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Abstract

Purpose of review: This review examines emerging neuroimaging research in pediatric 

obsessive compulsive disorder (OCD) and explores the possibility that developmentally sensitive 

mechanisms may underlie OCD across the lifespan.

Recent findings: Diffusion tensor imaging (DTI) studies of pediatric OCD reveal abnormal 

structural connectivity within frontal-striato-thalamic circuity (FSTC). Resting-state functional 

magnetic resonance imaging (fMRI) studies further support atypical FSTC connectivity in young 

patients, but also suggest altered connectivity within cortical networks for task-control. Task-based 

fMRI studies show that hyper- and hypo-activation of task control networks may depend on task 

difficulty in pediatric patients similar to recent findings in adults.

Summary: This review suggests that atypical neurodevelopmental trajectories may underlie the 

emergence and early course of OCD. Abnormalities of structural and functional connectivity may 

vary with age, while functional engagement during task may vary with age and task complexity. 

Future research should combine DTI, resting-state fMRI and task-based fMRI methods and 

incorporate longitudinal designs to reveal developmentally sensitive targets for intervention.
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Introduction

Obsessive-compulsive disorder (OCD), characterized by intrusive thoughts (obsessions) and 

related behavioral rituals (compulsions), is a disabling psychiatric illness that begins during 

childhood or adolescence in 50% of patients [1]. The prevalence of OCD in pediatric 

samples is 1–3% [2], similar to estimates in adults [3]. Among pediatric patients who receive 

treatment for OCD, approximately half continue to experience full-blown illness into 

adulthood [4] and, in patients with adult onset illness, many report subclinical symptoms 
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beginning in childhood [2, 3]. Yet, despite the apparent origin of OCD in early life, 

neuroimaging studies designed to elucidate the neural underpinnings of the disorder are 

mostly derived from research with adults. Understanding brain abnormalities in pediatric, 

compared to adult OCD, may help to elucidate unique features of illness across the lifespan, 

and ultimately guide the design of therapies most appropriate for different patients at 

different ages.

FSTC in OCD: a neuroanatomical model

Neuroimaging research has consistently demonstrated abnormalities of fronto-striato-

thalamic circuitry (FSTC) in adult OCD [5] and accumulating research in pediatric patients 

provides evidence for FSTC abnormalities at early stages of illness. The FSTC system is 

comprised of parallel, segregated “loops” between distinct portions of the cortex, striatum, 

and thalamus [6]. FSTC loops of functional relevance for OCD include those passing 

through dorsal and ventral striatum into the medial dorsal thalamus via topographically 

organized projections from cortical centers for cognitive control (e.g., anterior cingulate 

cortex, dorsolateral prefrontal cortex; [7]) and for emotionally driven evaluative functions, 

including reward processing and internal mood states (e.g., ventral medial prefrontal cortex; 

[8]).

The first neuroimaging evidence of FSTC abnormality in OCD came from positron emission 

tomography (PET) studies showing increased metabolic uptake of radiotracers marking 

glucose and oxygen metabolism in the anterior cingulate cortex (ACC), orbital frontal 

portion of the ventral medial preferontal cortex (vmPFC), striatum and thalamus in adult 

patients compared to healthy controls [9]. Initial studies were conducted while patients lay 

awake in the PET scanner, not performing any particular tasks, thereby demonstrating 

hyperactivity of FSTC at rest. Follow-up work showed that symptom provocation further 

increased metabolic hyperactivity in FSTC and that treatment resolved FSTC 

hypermetabolism [9]. Taken together, these findings suggested a neuroanatomical model of 

OCD in which excessive signaling through FSTC was hypothesized to underlie symptoms.

An important element of the FSTC system, which is likely relevant to its role in OCD, 

involves the splitting of each loop into direct and indirect pathways at the level of the basal 

ganglia (i.e., striatum, globus pallidum, subthalamic nucleus; Figure 1). In general, the direct 

pathway facilitates neuronal activity through FSTC, whereas the indirect pathway inhibits it 

[10]. Neuroanatomical models of OCD suggest that greater direct pathway activity through 

vmPFC-based loops for emotion processing and lower indirect pathway activity through 

dACC- and dorsolateral prefrontal cortex-based loops for cognitive control may underlie 

intrusive thoughts, ritualistic behaviors and related anxiety in OCD [5, 9, 11]. In other 

words, hyperactivity in neural circuitry underlying the affective valuation of thoughts and 

behaviors (i.e., vmPFC-based FSTC) may couple with hypoactivity in neural substrate 

underlying capacity for task control (i.e., dACC-, dorsolateral prefrontal-based FSTC). A 

resulting imbalance in FSTC substrate for emotion-processing, relative to task control, could 

lead to the intrusion of distressing, obsessional thoughts and the repetition of compulsive 

behaviors to reduce distress, despite insight that such thoughts and behaviors “do not make 

sense”. Task-based neuroimaging research has supported this possibility, demonstrating 
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deficits of dACC activation during cognitive tasks requiring behavioral adjustment and 

hyperactivity of vmPFC during emotion-laden evaluative processing in patients, even when 

OCD symptoms are not directly provoked [5].

MRI-based Technology Enables Study of FSTC in Pediatric OCD

Despite the pediatric onset of OCD in at least half of all patients [1], the FSTC model of 

OCD was first developed based on studies conducted in adults. Initial focus on adult patients 

was largely due to technical characteristics of PET, the first widely available tool for 

neuroimaging research, which requires injection of radioactive tracer to reveal brain activity. 

With the advent of non-invasive magnetic resonance imaging (MRI) technologies, 

neuroimaging research in children became more feasible and MRI-based neuroimaging 

studies of pediatric OCD began to emerge. Initial evidence for FSTC abnormality in young 

patients came from MRI studies showing altered volume of FSTC nodes, including ACC, 

striatum and thalamus, but also superior parietal lobule and precuneus (for a review, see 

[13]). In addition, task-based functional MRI studies began to propagate, revealing 

abnormalities of activation in FSTC regions during tasks designed to engage OCD-relevant 

psychological processes (see next section).

Advances in MR-based technology also produced diffusion tensor imaging and resting state 

functional MRI methods, enabling the measurement of FSTC structural and functional 

connectivity, respectively, in young patients. Diffusion tensor imaging (DTI) measures the 

direction and magnitude of water diffusion within white matter tracts [14, 15]. The most 

commonly studied DTI measure is fractional anisotropy (FA), an index of white matter 

coherence and thus, the integrity of white matter tracts [16–19]. Resting state functional 

connectivity MRI (rsfcMRI) measures fluctuations of blood oxygen level dependent 

(BOLD) MRI signal. During rsfcMRI data collection, subjects are instructed to “allow your 

mind to wander” to induce a so-called “resting state” during which low frequency BOLD 

signal oscillations throughout the brain are measured. Correlations between oscillations in 

different brain regions are then calculated to produce a metric of resting state connectivity. 

Greater resting state connectivity is believed to reflect a history of co-activation, providing 

evidence of a functional circuit [20, 21].

Diffusion Tensor Imaging Research in Pediatric OCD

The literature on DTI in pediatric OCD has provided evidence of white matter involvement 

in the FSTC from early in the course of illness (Table 1). White matter tracts of particular 

relevance to FSTC include the anterior corpus callosum (CC), anterior cingulum bundle 

(CB) and anterior limb of the internal capsule (ALIC). The anterior corpus callosum 

contains white matter fibers connecting the right and left prefrontal cortex [22]; the anterior 

cingulum bundle contains fibers that connect emotion processing regions such as the 

amygdala to ACC [23]; and, the ALIC contains white matter pathways connecting the 

frontal lobe and thalamus. Several DTI studies have found increased FA and/or axial 

diffusivity (another DTI metric of white matter integrity) in these tracts in OCD-affected 

youth compared to healthy controls [24–26], while other researchers have found the reverse 

[27, 28]. Interestingly, the largest DTI study of pediatric OCD [29··] found no overall 

differences in FA but, rather, demonstrated steeper age-related increases of FA in FSTC 

Liu et al. Page 3

Curr Behav Neurosci Rep. Author manuscript; available in PMC 2020 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



white matter in patients compared to controls across the ages of 8 to 19. After subdividing 

the sample into child, early adolescent, and late adolescent groups, lower FA was 

demonstrated in 8- to 11-year-old child patients, but higher FA was found in 16- to 19-year-

old adolescent patients relative to same-aged controls in the anterior corpus callosum and 

anterior cingulum bundle. These results suggest a possible interaction between FA and age, a 

finding that may help clarify the discrepant reports of lower FA in OCD compared to healthy 

youth [27, 28]; the examination of FA in older as compared to younger participants may 

increase the likelihood of finding abnormally increased or decreased FA in FSTC white 

matter tracts in pediatric samples (Table 1).

If steeper age-related increases in FSTC structural connectivity in OCD relative to healthy 

youth [29··] continues beyond adolescence, then abnormally increased FA might be expected 

in adult patients. Greater FA has been reported in adult OCD in the CC [32, 33], CB [33, 

34], ALIC [32, 34] and in other white matter tracts, including superior longitudinal 

fasciculus (SLF) and anterior corona radiata in some reports (for a review, see [35]). 

However, other studies have found decreased FA in these regions in adult patients compared 

to healthy controls (for a review, see [35]). A meta-analysis of DTI research in adult OCD 

suggests that conflicting results across studies may derive from sample heterogeneity due to 

demographics, medication status, illness chronicity, and imaging methodology [35] and the 

same may be said of DTI research in pediatric OCD with the added complexity of 

developmental stage. In typically developing individuals, most white matter tracts (e.g., 

internal capsule, CC, CB) exhibit curvilinear trajectories (i.e., inverted ‘U’ shaped), with 

age-related increases found during childhood and adolescence followed by decreases in 

adulthood [36]. DTI research in patients compared to matched controls from childhood into 

older adulthood will be needed to assess whether shifts in the timing of this curvilinear 

trajectory (e.g., earlier peaks for healthy, later peaks for OCD) may best describe 

developmental differences in FSTC structural connectivity over the lifespan.

In summary, the bulk of DTI research in pediatric OCD suggests that increased white matter 

in FSTC and other white matter tracts occurs in young patients by the time of adolescence 

and that, from childhood into adolescence, structural connectivity within these tracts may 

increase at faster rates in patients compared to age-matched healthy youth. Critically, 

longitudinal research is needed to understand when white matter abnormalities in pediatric 

OCD emerge, to map changes in white matter abnormalities over time, and to determine how 

these changes associate with course of illness. Moreover, combining DTI and other MR-

based imaging methods may elucidate the functional significance of atypical white matter 

development in pediatric OCD to aid identification of DTI measures as potential targets for 

intervention and/or intermediate outcomes. Finally, FA abnormalities outside of FSTC have 

been demonstrated in pediatric (e.g., SLF, corona radiata, posterior limb of internal capsule, 

see Table 1) and adult patients (for a review, see [37]), prompting a reevaluation of the FSTC 

model originally theorized to underlie symptoms.
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Resting State Functional Connectivity in Pediatric OCD: from FSTC to Cortical-cortical 
Networks

Myelinated neuronal projections (i.e., white matter connections) between FSTC regions 

were first revealed by chemical tracer studies in laboratory animals [6], but the advent of 

task-based fMRI and rsfcMRI methods has revealed that functional connectivity between 

regions can exist in the absence of direct structural connections [38, 39]. These “functional” 

networks are identified by regions that co-activate in response to task demands and exhibit 

connectivity at rest [40]. For example, cortical targets of FSTC, particularly dACC, vmPFC 

and the dorsolateral frontal cortex (dlPFC), are now realized as critical nodes within such 

networks. As depicted in Figure 1, functional connectivity of the dACC-bilateral anterior 

insula, dlPFC-parietal cortex, and vmPFC-posterior cingulate cortex define canonical 

networks that are now widely believed to support, respectively: salience detection (salience 

network, SN), executive functions (central executive network, CEN), and “default” mode 

processes such as self-reflection, internally-directed mentation, and episodic memory 

requiring task control (default mode network, DMN) [41].

Building from rsfcMRI research in adult patients with OCD [42, 43], rsfcMRI research in 

pediatric OCD initially focused on FSTC. This work tested for temporal correlations of 

fMRI BOLD signal between anatomically defined regions or “seeds” placed in the striatum 

and thalamus with voxels across the rest of the brain. Replicating work in adults [42, 44], 

evidence for distinguishable FSTC loops was demonstrated for seeds placed in the ventral 

striatum, dorsal striatum and medial dorsal thalamus [45]. Functional connectivity for each 

seed was then compared for patients and healthy individuals by developmental stage (child, 

adolescent and adult), demonstrating excessive connectivity of dorsal striatum with medial 

frontal pole, a subregion of vmPFC, across the age span. By contrast, the youngest patients 

exhibited reduced connectivity of dorsal striatum with rostral ACC and of medial dorsal 

thalamus with dorsal ACC. These child-specific abnormalities of functional connectivity 

have since been partially replicated in a study of patients with pediatric OCD compared to 

healthy youth, ages 8 to 16 years; within a “cingulate network” defined by resting state 

correlations of striatum, bilateral dlPFC, and dorsal medial prefrontal cortex (dmPFC), 

patients exhibited reduced connectivity of dmPFC [46].

The relevance of abnormal functional connectivity within FSTC loops in pediatric OCD 

remains poorly understood, but can be interpreted in the context of task-based literature. For 

instance, FSTC running through vmPFC is associated with the processing of emotionally 

salient stimuli to motivate behavior [8, 47], whereas the maturation of ACC-based FSTC 

plays a critical role in the development of cognitive control [48]. Thus, excessive 

connectivity of the FSTC loop running through vmPFC in child, adolescent and adult 

patients could drive excessive worry about errors and related attempts at corrective behavior 

in OCD in patients across the lifespan. By contrast, premature reduction in the connectivity 

of ACC-based FSTC for cognitive control may contribute to an inability to suppress the 

contextually inappropriate thoughts and behaviors near illness onset and perhaps, at a critical 

period of development, give rise to the emergence and progression of OCD in young 

patients.
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In conclusion, interpretation of DTI and rsfcMRI research in pediatric OCD can be informed 

by neuroimaging work in typically developing youth showing that development of ACC-

associated cognitive control and vmPFC-associated emotion processing functions depends 

not only on the maturation of structural connections between FSTC nodes, but also on the 

developing connectivity of these regions within large scale, neural networks for salience 

detection (SN), central executive processes (CEN) and default mode function (DMN) [20, 

41, 49]. Indeed, preliminary work in pediatric OCD shows that hyperactivation of dACC and 

failure to deactivate vmPFC during a simple cognitive task occurs in the context of reduced 

functional connectivity within the salience (dACC-anterior insula, SN) and default mode 

(vmPFC-posterior cingulate, DMN) networks [50]. These task-based and rsfcMRI findings 

extend historical models of altered FSTC connectivity in OCD to include abnormalities in 

overlapping, resting state networks in young patients (Figure 1). In addition, atypical 

functional connectivity between dACC and vMPFC in pediatric OCD suggests inappropriate 

interactions of SN and DMN in young patients [50]. In adult OCD, rsfcMRI research has 

shown that the normally inverse relationship between task positive networks, namely the SN 

and CEN, with DMN is attenuated in patients with OCD compared to healthy controls [51, 

52]. These findings suggest a failure to segregate between networks that could lead to 

deficits in task-control processes due to intrusion of emotional and introspective function of 

DMN. Task-based fMRI studies may aide examination of the functional significance of 

altered SN and CEN connectivity and will be further reviewed in the next section.

Functional Activation during Task Control Demands

OCD has long been theorized to stem from core deficits of task control [53, 54]. Task 

control is a broadly defined term that encompasses a variety of cognitive tasks including: 

interference control, response inhibition, working memory and cognitive flexibility [55, 56]. 

Collectively, task control processes enable the selection of appropriate behavior across a 

myriad of internal and external inputs and, when impaired, may associate with the repetitive 

thoughts and behaviors characteristic of OCD. For instance, recurrent intrusive obsessions 

might be related to an inability to inhibit and select certain stimuli (interference control), 

and/or an inability to switch attention from one aspect of a stimuli to another depending on 

environment and context (cognitive flexibility), whereas the repetitive compulsive behavior 

of OCD might stem from failure to inhibit certain prepotent, but inappropriate, response sets 

(response inhibition) and/or a deficit in working memory prompting repeated urges to check.

Task control demands are known to engage “task positive” salience and central executive 

networks [55, 57]. These networks were originally defined by task positive co-activations 

and later found to remain functionally connected, even at rest [40, 41, 57]. As noted above, 

preliminary evidence suggests reduced functional connectivity between task positive regions 

during rest in pediatric OCD [50]. Below, we will review accumulating research from task-

based fMRI studies demonstrating abnormal SN and CEN function in both adult (for 

reviews, see [58·, 59] ) and pediatric patients with OCD. Taken together, these studies 

suggest that altered function of canonical networks for task control in adults with OCD may 

develop at the early stages of illness.
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To frame an understanding of task-based fMRI studies of OCD, it is important to consider 

the relationship of brain activation to behavioral performance during tasks which, in turn, 

relates to task difficulty. For example, tasks tapping interference control (e.g., the flanker 

task) might be less difficult than tasks requiring motor response inhibition (e.g., stop-signal 

task) since interference control requires inhibition of a potential response through the 

focusing of attention on task-relevant over -irrelevant stimulus features, whereas motor 

response inhibition requires the suppression of a behavioral response that has already been 

triggered and is closer to actually being produced [60]. In some tasks, difficulty can be 

manipulated by varying parameters within a task; for example, the 3-back working memory 

task is harder than the 2-back working memory task. Other complex tasks, such as the 

Wisconsin Card Sorting Test (WCST) and Tower of London (TOL), entail relatively high 

levels of difficulty by requiring the coordination of multiple task control processes to 

produce correct performance [61]. In fMRI research, hyperactivation in the context of 

normal performance in a patient compared to a control group has been interpreted to reflect 

compensation for underlying neural inefficiency and may be most likely to occur on less 

difficult tasks [62]. By contrast, as task difficulty increases, hypoactivation may occur as 

capacity for compensatory activation is exceeded and performance deficits emerge [58·, 63].

Task-based fMRI research in adult OCD—Functional MRI studies of adult OCD have 

revealed altered activation of SN and CEN during task control demands [58·, 59], and 

provide context for interpreting the fMRI literature in pediatric patients. In adults with OCD, 

increased activation in the dlPFC and dACC has been demonstrated during a relatively 

simple interference control task relative to healthy controls[64]; in this study, patients 

maintained normal performance relative to controls, consistent with the interpretation that 

hyperactivation may enable compensation for underlying inefficiency of task control 

networks [58·, 64]. By contrast, a more difficult task requiring response inhibition elicited 

decreased activation in the inferior frontal gyrus (IFG) and parietal regions in OCD relative 

to HC adults; hypoactivation occurred in the context of performance deficits in patients [65]. 

The notion that task difficulty impacts the nature of task control network function in OCD is 

further supported by fMRI research showing increased activation of dlPFC under low-

cognitive demand (e.g, 1- and 2-back working memory task), but decreased-to-normative 

levels of activation in dACC under increased task demand for patients compared to controls 

[66–68]. On the more complex tasks of self-shifting/task switching, adult OCD patients 

showed decreased activation in the dlPFC, dACC, parietal and caudate regions in cognitive 
flexibility relative to HC [69–71]. Similarly, on the Tower of London task, OCD patients 

showed decreased activation in the dlPFC and parietal lobe during planning, relative to 

controls [72, 73].

Thus, whether task-related brain areas are hypo- or hyper-activated in patients compared 

with healthy controls appears to depend largely on the difficulty of the task and whether 

compensatory mechanisms are enlisted [58·, 59]. During less difficult tasks, OCD patients 

may recruit additional neural resources in SN and CEN, possibly to compensate for an 

underlying inefficiency of these task control networks. This hyperactivation may explain 

why individuals with OCD are able to maintain normal behavioral performance, relative to 

healthy controls, during less complex tasks (e.g., the Flanker task and the Simon task). 
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However, with increasing task demand (e.g. the Go/no-go and the Stop-signal task), these 

compensatory mechanisms may fail in individuals with OCD, such that behavioral 

impairments and decreased activity in task control networks emerge.

Task-based fMRI research in pediatric OCD—Modelling after recent reviews of the 

adult literature, we consider whether altered activation of task-control networks in pediatric 

populations also depends on task complexity and/or relates to performance. In contrast to the 

fMRI literature in adult OCD, only a few studies have examined task control processing in 

pediatric samples (Table 2). During simple cognitive tasks with relatively low levels of 

difficulty (e.g. simplified serial reaction time, interference, 1–2 back working memory 

tasks), fMRI studies in pediatric OCD reveal increased activation in patients compared to 

healthy youth in task control regions, including dACC, dlPFC, and parietal cortex [50, 74, 

75]. As with adult studies, hyperactivation of task control networks in pediatric patients 

occurred in the context of normal performance relative to controls, suggesting that increased 

engagement of task control regions may reflect a compensatory function by which patients 

maintain appropriate behavioral output. Review of the pediatric OCD literature on brain 

activation during more difficult/complex cognitive tasks (e.g., motor inhibition, set-shifting, 

planning) demonstrated that, relative to healthy controls, pediatric patients with OCD 

showed decreased activation in task control regions including dlPFC, dACC, IFG and 

parietal [76–78].

Thus, consistent with adult OCD literature, a pattern of increased activation during tasks 

requiring lower cognitive load, and decreased activation during tasks with higher level 

demand for control characterizes pediatric patients with OCD compared to healthy youth. In 

line with this notion, Huyser and colleague [79] found decreased activation in conjunction 

with impaired performance (slower reaction times) in pediatric OCD participants relative to 

healthy youth on a task requiring higher levels of control (Tower of London). However, this 

study stands out as an exception since, in other fMRI studies of pediatric OCD, patients 

performed as well as healthy youth on relatively difficult tasks (e.g., [76, 77]), despite 

decreased activation in task-control network. Finally, patients with pediatric OCD have been 

found to exhibit normal performance in the context of decreased dlPFC activation during 

incorrect [80] and correct [79]trials on relatively low load, interference tasks. These findings 

are in conflict with the theory that, during less difficult tasks, hyperactivation of task control 

regions is necessary to support the maintenance of performance in OCD [58·].

Several factors may contribute to the discrepancies observed in the pediatric OCD fMRI 

literature. First, most of the pediatric OCD fMRI studies employed small sample sizes 

(ranging from 10 to 25 pediatric OCD participants). Small samples in neuroimaging studies 

often yield low reproducibility of results [81] and may contribute to the observed 

inconsistencies. Future studies should include larger sample sizes to increase the external 

validity of the findings. Second, fMRI studies in pediatric OCD have typically included 

children and adolescents across a wide age range, spanning 8 to 19 years. The function and 

connectivity of task-control networks develop dramatically from early childhood into 

adolescence and early adulthood [20, 49]. Thus, different studies may produce different 

findings depending on specific ages of each study sample. That is, developmental variability 

within age groups may outweigh the between group (OCD versus healthy) variability in 
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brain function and/or performance. Future studies should further stratify by age and recruit 

more subjects at each age, differentiating effects for young children from adolescents [82].

Conclusions

In conclusion, there is strong evidence demonstrating abnormalities of both FSTC and 

canonical networks for task control (SN, CEN) in pediatric OCD. Emerging works suggests 

that these abnormalities may vary with age and performance in young patients. 

Understanding this variation will be important for elucidating the neurodevelopmental 

trajectories that may underlie the emergence and early course of OCD. Additional research 

combining DTI and rsfcMRI studies with task-based fMRI methodologies will also be 

needed to elucidate the relationships between developing connectivity and interactive 

cognitive and emotional functions served by FSTC and cortical-cortical networks. Such 

knowledge would guide efforts to develop brain stimulation (e.g., transcranial magnetic 

stimulation [TMS] or transcranial direct-current stimulation [tDCS]) to potentiate/modulate 

activity in the relevant neural circuits or cognitive training paradigms to target the brain 

regions involved in cognitive and emotional dysfunction specific to pediatric OCD. 

Longitudinal imaging designs will be especially important in reaching these goals. By 

following patients over time, neuroimaging research may reveal developmentally sensitive 

MR metrics, as well as functional activation and connectivity patterns, to serve as targets or 

intermediate outcomes, by which to measure the effect of cognitive training and 

neuromodulatory therapies. Ultimately, this line of research may identify personalized 

strategies for adjusting neurodevelopment to treat (and even prevent) OCD in different 

patients, at different ages.
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Figure 1. 
Simplified illustration of fronto-striato-thalamic circuitry (FSTC) and its overlap with 

salience network (SN), central executive network (CEN) and default mode network (DMN), 

adapted from Brem et al [12]. FSTC model adapted from prior reviews [5, 10, 11, and 12]. 

ACC, anterior cingulate cortex; AI/FO, anterior insula/frontal opercular; dlPFC, dorsolateral 

prefrontal cortex; IPL, inferior parietal lobule; vmPFC, ventromedial prefrontal cortex; PCC, 

posterior cingulate cortex.
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