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Abstract

Purpose of review: This review examines emerging neuroimaging research in pediatric
obsessive compulsive disorder (OCD) and explores the possibility that developmentally sensitive
mechanisms may underlie OCD across the lifespan.

Recent findings: Diffusion tensor imaging (DTI) studies of pediatric OCD reveal abnormal
structural connectivity within frontal-striato-thalamic circuity (FSTC). Resting-state functional
magnetic resonance imaging (fMRI) studies further support atypical FSTC connectivity in young
patients, but also suggest altered connectivity within cortical networks for task-control. Task-based
fMRI studies show that hyper- and hypo-activation of task control networks may depend on task
difficulty in pediatric patients similar to recent findings in adults.

Summary: This review suggests that atypical neurodevelopmental trajectories may underlie the
emergence and early course of OCD. Abnormalities of structural and functional connectivity may
vary with age, while functional engagement during task may vary with age and task complexity.
Future research should combine DTI, resting-state fMRI and task-based fMRI methods and
incorporate longitudinal designs to reveal developmentally sensitive targets for intervention.
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Introduction

Obsessive-compulsive disorder (OCD), characterized by intrusive thoughts (obsessions) and
related behavioral rituals (compulsions), is a disabling psychiatric illness that begins during
childhood or adolescence in 50% of patients [1]. The prevalence of OCD in pediatric
samples is 1-3% [2], similar to estimates in adults [3]. Among pediatric patients who receive
treatment for OCD, approximately half continue to experience full-blown illness into
adulthood [4] and, in patients with adult onset illness, many report subclinical symptoms
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beginning in childhood [2, 3]. Yet, despite the apparent origin of OCD in early life,
neuroimaging studies designed to elucidate the neural underpinnings of the disorder are
mostly derived from research with adults. Understanding brain abnormalities in pediatric,
compared to adult OCD, may help to elucidate unique features of iliness across the lifespan,
and ultimately guide the design of therapies most appropriate for different patients at
different ages.

FSTC in OCD: a neuroanatomical model

Neuroimaging research has consistently demonstrated abnormalities of fronto-striato-
thalamic circuitry (FSTC) in adult OCD [5] and accumulating research in pediatric patients
provides evidence for FSTC abnormalities at early stages of illness. The FSTC system is
comprised of parallel, segregated “loops” between distinct portions of the cortex, striatum,
and thalamus [6]. FSTC loops of functional relevance for OCD include those passing
through dorsal and ventral striatum into the medial dorsal thalamus via topographically
organized projections from cortical centers for cognitive control (e.g., anterior cingulate
cortex, dorsolateral prefrontal cortex; [7]) and for emotionally driven evaluative functions,
including reward processing and internal mood states (e.g., ventral medial prefrontal cortex;

[8).

The first neuroimaging evidence of FSTC abnormality in OCD came from positron emission
tomography (PET) studies showing increased metabolic uptake of radiotracers marking
glucose and oxygen metabolism in the anterior cingulate cortex (ACC), orbital frontal
portion of the ventral medial preferontal cortex (vmPFC), striatum and thalamus in adult
patients compared to healthy controls [9]. Initial studies were conducted while patients lay
awake in the PET scanner, not performing any particular tasks, thereby demonstrating
hyperactivity of FSTC at rest. Follow-up work showed that symptom provocation further
increased metabolic hyperactivity in FSTC and that treatment resolved FSTC
hypermetabolism [9]. Taken together, these findings suggested a neuroanatomical model of
OCD in which excessive signaling through FSTC was hypothesized to underlie symptoms.

An important element of the FSTC system, which is likely relevant to its role in OCD,
involves the splitting of each loop into direct and indirect pathways at the level of the basal
ganglia (i.e., striatum, globus pallidum, subthalamic nucleus; Figure 1). In general, the direct
pathway facilitates neuronal activity through FSTC, whereas the indirect pathway inhibits it
[10]. Neuroanatomical models of OCD suggest that greater direct pathway activity through
vmPFC-based loops for emotion processing and /ower indirect pathway activity through
dACC- and dorsolateral prefrontal cortex-based loops for cognitive control may underlie
intrusive thoughts, ritualistic behaviors and related anxiety in OCD [5, 9, 11]. In other
words, Ayperactivity in neural circuitry underlying the affective valuation of thoughts and
behaviors (i.e., vmPFC-based FSTC) may couple with Aypoactivity in neural substrate
underlying capacity for task control (i.e., dACC-, dorsolateral prefrontal-based FSTC). A
resulting imbalance in FSTC substrate for emotion-processing, relative to task control, could
lead to the intrusion of distressing, obsessional thoughts and the repetition of compulsive
behaviors to reduce distress, despite insight that such thoughts and behaviors “do not make
sense”. Task-based neuroimaging research has supported this possibility, demonstrating
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deficits of dACC activation during cognitive tasks requiring behavioral adjustment and
hyperactivity of vmPFC during emotion-laden evaluative processing in patients, even when
OCD symptoms are not directly provoked [5].

MRI-based Technology Enables Study of FSTC in Pediatric OCD

Despite the pediatric onset of OCD in at least half of all patients [1], the FSTC model of
OCD was first developed based on studies conducted in adults. Initial focus on adult patients
was largely due to technical characteristics of PET, the first widely available tool for
neuroimaging research, which requires injection of radioactive tracer to reveal brain activity.
With the advent of non-invasive magnetic resonance imaging (MRI) technologies,
neuroimaging research in children became more feasible and MRI-based neuroimaging
studies of pediatric OCD began to emerge. Initial evidence for FSTC abnormality in young
patients came from MRI studies showing altered volume of FSTC nodes, including ACC,
striatum and thalamus, but also superior parietal lobule and precuneus (for a review, see
[13]). In addition, task-based functional MRI studies began to propagate, revealing
abnormalities of activation in FSTC regions during tasks designed to engage OCD-relevant
psychological processes (see next section).

Advances in MR-based technology also produced diffusion tensor imaging and resting state
functional MRI methods, enabling the measurement of FSTC structural and functional
connectivity, respectively, in young patients. Diffusion tensor imaging (DTI) measures the
direction and magnitude of water diffusion within white matter tracts [14, 15]. The most
commonly studied DTI measure is fractional anisotropy (FA), an index of white matter
coherence and thus, the integrity of white matter tracts [16-19]. Resting state functional
connectivity MRI (rsfcMRI) measures fluctuations of blood oxygen level dependent
(BOLD) MRI signal. During rsfcMRI data collection, subjects are instructed to “allow your
mind to wander” to induce a so-called “resting state” during which low frequency BOLD
signal oscillations throughout the brain are measured. Correlations between oscillations in
different brain regions are then calculated to produce a metric of resting state connectivity.
Greater resting state connectivity is believed to reflect a history of co-activation, providing
evidence of a functional circuit [20, 21].

Diffusion Tensor Imaging Research in Pediatric OCD

The literature on DTI in pediatric OCD has provided evidence of white matter involvement
in the FSTC from early in the course of illness (Table 1). White matter tracts of particular
relevance to FSTC include the anterior corpus callosum (CC), anterior cingulum bundle
(CB) and anterior limb of the internal capsule (ALIC). The anterior corpus callosum
contains white matter fibers connecting the right and left prefrontal cortex [22]; the anterior
cingulum bundle contains fibers that connect emotion processing regions such as the
amygdala to ACC [23]; and, the ALIC contains white matter pathways connecting the
frontal lobe and thalamus. Several DTI studies have found increased FA and/or axial
diffusivity (another DTI metric of white matter integrity) in these tracts in OCD-affected
youth compared to healthy controls [24-26], while other researchers have found the reverse
[27, 28]. Interestingly, the largest DTI study of pediatric OCD [29-] found no overall
differences in FA but, rather, demonstrated steeper age-related increases of FA in FSTC
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white matter in patients compared to controls across the ages of 8 to 19. After subdividing
the sample into child, early adolescent, and late adolescent groups, lower FA was
demonstrated in 8- to 11-year-old child patients, but higher FA was found in 16- to 19-year-
old adolescent patients relative to same-aged controls in the anterior corpus callosum and
anterior cingulum bundle. These results suggest a possible interaction between FA and age, a
finding that may help clarify the discrepant reports of lower FA in OCD compared to healthy
youth [27, 28]; the examination of FA in older as compared to younger participants may
increase the likelihood of finding abnormally increased or decreased FA in FSTC white
matter tracts in pediatric samples (Table 1).

If steeper age-related increases in FSTC structural connectivity in OCD relative to healthy
youth [29--] continues beyond adolescence, then abnormally increased FA might be expected
in adult patients. Greater FA has been reported in adult OCD in the CC [32, 33], CB [33,
34], ALIC [32, 34] and in other white matter tracts, including superior longitudinal
fasciculus (SLF) and anterior corona radiata in some reports (for a review, see [35]).
However, other studies have found decreased FA in these regions in adult patients compared
to healthy controls (for a review, see [35]). A meta-analysis of DTI research in adult OCD
suggests that conflicting results across studies may derive from sample heterogeneity due to
demographics, medication status, illness chronicity, and imaging methodology [35] and the
same may be said of DTI research in pediatric OCD with the added complexity of
developmental stage. In typically developing individuals, most white matter tracts (e.qg.,
internal capsule, CC, CB) exhibit curvilinear trajectories (i.e., inverted ‘U’ shaped), with
age-related increases found during childhood and adolescence followed by decreases in
adulthood [36]. DTI research in patients compared to matched controls from childhood into
older adulthood will be needed to assess whether shifts in the timing of this curvilinear
trajectory (e.g., earlier peaks for healthy, later peaks for OCD) may best describe
developmental differences in FSTC structural connectivity over the lifespan.

In summary, the bulk of DTI research in pediatric OCD suggests that increased white matter
in FSTC and other white matter tracts occurs in young patients by the time of adolescence
and that, from childhood into adolescence, structural connectivity within these tracts may
increase at faster rates in patients compared to age-matched healthy youth. Critically,
longitudinal research is needed to understand when white matter abnormalities in pediatric
OCD emerge, to map changes in white matter abnormalities over time, and to determine how
these changes associate with course of illness. Moreover, combining DTI and other MR-
based imaging methods may elucidate the functional significance of atypical white matter
development in pediatric OCD to aid identification of DTI measures as potential targets for
intervention and/or intermediate outcomes. Finally, FA abnormalities outside of FSTC have
been demonstrated in pediatric (e.g., SLF, corona radiata, posterior limb of internal capsule,
see Table 1) and adult patients (for a review, see [37]), prompting a reevaluation of the FSTC
model originally theorized to underlie symptoms.
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Resting State Functional Connectivity in Pediatric OCD: from FSTC to Cortical-cortical

Networks

Myelinated neuronal projections (i.e., white matter connections) between FSTC regions
were first revealed by chemical tracer studies in laboratory animals [6], but the advent of
task-based fMRI and rsfcMRI methods has revealed that functional connectivity between
regions can exist in the absence of direct structural connections [38, 39]. These “functional”
networks are identified by regions that co-activate in response to task demands and exhibit
connectivity at rest [40]. For example, cortical targets of FSTC, particularly dACC, vmPFC
and the dorsolateral frontal cortex (dIPFC), are now realized as critical nodes within such
networks. As depicted in Figure 1, functional connectivity of the dACC-bilateral anterior
insula, dIPFC-parietal cortex, and vmPFC-posterior cingulate cortex define canonical
networks that are now widely believed to support, respectively: salience detection (salience
network, SN), executive functions (central executive network, CEN), and “default” mode
processes such as self-reflection, internally-directed mentation, and episodic memory
requiring task control (default mode network, DMN) [41].

Building from rsfcMRI research in adult patients with OCD [42, 43], rsfcMRI research in
pediatric OCD initially focused on FSTC. This work tested for temporal correlations of
fMRI BOLD signal between anatomically defined regions or “seeds” placed in the striatum
and thalamus with voxels across the rest of the brain. Replicating work in adults [42, 44],
evidence for distinguishable FSTC loops was demonstrated for seeds placed in the ventral
striatum, dorsal striatum and medial dorsal thalamus [45]. Functional connectivity for each
seed was then compared for patients and healthy individuals by developmental stage (child,
adolescent and adult), demonstrating excessive connectivity of dorsal striatum with medial
frontal pole, a subregion of vmPFC, across the age span. By contrast, the youngest patients
exhibited reduced connectivity of dorsal striatum with rostral ACC and of medial dorsal
thalamus with dorsal ACC. These child-specific abnormalities of functional connectivity
have since been partially replicated in a study of patients with pediatric OCD compared to
healthy youth, ages 8 to 16 years; within a “cingulate network” defined by resting state
correlations of striatum, bilateral dIPFC, and dorsal medial prefrontal cortex (dmPFC),
patients exhibited reduced connectivity of dmPFC [46].

The relevance of abnormal functional connectivity within FSTC loops in pediatric OCD
remains poorly understood, but can be interpreted in the context of task-based literature. For
instance, FSTC running through vmPFC is associated with the processing of emotionally
salient stimuli to motivate behavior [8, 47], whereas the maturation of ACC-based FSTC
plays a critical role in the development of cognitive control [48]. Thus, excessive
connectivity of the FSTC loop running through vmPFC in child, adolescent and adult
patients could drive excessive worry about errors and related attempts at corrective behavior
in OCD in patients across the lifespan. By contrast, premature reduction in the connectivity
of ACC-based FSTC for cognitive control may contribute to an inability to suppress the
contextually inappropriate thoughts and behaviors near illness onset and perhaps, at a critical
period of development, give rise to the emergence and progression of OCD in young
patients.
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In conclusion, interpretation of DTI and rsfcMRI research in pediatric OCD can be informed
by neuroimaging work in typically developing youth showing that development of ACC-
associated cognitive control and vmPFC-associated emotion processing functions depends
not only on the maturation of structural connections between FSTC nodes, but also on the
developing connectivity of these regions within large scale, neural networks for salience
detection (SN), central executive processes (CEN) and default mode function (DMN) [20,
41, 49]. Indeed, preliminary work in pediatric OCD shows that hyperactivation of dACC and
failure to deactivate vmPFC during a simple cognitive task occurs in the context of reduced
functional connectivity within the salience (dAACC-anterior insula, SN) and default mode
(vmPFC-posterior cingulate, DMN) networks [50]. These task-based and rsfcMRI findings
extend historical models of altered FSTC connectivity in OCD to include abnormalities in
overlapping, resting state networks in young patients (Figure 1). In addition, atypical
functional connectivity between dACC and vMPFC in pediatric OCD suggests inappropriate
interactions of SN and DMN in young patients [50]. In adult OCD, rsfcMRI research has
shown that the normally inverse relationship between task positive networks, namely the SN
and CEN, with DMN is attenuated in patients with OCD compared to healthy controls [51,
52]. These findings suggest a failure to segregate between networks that could lead to
deficits in task-control processes due to intrusion of emotional and introspective function of
DMN. Task-based fMRI studies may aide examination of the functional significance of
altered SN and CEN connectivity and will be further reviewed in the next section.

Functional Activation during Task Control Demands

OCD has long been theorized to stem from core deficits of task control [53, 54]. Task
control is a broadly defined term that encompasses a variety of cognitive tasks including:
interference control, response inhibition, working memory and cognitive flexibility [55, 56].
Collectively, task control processes enable the selection of appropriate behavior across a
myriad of internal and external inputs and, when impaired, may associate with the repetitive
thoughts and behaviors characteristic of OCD. For instance, recurrent intrusive obsessions
might be related to an inability to inhibit and select certain stimuli (interference control),
and/or an inability to switch attention from one aspect of a stimuli to another depending on
environment and context (cognitive flexibility), whereas the repetitive compulsive behavior
of OCD might stem from failure to inhibit certain prepotent, but inappropriate, response sets
(response inhibition) and/or a deficit in working memory prompting repeated urges to check.

Task control demands are known to engage “task positive” salience and central executive
networks [55, 57]. These networks were originally defined by task positive co-activations
and later found to remain functionally connected, even at rest [40, 41, 57]. As noted above,
preliminary evidence suggests reduced functional connectivity between task positive regions
during rest in pediatric OCD [50]. Below, we will review accumulating research from task-
based fMRI studies demonstrating abnormal SN and CEN function in both adult (for
reviews, see [58:, 59] ) and pediatric patients with OCD. Taken together, these studies
suggest that altered function of canonical networks for task control in adults with OCD may
develop at the early stages of illness.
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To frame an understanding of task-based fMRI studies of OCD, it is important to consider
the relationship of brain activation to behavioral performance during tasks which, in turn,
relates to task difficulty. For example, tasks tapping interference control (e.g., the flanker
task) might be less difficult than tasks requiring motor response inhibition (e.g., stop-signal
task) since interference control requires inhibition of a potential response through the
focusing of attention on task-relevant over -irrelevant stimulus features, whereas motor
response inhibition requires the suppression of a behavioral response that has already been
triggered and is closer to actually being produced [60]. In some tasks, difficulty can be
manipulated by varying parameters within a task; for example, the 3-back working memory
task is harder than the 2-back working memory task. Other complex tasks, such as the
Wisconsin Card Sorting Test (WCST) and Tower of London (TOL), entail relatively high
levels of difficulty by requiring the coordination of multiple task control processes to
produce correct performance [61]. In fMRI research, hyperactivation in the context of
normal performance in a patient compared to a control group has been interpreted to reflect
compensation for underlying neural inefficiency and may be most likely to occur on less
difficult tasks [62]. By contrast, as task difficulty increases, hypoactivation may occur as
capacity for compensatory activation is exceeded and performance deficits emerge [58:, 63].

Task-based fMRI research in adult OCD—Functional MRI studies of adult OCD have
revealed altered activation of SN and CEN during task control demands [58-, 59], and
provide context for interpreting the fMRI literature in pediatric patients. In adults with OCD,
increased activation in the dIPFC and dACC has been demonstrated during a relatively
simple /nterference control task relative to healthy controls[64]; in this study, patients
maintained normal performance relative to controls, consistent with the interpretation that
hyperactivation may enable compensation for underlying inefficiency of task control
networks [58-, 64]. By contrast, a more difficult task requiring response inhibition elicited
decreased activation in the inferior frontal gyrus (IFG) and parietal regions in OCD relative
to HC adults; hypoactivation occurred in the context of performance deficits in patients [65].
The notion that task difficulty impacts the nature of task control network function in OCD is
further supported by fMRI research showing increased activation of dIPFC under low-
cognitive demand (e.g, 1- and 2-back working memory task), but decreased-to-normative
levels of activation in dACC under increased task demand for patients compared to controls
[66—68]. On the more complex tasks of self-shifting/task switching, adult OCD patients
showed decreased activation in the dIPFC, dACC, parietal and caudate regions in cognitive
flexibility relative to HC [69-71]. Similarly, on the Tower of London task, OCD patients
showed decreased activation in the dIPFC and parietal lobe during planning, relative to
controls [72, 73].

Thus, whether task-related brain areas are Aypo- or Ayper-activated in patients compared
with healthy controls appears to depend largely on the difficulty of the task and whether
compensatory mechanisms are enlisted [58:, 59]. During less difficult tasks, OCD patients
may recruit additional neural resources in SN and CEN, possibly to compensate for an
underlying inefficiency of these task control networks. This hyperactivation may explain
why individuals with OCD are able to maintain normal behavioral performance, relative to
healthy controls, during less complex tasks (e.g., the Flanker task and the Simon task).
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However, with increasing task demand (e.g. the Go/no-go and the Stop-signal task), these
compensatory mechanisms may fail in individuals with OCD, such that behavioral
impairments and decreased activity in task control networks emerge.

Task-based fMRI research in pediatric OCD—Modelling after recent reviews of the
adult literature, we consider whether altered activation of task-control networks in pediatric
populations also depends on task complexity and/or relates to performance. In contrast to the
fMRI literature in adult OCD, only a few studies have examined task control processing in
pediatric samples (Table 2). During simple cognitive tasks with relatively low levels of
difficulty (e.g. simplified serial reaction time, interference, 1-2 back working memory
tasks), fMRI studies in pediatric OCD reveal /ncreased activation in patients compared to
healthy youth in task control regions, including dACC, dIPFC, and parietal cortex [50, 74,
75]. As with adult studies, hyperactivation of task control networks in pediatric patients
occurred in the context of normal performance relative to controls, suggesting that increased
engagement of task control regions may reflect a compensatory function by which patients
maintain appropriate behavioral output. Review of the pediatric OCD literature on brain
activation during more difficult/complex cognitive tasks (e.g., motor inhibition, set-shifting,
planning) demonstrated that, relative to healthy controls, pediatric patients with OCD
showed decreased activation in task control regions including dIPFC, dACC, IFG and
parietal [76-78].

Thus, consistent with adult OCD literature, a pattern of increased activation during tasks
requiring lower cognitive load, and decreased activation during tasks with higher level
demand for control characterizes pediatric patients with OCD compared to healthy youth. In
line with this notion, Huyser and colleague [79] found decreased activation in conjunction
with impaired performance (slower reaction times) in pediatric OCD participants relative to
healthy youth on a task requiring higher levels of control (Tower of London). However, this
study stands out as an exception since, in other fMRI studies of pediatric OCD, patients
performed as well as healthy youth on relatively difficult tasks (e.g., [76, 77]), despite
decreased activation in task-control network. Finally, patients with pediatric OCD have been
found to exhibit normal performance in the context of decreased dIPFC activation during
incorrect [80] and correct [79]trials on relatively low load, interference tasks. These findings
are in conflict with the theory that, during less difficult tasks, hyperactivation of task control
regions is necessary to support the maintenance of performance in OCD [58].

Several factors may contribute to the discrepancies observed in the pediatric OCD fMRI
literature. First, most of the pediatric OCD fMRI studies employed small sample sizes
(ranging from 10 to 25 pediatric OCD participants). Small samples in neuroimaging studies
often yield low reproducibility of results [81] and may contribute to the observed
inconsistencies. Future studies should include larger sample sizes to increase the external
validity of the findings. Second, fMRI studies in pediatric OCD have typically included
children and adolescents across a wide age range, spanning 8 to 19 years. The function and
connectivity of task-control networks develop dramatically from early childhood into
adolescence and early adulthood [20, 49]. Thus, different studies may produce different
findings depending on specific ages of each study sample. That is, developmental variability
within age groups may outweigh the between group (OCD versus healthy) variability in
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brain function and/or performance. Future studies should further stratify by age and recruit
more subjects at each age, differentiating effects for young children from adolescents [82].

Conclusions

In conclusion, there is strong evidence demonstrating abnormalities of both FSTC and
canonical networks for task control (SN, CEN) in pediatric OCD. Emerging works suggests
that these abnormalities may vary with age and performance in young patients.
Understanding this variation will be important for elucidating the neurodevelopmental
trajectories that may underlie the emergence and early course of OCD. Additional research
combining DTI and rsfcMRI studies with task-based fMRI methodologies will also be
needed to elucidate the relationships between developing connectivity and interactive
cognitive and emotional functions served by FSTC and cortical-cortical networks. Such
knowledge would guide efforts to develop brain stimulation (e.g., transcranial magnetic
stimulation [TMS] or transcranial direct-current stimulation [tDCS]) to potentiate/modulate
activity in the relevant neural circuits or cognitive training paradigms to target the brain
regions involved in cognitive and emotional dysfunction specific to pediatric OCD.
Longitudinal imaging designs will be especially important in reaching these goals. By
following patients over time, neuroimaging research may reveal developmentally sensitive
MR metrics, as well as functional activation and connectivity patterns, to serve as targets or
intermediate outcomes, by which to measure the effect of cognitive training and
neuromodulatory therapies. Ultimately, this line of research may identify personalized
strategies for adjusting neurodevelopment to treat (and even prevent) OCD in different
patients, at different ages.
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Figure 1.
Simplified illustration of fronto-striato-thalamic circuitry (FSTC) and its overlap with

salience network (SN), central executive network (CEN) and default mode network (DMN),
adapted from Brem et al [12]. FSTC model adapted from prior reviews [5, 10, 11, and 12].
ACC, anterior cingulate cortex; AI/FO, anterior insula/frontal opercular; dIPFC, dorsolateral
prefrontal cortex; IPL, inferior parietal lobule; vmPFC, ventromedial prefrontal cortex; PCC,
posterior cingulate cortex.
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