.org.au/
http://cloud.nectar.org.au/
https://pubmlst.org/hinfluenzae/


4

KC et al., Microbial Genomics 2020;6

methodology used for the core-gene DAPC except that the 
gene presence and absence matrix file was used instead of 
the core-genome alignment file. We retained the first 60 PCs 
and 3 eigenvalues to examine the genetic clusters. The mean 
α-score for 60 retained PCs was found to be 0.68.

Phylogenetic analysis
cgSNPs were further utilized for performing phylogenetic 
analyses using megax software [43]. Evolutionary genetic 
distances between the strains were computed using the 
maximum composite likelihood method [44]. The evolu-
tionary relationship was inferred using the neighbour-joining 
method [45]. Reliability of tree topology was tested using a 
bootstrap interior-branch test [46]. All the branches were 
supported by bootstrap values >90 %.

Identification of COPD-associated genes
The distribution of COPD strains in the subpopulation 
(clades) of isolates was assessed. We also evaluated the 
genetic distinction between COPD and non-COPD strains 
using DAPC on cgSNPs and the presence/absence profile 
of accessory genes. A pan-GWAS approach was applied to 
determine whether any genes in the accessory genome were 
linked to a particular patho-phenotype including COPD 
using Scoary [47]. Scoary was implemented in Python using ​
gene_​presence_​absence.​csv (output from Roary) and ​trait.​csv 
for the genotype and phenotype input files, respectively. Each 
candidate gene in the pan-genome was scored according to 
its apparent correlation to the clinical phenotype using a 2×2 
contingency table of the presence/absence profile of each 
gene for the clinical phenotype. A Fisher’s exact test was 
performed on each gene in a population-agonistic manner. 
The Benjamini–Hochberg false discovery rate (FDR) adjust-
ment was applied to correct for multiple comparisons [48]. 
The cut-off for a significant association was a P value lower 
than 0.05. Furthermore, for casual inference, a pairwise 
comparison algorithm was implemented that controls for 
spurious associations dependent on the population structure 
[49]. The phylogenetic tree calculated internally by Scoary 
from the Hamming distances in the genotype matrix was 
used for the pairwise comparisons [47]. The causal associa-
tion was scored as significant when the P values for both the 
best and the worst pairings were lower than 0.05. Finally, an 
additional label-switching permutation was implemented by 
running pan-GWASs on randomly permutated phenotypic 
values between individuals for 1000 times and retaining 
the 5 % quantile, referred to as an empirical P value [50]. A 
minimum allele frequency threshold of 5 % was used so that 
genes present either in more than 28 isolates or in less than 
540 isolates were included in the pan-GWAS analysis to avoid 
assigning too high importance to very rare genes/variants.

Functional annotation and classification of 
candidate COPD genes
The nucleotide sequences of candidate genes were trans-
lated to their corresponding peptide sequences using 
EMBOSS Transeq (https://www.​ebi.​ac.​uk/​Tools/​st/​emboss_​

transeq/). The peptide sequences were then queried against 
the UniProt database using the basic local alignment search 
tool with an E threshold of 0.001 (https://www.​uniprot.​org/​
blast/). In order to better understand the underlying biolog-
ical processes, we performed functional classification of the 
COPD-associated genes using the Gene List Analysis Tool 
that is accessed through the web-based panther version 
14 classification system (http://​pantherdb.​org/) [51]. The 
complete Gene Ontology (GO) annotation system, which 
consists of three datasets, was used for mapping the func-
tions of the genes of interest [52]. We classified our genes 
based on the GO molecular function and biological process.

RESULTS
Global collection of 568 NTHi strains, including 40 
newly sequenced Australian isolates
For the initial assessment of the genetic diversity of the 
collection of NTHi isolates, we determined their ST using 
in silico MLST allelic profile. Based on the MLST profile, the 
568 NTHi isolates were assigned to 174 unique STs [37]. Of 
which, 70 STs were associated with COPD, 34 STs contained 
both COPD and non-COPD strains, and the remaining 70 
STs included non-COPD strains only (Fig. 1b). Sixty-one 
STs contained more than two NTHi isolates, of which 
twenty-seven STs were found to be associated with COPD 
(Fig. 1b). Some of the COPD-associated STs that contained 
five or more NTHi isolates were ST12 (n=11), ST98 (n=6), 
ST196 (n=7), ST349 (n=5), ST485 (n=5), ST1025 (n=13) 
and ST1812 (n=5).

A MST overview of all the isolates was generated by Phyloviz 
[40] (Fig. 1) using the goeBurst full MST algorithm based 
on MLST profile [39]. The MST overview was overlaid with 
the isolation data based on the geographical (Fig. 1a) and 
clinical (Fig. 1b) sources of the isolates. The distribution of the 
NTHi collection was uniform over the entire MST, in terms 
of geographical and clinical isolation (Fig. 1). There was no 
clustering specific to a geographical area. The USA, Spanish, 
Portuguese and Australian isolates were present in all groups 
and scattered throughout the entire tree. In addition, COPD 
isolates were also dispersed throughout the MST tree. By 
applying the traditional definition of clonal complex (CC) 
(genotypes which have allelic profiles that differ from the ST 
genotype at no more than one of the seven MLST loci, i.e. 
have at least six out of seven identical MLST genes) [53], we 
found 119 different CCs, of which 74 included a single ST. 
The largest CC consisted of only five STs and contained both 
COPD and non-COPD strains. Nine CCs included three or 
more STs; none of which were found to be specific to the 
COPD phenotype. This indicates a weak or no association 
between MLST genotype and COPD.

Pan-genome analysis of 568 NTHi isolates
A pan-genome of 12 249 genes was generated from the 
568 draft NTHi genomes, including the 40 isolates newly 
sequenced in this study (Fig. 2). The nucleotide sequences 
of non-redundant pan genes, as identified by Roary from 

https://www.ebi.ac.uk/Tools/st/emboss_transeq/
https://www.ebi.ac.uk/Tools/st/emboss_transeq/
https://www.uniprot.org/blast/
https://www.uniprot.org/blast/
http://pantherdb.org/
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theanalysis of 568 NTHi genomes, is included in the 
Pangene_sequence file. The core-genome was represented by 
853 genes that were present in at least 539 isolates. The core 
genes accounted for approximately 47 % of the total number 

of genes (1821) present in the reference NTHi genome 
(86–028 NP) [24]. Whereas the core genome accounted for 
only 7% of the genes present in the pan-genome with the 
remaining 93% made up of the accessory pan-genome, which 
comprised the shell and cloud genes of the pan-genome 
(Fig. 2). The large accessory pan-genome confers diversity 
and high levels of genomic plasticity to NTHi. The majority of 
accessory pan genes (81 % of pan genes) were rare and strain-
specific, found in less than 15% of the NTHi collection. The 
distribution of genes in the population had a characteristic 
U-shape, as reported in previous studies in H. influenzae and 
other bacterial species [21, 54, 55].

Collection of 568 NTHi isolates exhibits a 
population structure defined by eight clades
The core-genome alignment generated by concatenation of 
individual core-gene alignments was used to infer the popula-
tion structure. We extracted 97 262 biallelic SNPs from the 
core-genome alignment of 696 234 bp. To this dataset, we 
applied the DAPC to infer the number of clusters of genetically 
related isolates. Bayesian information criterion supported the 
partitioning of this collection of isolates into eight clusters or 
clades that were clearly separated from each other, except for 
a small overlap between clusters I and II (Fig. 3a).

We also tested whether the presence/absence profile of acces-
sory genes supported the partitioning of the collection into 
the predefined eight clades. For this, we performed a DAPC on 
the dispensable genes using predefined grouping as identified 
by the cgSNPs DAPC. Isolates of clades III, IV, VII and VIII 
were clearly separated from each other, while isolates in clades 
I and II were found to be more closely related, which was 

Fig. 1. MST overview of 568 NTHi isolates based on MLST, i.e. allelic profiles of seven housekeeping genes present in the PubMLST 
database. This was generated using the goeBurst full MST algorithm and was visualized with Phyloviz 2. Each node is a ST, and it is 
coloured according to the (a) geographical and (b) clinical sources of the isolates. The size of each node is proportional to the number 
of isolates. The larger STs containing more than 10 NTHi isolates are labelled in-text. There was no absolute separation of the strains 
according to geography. (a) Based on the MLST profiling, strains from the same STs were common to a wide range of geographical 
locations. (b) COPD-associated isolates were scattered over the MST indicating a weak or no association between MLST genotype and 
COPD. Of 174 unique STs in our collection, COPD isolates were found in 70 STs.

Fig. 2. Distribution of genes present in the pan-genome of the NTHi 
collection (n=568), which was constructed using Roary version 3.12. 
Of 12 249 pan genes, the NTHi core-genome comprised 853 genes 
(present in at least 539 NTHi isolates). The remaining 11 396 genes of 
the accessory genome were further classified into the shell (n=1518 
genes, present in less than 539 and at least 85 NTHi isolates) and 
cloud or unique (n=9878 genes, present in less than 85 NTHi isolates). 
On average, 47 % of each NTHi strain’s gene set belonged to the core 
pan-genome. The remaining 53 % of the strain’s gene set belonged 
to the larger accessory pan-genome. This accessory pan-genome 
encompassing a large repertoire of genes confers diversity and high 
levels of plasticity to the NTHi genome.
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consistent with the cgSNPs DAPC (Fig. 3a, b). This suggests 
that the isolates in clades I and II are evolutionarily related 
and have a common ancestor. The composition of accessory-
genome DAPC further showed a close association between 
clades V and VI, which was not observed with the cgSNPs 
DAPC (Fig. 3a, b). This indicates that a set of accessory genes 
that are shared between isolates of clades V and VI could have 
been either inherited from a common ancestor or acquired 
through horizontal gene transfer.

Phylogeny separates isolates into groups that 
correlate with clades
We then compared the clade partitioning to standard phylo-
genetic analyses. We built a neighbour-joining phylogenetic 
tree using the cgSNPs (Fig.  4). Molecular phylogenetic 

analysis correlated perfectly with the clade partitioning as 
defined by the population genetics, supporting the clonal 
nature of the NTHi population characterized by eight distinct 
lineages. Isolates of clades I and II were evolutionarily related, 
as suggested by the cgSNPs and the accessory gene DAPC. 
Consistent with the accessory gene DAPC, phylogenetic 
analysis showed a close relationship between clades V and VI.

The clade partitioning, as defined by population genetics 
and evolutionary relationship based on cgSNPs, partially 
correlated with the general clustering from the MLST profile 
(Fig. 1) as shown in Fig. S1 (available with the online version 
of this article). Clades I, II and III, and clades V and VI clus-
tered together in the MST (Fig. S1), which correlated with 
the phylogenetic tree topology (Fig. 4). However, isolates of 
clades IV, VII and VIII did not form a distinct cluster, and 
were uniformly dispersed over the MST (Fig. S1). Further-
more, core-genome SNPs-based phylogeny did not result in 
separation of the strains according to geographical location 
of sample isolation (Fig. S2).

Enrichment of genes in specific clades
Scoary, a pan-GWAS tool, was implemented to identify the 
genes that were enriched in a specific clade [47]. The FDR 
adjusted P value threshold of 0.001 was used, which identi-
fied 456, 167, 234, 532, 533, 599, 551 and 417 genes to be 
significantly overrepresented in clade I, II, III, IV, V, VI, VII 
and VIII, respectively (Dataset 3). Phylogenetically related 
clades shared a large proportion of clade-enriched genes. For 
example, clades I and II shared 29 % (141 out of 489 genes), 
and clades V and VI shared 32.6 % (278 out of 854 genes) 
of the genes enriched in the respective clades. Whereas, the 
evolutionarily distinct clades, such as clade VII and VIII, 
shared only 6.6 % (60 out of 908 genes) of the genes over-
represented in them.

Composition of the accessory genome but not the 
distribution of cgSNPs separates COPD from non-
COPD strains
We then tested whether the 373 COPD strains could be asso-
ciated with a particular clade(s). We overlaid the neighbour-
joining phylogenetic tree with information on the clinical 
source of isolates as shown in Fig. 5. We found that COPD 
strains were distributed among all eight clades, with no 
absolute separation of the strains according to clinical source 
(Fig.  5). Expanding on our analysis, we next investigated 
whether the information on core-genome-wide polymor-
phic sites could be used to classify the collection into groups 
based on their clinical phenotypes. Discrimination analysis 
on cgSNPs showed significant overlap between COPD and 
non-COPD isolates, which is consistent with the previous 
results, suggesting poor resolution of cgSNPs for separating 
isolates according to their clinical source (Fig. 6a).

We then applied DAPC to the composition of the accessory 
genome, and found that, based on the first discriminant func-
tion, the presence/absence profile of dispensable genes could 
separate the COPD strains from the rest (Fig. 6b). The mean 

Fig. 3. (a) 3D scatterplot of the cgSNP-based DAPC of NTHi isolates 
(n=568). DAPC resolved the NTHi isolates into eight clusters (clades). 
Clades I and II were closely related to each other, whereas all other 
clusters were distinctly separated. (b) The accessory-genes-based 
DAPC correlated with the cgSNP-based DAPC with a distinct separation 
of clades III, IV, VIII and VIII, and a close relationship between clades I and 
II. The only discrepancy was with the isolates of clades V and VI, which 
were clearly separated on cgSNPs DAPC, whereas they overlapped 
on the accessory-gene-content DAPC. Each dot is an isolate, coloured 
according to the classification into one of the eight clusters/clades as 
assigned by the cgSNP-based DAPC.
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discriminant function separating the two populations was 
significantly different (P<0.0001, unpaired t-test with Welch’s 
correction). This result indicates that there is a difference in 
the composition of the accessory genome in NTHi that could 
potentially separate COPD strains from those associated with 
other clinical illnesses.

Genome-wide association studies identified a set of 
accessory genes that are significantly associated 
with COPD strains
We determined the accessory genes in the bacterial dataset 
that were associated with a COPD phenotype. Scoary was 
used to screen the genes for association with COPD [47]. 
After the FDR correction, Scoary predicted 680 genes present 
in the NTHi pan-genome to be significantly enriched in NTHi 
collection from the COPD airways (Dataset 4). Out of the 
680 genes, 226 genes were found to be significantly overrep-
resented in the COPD strains as compared to non-COPD 
strains (odds ratio ≥2, P<0.05) (Dataset 4).

Additionally, Scoary identified 145 (out of 680) genes to be 
significantly associated with the COPD phenotype (P<0.05) 

after pairwise comparison (Dataset 4). The other remaining 
535 genes identified as significant prior to population-aware 
analysis were found to be lineage-specific effects upon 
inspection of the population distribution by the pairwise 
comparisons test. Furthermore, 1000 random permutations 
of the phenotype data were implemented, and the associated 
test statistic was calculated for each permutation. After the 
permutations, only 122 genes were found to have a significant 
association with the COPD phenotype (Dataset 4). Out of 
122 significant hits, 86 hits were found to be different alleles 
(variants) of the same gene, one positively and one negatively 
associated with the COPD phenotype. The two alleles of these 
43 genes were different enough to not be clustered as the same 
by Roary. Finally, there were 79 unique genes likely to play a 
role in COPD (Dataset 4).

Functional classification of candidate COPD-
associated genes
We next predicted the biological functions of the 79 unique 
COPD candidate genes. A total of 70 out of 79 genes mapped 
to UniProt proteins with a minimum identity threshold of 

Fig. 4. Neighbour-joining phylogenetic tree of 568 NTHi isolates, based on the cgSNPs. The evolutionary distances were computed using 
the maximum composite likelihood method. There was a total of 664 470 positions in the final dataset. Distinct sub-structuring of the 
NTHi population was evident with the cgSNP-based phylogeny. The phylogenetic analysis perfectly correlated with the DAPC-based 
classification that identified eight monophyletic clades. The close association between clades I and II, and between clades V and VI, as 
observed in accessory-genome-based DAPC, is consistent with the evolutionary relationship between them observed in the core-gene-
sequence-based phylogeny obtained using the neighbour-joining maximum composite likelihood method. The tip labels are coloured 
according to the clades assigned by the cgSNP-based DAPC. Bar, number of base substitutions per site.
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90 % (Dataset 5). Furthermore, the candidate genes were 
functionally annotated by assigning their encoded proteins to 
Clusters of Orthologous Groups of proteins (COGs) catego-
ries [56]. The COG analysis, however, did not result in an 
increase in confident functional prediction for the candidate 
genes as compared to the original annotations, i.e. 70 genes 
were assigned to known orthologous groups when the identity 
threshold was maintained at 90 % (Dataset 5).

Additionally, the functionally annotated genes that were 
associated with the COPD phenotype were classified based 
on their molecular functions and the biological processes 
they are involved in. Fifty-four and fifty-two of the seventy 
functionally annotated COPD-linked genes were assigned to 
GO molecular functions and biological processes, respectively 
(Dataset 5). A large number of these genes were found to be 
associated with transmembrane transporter activity (n=10), 
regulating the transport of inorganic phosphates, cations (Na+ 
and K+), metal ions such as copper and iron, lactate, dicar-
boxylate, carbohydrate, amino acids and proteins in and out 
of the bacterial cell (Table 1). Others were genes involved in 
cell redox homeostasis and cellular carbohydrate and protein 
metabolic processes, including the biosynthesis of aromatic 
and branched-chain amino acids. Consistent with previous 
studies [57, 58], a variant form of the IgA-peptidase-encoding 
gene has been found to be strongly associated with the COPD 

phenotype (odds ratio=4.4, P=0.0012). In addition, variants/
alleles of genes encoding glycosyltransferases, such as lex1 
and isgE, and cytidylyltransferase-encoding licC that are 
involved in lipooligosaccharide (LOS) biosynthesis were also 
found to be associated with the COPD strains. With regard 
to other virulence genes such as Haemophilus adhesion and 
penetration protein (Hap), higher molecular weight proteins 
1 and 2 (HMW1/2) and H. influenzae adhesin (Hia), they 
were found to be uniformly distributed among COPD and 
non-COPD strains.

H. influenzae is known to be naturally competent for trans-
formation [59, 60]. tfoX (also called sxy) is a regulatory gene 
which is required for DNA uptake and transformation [61]. 
Its product, TfoX, interacts with cyclic-AMP receptor protein 
(CRP) and promotes the expression of genes of the compe-
tence regulon in H. influenzae [62, 63]. H. influenzae utilizes 
type IV pili for the transport of DNA across the membrane 
into the cytoplasm [64]. Variant forms of both pilA (encodes 
PilA, a major pilin subunit of type IV pili) [65] and tfoX 
are found to be associated with the COPD strains of NTHi 
(Table 1). RecJ is an exonuclease with 5′–3′ ssDNA-specific 
exonuclease activity that plays a crucial role in DNA repair 
and recombination pathways [66]. RecJ is associated with 
mismatch repair, and in addition, in conjunction with RecQ 
helicase, initiates recombination from a double-stranded 

Fig. 5. Distribution of 568 NTHi isolates over the cgSNP-based neighbour-joining phylogenetic tree, which is annotated with the clinical 
source of isolation of the samples as COPD or non-COPD. Each evolutionary clade includes both COPD and non-COPD strains. Branch 
tips representing COPD strains are highlighted in red, whilst those representing non-COPD strains are shown in black. The tip labels are 
coloured according to the clades (I to VIII) as assigned by the cgSNP-based DAPC. Bar, number of base substitutions per site.
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break [67]. A variant of recJ has also been found to be associ-
ated with the COPD phenotype (odds ratio=2.5, P=0.019).

DISCUSSION
NTHi is associated with a wide range of diseases, including 
otitis media, meningitis and conjunctivitis, and is a major 
bacterial cause of exacerbations in COPD patients [3, 68–70]. 
The ability to predict a disease phenotype based on the 
genotype of a pathogen would be valuable in informing an 
appropriate prevention and treatment response. In some 
cases, phenotyping methods such as virulence factor profiling 
demonstrate clustering of the bacterial isolates into specific 
serotypes as in the case of Streptococcus pneumoniae [71]. 

While in others, MLST profiling correlates well with the 
disease induced by a pathogen, as in the case of Enterococcus 
faecium; for instance, a number of MLST STs, ST796, ST1421, 
ST233 and ST80, are associated with vancomycin resistance 
[72, 73]. In terms of infections with H. influenzae, capsulated 
strains have been reported to form serotype-specific clusters, 
in particular serotypes c, d, e and f that formed monophyletic 
clusters on a dendrogram reconstructed from the MLST allelic 
profile [21, 74]. However, the population of NTHi has been 
reported to be composed of a heterogenous group of isolates 
that form highly divergent clusters based on MLST [21]. 
Among the diseases caused by NTHi, Brazilian purpuric fever 
has been found to be caused by a well-defined NTHi clone 
(biogroup aegyptius) [75]; however, a correlation between 
genotypes of NTHi and COPD has not been established yet 
[21]. In this study, we analysed the whole-genome sequences 
of a large collection of NTHi strains that were isolated from 
different clinical sources to investigate a genetic basis of 
distinction between COPD and other phenotypic strains.

Our analyses indicate that conventional MLST typing exhibits 
low discriminatory power and is, thus, unsuitable for iden-
tifying COPD-specific clusters of NTHi. To increase the 
discriminatory power, we expanded the MLST scheme that 
comprises seven housekeeping genes and included 853 core 
genes in our analysis. We performed DAPC on cgSNPs, which 
grouped 568 NTHi isolates into distinct clades (Fig.  3a). 
Firstly, using this larger panel of genomes, the NTHi isolates 
resolved into eight clades compared to six clades in the 
previous analysis by De Chiara and colleagues in which 97 
NTHi isolates were used [21]. NTHi isolates that fell within 
De Chiara’s clade I and V further separated into two distinct 
clusters each; whereas, the other clades (II, III, IV and VI) did 
not show substructure with the analysis of 568 NTHi isolates. 
Each of the eight clades contained NTHi strains from diverse 
disease phenotypes. Moreover, phylogeny derived from an 
analysis of cgSNPs did not differentiate NTHi isolates based 
on their clinical source which is consistent with the study 
conducted by De Chiara et al. and a later study by Pettigrew 
and colleagues that analysed a collection of 403 NTHi genome 
sequences [7, 21]. The finding that NTHi strains with highly 
similar core-genome sequences can cause a wide range of 
diseases suggests that non-core accessory genes may to a large 
extent be responsible for the different disease phenotypes that 
result from NTHi infection, as has been observed in other 
pathogenic bacteria such as Clostridium difficile [76].

The eight distinct NTHi clades supported by population 
genetics correlated perfectly with molecular phylogenetic 
analysis based on the cgSNPs (Figs 3a and 4). Analysis of 
the composition of the accessory genome further correlated 
with phylogeny (Figs 3b and 4). This consistency highlights 
the clonal nature of the NTHi population. We also identified 
the genes that were enriched (over-represented) in each clade 
(Dataset 3) and found a set of clade-enriched genes distrib-
uted over the evolutionarily distant clades. For example, out 
of 456, 551 and 417 genes that were specifically overrepre-
sented in clades I, VII and VIII, respectively, (FDR adjusted 
P value <0.001), 11 genes were found to be common in these 

Fig. 6. DAPC of 568 NTHi genomes from COPD and other disease 
isolates. (a) The first discriminant function of the retained PCs based 
on cgSNPs leaves substantial overlap between COPD and non-COPD 
strains, 356 NTHi isolates (231 COPD and 125 non-COPD strains) were 
in the overlapping region. (b) DAPC on the presence/absence profile of 
accessory genes clearly provides a higher level of separation of COPD 
from non-COPD strains with 226 NTHi isolates (119 COPD and 107 
non-COPD strains) in the overlapping region. Composition of accessory 
genes, but not the distribution of polymorphic sites in the core-genome, 
discriminates COPD strains from other clinical phenotype strains of 
NTHi. Each line is an isolate. COPD and non-COPD isolates are coloured 
in red and black, respectively.
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phylogenetically distinct clusters. This underscores the role 
of horizontal gene transfer prevalent in the NTHi population 
that accounts for genetic diversity among the species [77].

We then applied discriminant analysis on the composition of 
accessory genes, which demonstrated a clear separation between 
strains associated with COPD and other clinical illnesses. 
Moreover, using a pan-GWAS approach, we identified a subset 
of NTHi accessory genes associated with the COPD phenotype. 
Some key COPD-associated genes likely to be involved in patho-
genesis are listed in Table 1. NTHi utilizes cells surface structures 
to interact with host cells and pave the way for colonization and 
invasion [78]. We identified a variant form of pilA, encoding 
type IV pilin subunit protein, and LOS biosynthetic genes (licC, 
lex1 and isgE) as being associated with the COPD strains. PilA 
and LOS have been demonstrated to play an important role 
in biofilm formation and colonization of the respiratory tract 
[79, 80]. Evasion of host immune defence is another probable 
mechanism by which NTHi strains thrive in the COPD airways. 
We found an association of the gene encoding IgA1 protease, 
which cleaves immunoglobulin A (IgA), with COPD isolates 
of NTHi (Table 1). IgA1 protease has previously been reported 
to be important to H. influenzae in the lower airways of COPD 
patients [81].

Pettigrew’s and Molere’s groups recently investigated large 
prospectively collected NTHi genomes to give insight into 
molecular changes during persistence in the COPD lung 
[7, 25]. They found genetic changes in multiple genes that 
regulate expression of virulence functions, such as adherence, 
nutrient uptake and immune evasion, which are likely to be 
involved in NTHi survival in the COPD lung. This suggests that 
in comparison to other ecological niches, such as the middle 
ear, sinuses, eye, meninges and the upper respiratory tract, 
NTHi in COPD airways are exposed to different microenviron-
ments defined by distinct nutrient availability, pH, oxidizing 
potential and/or immune response. NTHi, therefore, exhibits 

genomic changes which appear to aid survival and adaptation 
in the hostile environment of COPD airways. Consistent with 
these findings, we found that COPD isolates of NTHi encoded 
different metabolic activities compared to strains associated 
with other clinical phenotypes. This suggests that metabolic 
capacity, in part, plays an important role in enabling NTHi to 
contribute to COPD pathogenesis and further supports the 
concept of nutritional virulence as an important determinant 
of pathogenic capability in NTHi [82].

In conclusion, our study indicates that the virulence and 
survival of NTHi in COPD is influenced by genes outside of 
the core-genome. The set of accessory genes associated with 
COPD strains may assist in successfully establishing a niche in 
COPD airways through acquisition of nutrients, evasion of the 
immune response, and enhancement of adhesion and coloniza-
tion of airways. In addition, the presence of competence and 
recombination genes may enable NTHi strains to acquire genes 
that confer a competitive advantage in the COPD airways. 
Further work will examine how our finding that COPD strains 
of NTHi possess a distinct gene content could be translated 
into improvements in the management of NTHi infections in 
COPD.
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Table 1. List of virulence and transformation competency associated genes that significantly correlated with COPD strains of NTHi

Gene Gene name OR P Pairwise P Emp P Function

igA IgA1 protease autotransporter 4.5 0.0012 1.4×10−7–
1.53×10−5

0.0009 Virulence

isgE N-Acetyl-glucosamine-transferase 5.5 0.0008 1.4×10−6–
6.6×10−5

0.0009 LOS synthesis

lex1 LOS biosynthesis protein lex-1 2.8 0.0274 3.6×10−5–
2.27×10−2

0.0009 LOS synthesis

licC 2-C-Methyl-d-erythritol 4-phosphate cytidylyltransferase 6.4 4.9×10−9 4.0×10−8–
2.3×10−7

0.0019 LOS synthesis

pilA Type IV pilin subunit protein PilA 5.1 0.0002 3.1×10−6–
3.1×10−6

0.003 Adhesion; 
transformation

tfoX DNA transformation protein 8.6 0.0003 3.7×10−8–
4.2×10−7

0.001 Transformation

OR, odds ratio; P, false rate discovery adjusted P value; Pairwise P, range of P values from the pairwise comparisons; Emp P, empirical P values 
after 1000 permutations.
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