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Abstract

Multiple US agencies use acute oral toxicity data in a variety of regulatory contexts. One of the 

ad-hoc groups that the US Interagency Coordinating Committee on the Validation of Alternative 

Methods (ICCVAM) established to implement the ICCVAM Strategic Roadmap was the Acute 

Toxicity Workgroup (ATWG) to support the development, acceptance, and actualisation of new 

approach methodologies (NAMs). One of the ATWG charges was to evaluate in vitro and in silico 
methods for predicting rat acute systemic toxicity. Collaboratively, the NTP Interagency Center for 

the Evaluation of Alternative Toxicological Methods (NICEATM) and the US Environmental 

Protection Agency (US EPA) collected a large body of rat oral acute toxicity data (~16,713 studies 

for 11,992 substances) to serve as a reference set to evaluate the performance and coverage of new 

and existing models as well as build understanding of the inherent variability of the animal data. 

Here, we focus on evaluating in silico models for predicting the Lethal Dose (LD50) as 

implemented within two expert systems, TIMES and TEST. The performance and coverage were 

evaluated against the reference dataset. The performance of both models were similar, but TEST 

was able to make predictions for more chemicals than TIMES. The subset of the data with 

multiple (>3) LD50 values was used to evaluate the variability in data and served as a benchmark 

to compare model performance. Enrichment analysis was conducted using ToxPrint chemical 
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fingerprints to identify the types of chemicals where predictions lay outside the upper 95% 

confidence interval. Overall, TEST and TIMES models performed similarly but had different 

chemical features associated with low accuracy predictions, reaffirming that these models are 

complementary and both worth evaluation when seeking to predict rat LD50 values.
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1. Introduction

Acute oral toxicity testing is conducted to determine the immediate health effects of an 

orally administered chemical substance and is expressed in terms of the lethal dose that kills 

50% (LD50) of the animals tested [1]. Acute oral toxicity data are used by US agencies in a 

variety of regulatory contexts including hazard classification and labelling of pesticide 

products, determining acceptable human exposure limits and personal protective equipment 

needed for handling, or determining counter measures that should be employed in the event 

of toxic exposures [1–3]. Acute oral toxicity data may also be used to establish doses 

administered during repeat dose toxicity studies, identify target organs for toxicity, and 

assess the hazard of accidental ingestions of chemical contaminants in food [1]. To date, 

there are no in vitro tests accepted by regulatory agencies as stand-alone replacements for 

acute oral animal tests [1,4]. Several US government agencies participate in the Interagency 

Coordinating Committee on the Validation of Alternative Methods (ICCVAM), which 

established an ad-hoc workgroup, the Acute Toxicity Work Group (ATWG), to develop an 

implementation plan for identifying, evaluating, and applying new approach methodologies 

that may serve as replacements for in vivo acute systemic toxicity studies. Two key elements 

of this implementation plan are: 1) acquiring and curating a high-quality reference dataset of 

acute oral toxicity data; and 2) identifying, developing, and evaluating non-animal 

alternative approaches. Here, we sought to evaluate selected existing legacy expert systems 

for the prediction of acute oral systemic toxicity (i.e. LD50), to complement a global project 

that had been initiated to develop new in silico models [5]. A number of models have been 

developed in the past that facilitate predictions of acute oral toxicity, notable software tools 

where these models have been implemented include the TopKat model first developed by 

Enslein et al [6], HazardExpert [7], ACD/Percepta [8], CASE Ultra [9] and the OECD 

Toolbox [10]. Further, there are many models that have been developed using a plethora of 

different machine learning approaches – from linear regressions [11] to random forests [12], 

support vector machines [12] and k-nearest neighbours [13]. Deep learning approaches have 

also been used [14]. In this study, two existing models were accessible: the Toxicity 

Estimated Software (TEST), a statistical expert system which uses a variety of Quantitative 

Structure Activity Relationship (QSAR) models [15], and the commercial hybrid expert 

system, Tissue Metabolism Simulator (TIMES), which comprises a collection of chemical/

mechanistic category based Structure-Activity Relationships (SARs) underpinned by 

QSARs [16]. The performance of both models was assessed using the reference dataset that 

had been assembled under the auspices of the ATWG.
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The TIMES expert system contains an acute oral toxicity model that was based on a training 

set of rodent (predominantly rat) LD50 values for 1814 chemicals. The TIMES approach 

relies on a baseline model for substances that are neutral organics. Substances possessing 

features that can exert toxicity beyond that predicted by the baseline toxicity QSAR are 

assigned into one of 73 toxicological categories underpinned by a specific QSAR. These 

QSARs are, in some cases, associated with an established molecular initiating event within 

an Adverse Outcome Pathway (AOP)-like construct (since published in [16]). TIMES has a 

self-reported coefficient of determination (R2) of 0.85 with a Mean Squared Error (MSE) of 

0.15 for the training set of 1814 chemicals (as noted in the summary model description 

within the TIMES software itself, no further information was provided as far as whether this 

was a cross validation result).

The TEST expert system relies on a range of different QSAR methods, some local based 

(e.g. nearest neighbour) and some global based from which a consensus prediction is derived 

and reported as an overall outcome. For acute oral toxicity, 3 methods are used, hierarchical 

clustering, FDA, method and nearest neighbour from which the consensus prediction is 

derived. To create the training set for TEST, oral rat LD50 values were obtained by 

downloading records from the ChemIDplus database [15]. A total of 13,548 records were 

obtained using the following search criteria – test: LD50, species: rat, route: oral. Substances 

were subsequently filtered to remove inorganics, organometallics, and mixtures such that the 

final oral rat LD50 set comprised 7413 chemicals and the endpoint modelled was the −log10 

(LD50 mol/kg). TEST model developers determined it was not possible to develop a single 

model or group contribution model to fit the entire training set, therefore, three models were 

developed. The first TEST model used hierarchical clustering and the second used the FDA 

method and the third, a nearest neighbours approach, a consensus was then used to derive an 

overall prediction. The reported performance characteristics for the TEST consensus model 

for the external test set were R2: 0.626, Root Mean Standard Error (RMSE): 0.594 and Mean 

Absolute Error (MAE): 0.431 (as reported in the User Manual: see https://www.epa.gov/

chemical-research/users-guide-test-version-42-toxicity-estimation-software-tool-program-

estimate; [15]). In this evaluation, only predictions with a consensus value were used in the 

assessment of performance.

The current study sought to compare the predictions from TEST and TIMES (that were not 

part of their respective training sets) through using the reference set compiled under the 

auspices of the ICCVAM ATWG. Using such a large experimental reference dataset enabled 

a broader evaluation of the prediction models, informing on domain of applicability 

restrictions in a way never previously explored.

2. Methods

2.1 Acute Toxicity dataset

The rat acute oral systemic toxicity dataset assembled by the ICCVAM ATWG served as the 

reference LD50 values against which the predictions from the two models were compared. 

This dataset is comprised of 21,200 LD50 values (15,688 unique substances), including both 

point estimate (14,745) and limit test (6,455) values. These data were collated from a variety 
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of publicly available databases and resources, including from OECD’s eChemPortal, JRC’s 

Acutetoxbase, and ChemIDplus ([5]; https://ntp.niehs.nih.gov/go/tox-models).

Subsequently, the original dataset was processed to: 1) identify and remove duplicate study 

values, due to the same study being present in multiple sources; 2) amend obvious 

transcriptions errors, e.g. an LD50 limit test given as “20005000 mg/kg”; and 3) retrieve 

structure information primarily from the US EPA’s CompTox Chemicals Dashboard (https://

comptox.epa.gov, [17–18]) and other public resources. More information regarding these 

processing steps can be found in https://ntp.niehs.nig.gov/iccvam/at-models-2018/ppt/4-

karmaus.pdf. Together, this process reduced the number of LD50 values to 16,209 associated 

with 11,992 unique substances.

Finally, for chemicals with multiple point estimates (at least 3), a representative LD50 value 

(called the processed LD50 throughout the remainder of this manuscript) was identified by 

calculating the median of the lowest quartile. This involved removing “extreme” point 

estimate values outside the Tukey fence (i.e. exceeding 1.5 * interquartile range) and, 

subsequently, deriving the median of the recalculated lower 25th percentile of the remaining 

values. Therefore, the final processed acute toxicity dataset (herein termed the processed 

reference dataset) consisted of 11,992 unique substances with an acute toxicity outcome, 

8979 of these had a computed processed LD50.

2.2 Chemical structure data

The structures retrieved as part of the ICCVAM ATWG effort yielded information for 11,992 

substances, by integrating information from multiple sources. Therefore, to ensure the 

chemical structures were consistent and of a high quality, only those substances with QSAR-

ready simplified molecular-input line entry (SMILES) in the EPA’s Distributed Structure-

Searchable Toxicity (DSSTox) database [17–18] were retained. Furthermore, using the 

QSAR-ready SMILES offered the additional advantage of having SMILES strings that were 

already desalted and neutralised; thereby, facilitating the profiling of the compounds through 

the two expert systems. To retrieve this information, a batch search of the EPA CompTox 

Chemicals Dashboard (www.comptox.epa.gov/dashboard) was performed utilising the 

Chemical Abstract Services (CAS) registration numbers (www.cas.org) as inputs. In 

addition to the QSAR-ready SMILES, DSSTox substance identifiers (DTXSID), chemical 

names, regular SMILES strings, and average mass information for each substance were also 

extracted. This reduced the number of chemicals that were carried forward for analysis to 

10,886. Subsequently, the QSAR-ready SMILES were read into MarvinView (v18.28, 

ChemAxon Ltd.) and saved as a structure data (SD) file (.sdf).

Finally, the ChemoTyper software (https://chemotyper.org/) was used to create a 729-bit 

binary molecular fingerprint for each chemical in the processed dataset using the ToxPrint 

chemotype feature set (v2.0_r711) (see section 2.5) to facilitate the enrichment analysis.

2.3 Profiling substances through prediction software

2.3.1 Toxicity Estimation Software Tool (TEST)—To facilitate computational 

processing of the TEST (v4.2.1) predictions, the input SD file was split into multiple SD 
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files using a “SDFBreaker” Python script. The split was arbitrarily set at 250 chemicals per 

SD file as a pragmatic size to use for processing. For each batch of chemicals, the oral rat 

LD50 was selected as the endpoint of interest and the TEST consensus method was chosen 

to run the predictions. The output file ‘all methods’ was downloaded which contained the 

predictions from the different QSAR methods, as well as the consensus prediction expressed 

in units of −log10(mol/kg). The consensus method estimates the LD50 value by calculating 

an average of the predicted toxicity from the aforementioned QSAR methods. More 

information about each of these approaches can be found in the TEST user guide (https://

epa.gov/sites/production/files/2016-05/documents/600r16058.pdf). In instances where only 

one of the three QSAR methods can make a prediction, that prediction is deemed to be 

unreliable by TEST and, thus, a consensus prediction cannot be made. The results from each 

batch of 250 chemicals were saved in a separate text file to be concatenated later.

2.3.2 Tissue Metabolism Simulator (TIMES)—The “SDFBreaker” python script was 

also used to split the original SD file into batches containing 1000 chemicals to be used to 

make predictions in TIMES. NB: Past experience found that 1000 chemicals as a batch limit 

did not cause any memory issues during processing. For each SD file that was run through 

TIMES (v2.28.1.6), the SD file was first converted into ODB (OpenOffice database) format, 

selecting CAS, DTXSID, and chemical name as synonyms. Default settings for both the 2-D 

conversion mode for converting the chemical structure and for the physicochemical 

properties (logKOW and water solubility) were used. Once the chemicals had been imported, 

the acute oral toxicity (v10) model was loaded and used to profile each chemical. The 

predictions derived from each batch were exported as separate tsv files to be concatenated 

later.

2.4 Assessing performance of software predictions

2.4.1 Calculation of residuals—To facilitate the performance assessment, only 

predictions for chemicals that were not part of the underlying training sets were considered 

from the 2 expert systems. This involved the following steps; first chemicals from the 

processed reference dataset (11,992 chemicals) were gathered and DSSTox structures were 

identified. Next, chemicals were dropped if either the TEST or TIMES dataset was unable to 

derive a LD50 prediction. For TEST, this was because no consensus model prediction could 

be derived. For TIMES, this was because a substance was not captured by any of the 

predefined toxicological categories. Chemicals that formed part of the training sets for each 

model were also dropped. Both datasets were then merged with the processed reference 

dataset, removing any chemicals for which a processed LD50 value was unavailable. The 

resulting dataset comprised a known (experimental) LD50 value (the processed LD50 value) 

and associated predictions from TEST or TIMES that did not form part of the training sets. 

Figure 1 represents the workflow for creation of the datasets.

The output for predictions generated by the TEST and TIMES models were not reported in 

the same units. TEST returned predictions in −log10(mol/kg) format using the ‘all methods 

batch export’, whereas TIMES predictions were reported in units of mg/kg. The compiled 

experimental rat oral acute systemic toxicity values were also reported in units of mg/kg. 
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Consequently, all known and predicted LD50 values were converted into their -log molar 

equivalents (termed pLD50) using Equation 1.

pLD50 = − log10(LD50(mg kg) MW (g mol) 1000) (1)

where LD50 is the oral LD50 of the chemical (in mg/kg) and MW is the average mass of the 

chemical (in g/mol).

Residuals were then calculated for each chemical with a pLD50 prediction by subtracting 

the predicted pLD50 from the experimental processed pLD50, using Equation 2.

Residuali = ExpLD50i − PredLD50i (2)

2.4.2 Calculating confidence intervals of experimental LD50 values—To 

benchmark the performance of the predicted LD50s compared with the experimental values, 

it was important to understand the inherent variability of the experimental animal data, i.e. 

how reproducible an LD50 value was for a given substance. Here, the original rat acute oral 

toxicity dataset (comprising 21,200 LD50 values for 15,688 substances) was filtered to 

create two subsets: 1) retaining all chemicals with three or more LD50 values (termed the 

complete subset), and 2) retaining only those chemicals with three or more LD50 values and 

average mass information (termed the ‘average mass subset’). For the average mass subset, 

Equation 1 was used to convert the experimental data from mass units (i.e. mg/kg) to -log 

molar units (i.e. −log10(mol/kg)).

To compare the variability of the average mass subset relative to the complete subset, an 

overall standard deviation was calculated (in log10(mg/kg)). The standard deviations across 

all chemicals in the subset were then bootstrapped using 10,000 replicates with replacement. 

The mean of the bootstrapped standard deviations were used to derive a 95% confidence 

interval (CI). Figure 2 outlines the workflow for the variability assessment.

2.4.3 Assessment of the model predictions—The performance of the predictions 

generated by the TEST and TIMES models were evaluated in a number of different ways. 

The first involved comparing the chemical-specific residuals to the upper 95% CI value of 

the mean of the bootstrapped standard deviations by the total number of chemicals and their 

percentage. Additionally, the goodness of fit measures between the predicted and 

experimental LD50s were calculated, namely: the median absolute error (MAE), the root 

mean squared error (RMSE), and the coefficient of determination (R2). The Pearson 

correlation coefficient for each set of pairwise complete observations were also computed to 

compare how correlated the predictions were to the experimental values and each other. 

These metrics were calculated both for the total number of chemicals with a prediction from 

the TEST or TIMES (not part of the respective training set), as well as the chemicals with a 

prediction from both TEST and TIMES (i.e. the overlapping chemicals).
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2.5 Investigation of chemical space

Chemotype enrichment analysis was conducted to investigate if there were areas of chemical 

space where each model was best or poor at making predictions. Readers are directed to [19] 

for a more comprehensive explanation of the chemotype enrichment analysis workflow used 

in this study. Briefly, chemotype enrichment analysis identifies sub-structural features (i.e. 

amongst the 729 ToxPrint chemotypes) that are over-represented with respect to a given 

endpoint. Here, the “endpoint” in question is whether the model prediction for a chemical 

was beyond the 95% confidence interval of the variability of the experimental data as 

calculated in section 2.4.2.

The chemotype enrichment analysis was performed separately for the TEST and TIMES 

models. To conduct this analysis, the ChemoTyper software (https://chemotyper.org/) was 

used to generate a 729-bit binary molecular fingerprint for all chemicals with a QSAR-ready 

SMILES string based on the publicly available ToxPrint feature set (https://toxprint.org). 

Next, a new bit was appended to the ToxPrint fingerprints that accounted for whether or not 

the software prediction was within the variability of the experimental data using the upper 

95% CI as a threshold, indicated by 1 or 0. For each model, chemicals whose predictions 

were outside of the 95% confidence interval of experimental variability were indicated by a 

value of 1, whilst chemicals whose predictions were within the 95% confidence interval of 

experimental variability were indicated by a value of 0. The odds ratio (OR) and associated 

p-value metrics were calculated to identify the ToxPrints that were more highly enriched for 

the predictions outside of the confidence interval of the experimental variability compared to 

the predictions within the experimental variability. For a ToxPrint to be considered enriched, 

it required 3 or more true positives (TP) (i.e. prediction outside confidence interval and 

presence of the ToxPrint), an OR of ≥2.5, and a p-value of ≤0.05. As a final step the 

probabilities of the presence of a ToxPrint outside of the confidence interval (TP/TP+FP, 

otherwise known as the precision) was computed for both models and a ratio taken in order 

to derive a confidence metric. This confidence metric was intended to provide a quantitative 

measure of the relative confidence of which of the 2 models was preferable for use based on 

the set of their respective ToxPrints. A handful of illustrative examples are provided to 

demonstrate this potential approach.

2.6 Data analysis software and code

Data processing was conducted using the Anaconda distribution of Python 3.8 

(Anaconda.org) and associated libraries – scikit-learn, pandas, numpy, visualisation tools: 

matplotlib and seaborn and the statistical library scipy within a Jupyter lab environment. 

Python Jupyter Notebooks and datasets are available on the EPA FTP website (ftp://

newftp.epa.gov/COMPTOX/CCTE_Publication_Data/)

3. Results and Discussion

3.1 Overall results

QSAR-ready SMILES and average mass, were available in the EPA CompTox Chemicals 

Dashboard for 10,886 of the 11,992 substances in the processed reference dataset. However, 

not all of the chemicals with QSAR-ready SMILES could be processed through the two 
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models: TEST was able to process 10,760 chemicals, whereas TIMES was able to process 

10,371 chemicals, due to constraints in the clustering/profiling approaches within both 

models. TEST was able to make a LD50 prediction for the vast majority of chemicals that it 

was able to process (93.1% or 10,022 chemicals); TIMES, meanwhile, was only able to 

make a prediction for less than a quarter of the chemicals it was able to process (23.8% or 

2,458 chemicals) (Table 1). After removal of chemicals that were part of the TEST training 

set, the number of chemicals with a LD50 prediction was reduced to 3,927 (36.5% of the 

processed reference dataset chemicals). Removal of chemicals with LD50 predictions that 

made up the training set for the TIMES software resulted in 863 chemicals (8.3% of the 

processed chemicals) being retained. Combining the chemicals with predictions that did not 

make up the training set of the model with chemicals from the processed reference dataset 

with an experimental LD50 value resulted in a final dataset of 1,621 chemicals with a TEST 

prediction and 503 chemicals with a TIMES prediction. Therefore, purely based on counts, 

TEST was able to make predictions for more chemicals than TIMES. It is important to note 

that the low numbers are not indicative of the applicability of the models but rather the large 

overlap between the identity of the training set chemicals and that of the processed reference 

dataset.

3.2 Investigation of variability of experimental data

In order to have a relative benchmark to compare the performance of the predictions 

obtained from the TEST and TIMES models, it was important to gain an understanding of 

the inherent variability existing in the experimental animal data using replicate study data 

per chemical. This involved taking the original rat oral acute systemic toxicity dataset of 

21,200 LD50 values (15,688 unique substances) and merging it with average mass 

information (10,886 chemicals with 14,964 LD50 values). Next the dataset was filtered to 

retain only those substances with three or more LD50 values (this included both limit and 

point estimate values). After applying these filtering criteria, a total of 4,198 LD50 values, 

covering 919 unique substances, were retained. Approximately 90% of the substances were 

associated with between 3 and 5 LD50 values, with one chemical (peracetic acid) having 57 

unique LD50 values.

The standard deviation of the LD50 values for the average mass subset of chemicals was 

also compared to the set of chemicals with three or more LD50 values where average mass 

information was not necessarily available. The standard deviation (in log10(mg/kg)) was 

0.828 for the complete subset of chemicals with three or more LD50 values, whereas it was 

0.842 for the average mass subset. Based on the apparent lack of difference, the assumption 

made was that the average mass subset was sufficiently representative of the ‘complete 

subset’. Accordingly, the standard deviation of the average mass subset was then 

bootstrapped using 10,000 replicates and the mean and 95% confidence interval (CI) of the 

resulting bootstrapped distribution was derived. The mean of the bootstrapped standard 

deviation distribution was 0.218 −log10(mol/kg). The 95% confidence interval of the mean 

of the bootstrapped standard deviation was 0.189 – 0.249 −log10(mol/kg). The upper 95% 

confidence value (0.249) was then used throughout the remainder of the study to provide a 

margin around the experimental data to account for the inherent variability (Figure 3).
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3.3. Comparison of model predictions to experimental values

To gain an initial understanding of how accurate the predictions from each model were, the 

chemical-specific residual was compared to the upper 95% confidence value in both the 

positive and negative directions. Table 2 provides the count and percentage of chemicals 

with a residual value that was: 1) greater than 0.249 log units, i.e. the model underestimated 

the in vivo LD50 beyond the experimental variability; 2) within ±0.249 log units, i.e. the 

model estimated the in vivo LD50 within the experimental variability, and; 3) below −0.249 

log units, i.e. the model overestimated the in vivo LD50 beyond the experimental variability.

The predictions for both models are similarly split between being within the 95% confidence 

interval of experimental variability or outside of the threshold.

Substances that were particularly poorly predicted for TEST included Emetine 

dihydrochloride (DTXSID7020558; CASRN 314-42-7) that had a 5 log unit difference: 

experimental LD50 0.012 mg/kg (pLD50 7.66) cf. TEST predicted 2204 mg/kg (pLD50 

2.4). Substances that were particularly poorly predicted for TIMES included Echothiophate 

(DTXSID1022976; CASRN 513-10-0), whose experimental LD50 was 0.174 mg/kg but 

whose TIMES prediction was 889 mg/kg (experimental pLD50 of 6.34 vs predicted value of 

3.35), as well as Butane-1,4-diyl bis(2-methylprop-2-enoate) (DTXSID4044870; CASRN 

2081-81-7): experimental LD50 10.07 mg/kg (pLD50 4.35) cf. TIMES 8410 mg/kg ( pLD50 

1.42).

Another way to investigate the two models was to generate scatterplots comparing the 

experimental pLD50s against the predicted pLD50s for TEST and TIMES (Figures 4a and 

4b, respectively).

From these figures, there is a large cluster of chemicals with an experimental pLD50 

between 1 and 4 [−log10(mol/kg)] and a predicted pLD50 between 1.5 and 3.5 −log10(mol/

kg). Additionally, these figures also highlight the differences in how predictions are derived 

between the 2 models. The TEST predictions (Figure 4a), are reasonably randomly 

distributed around the line of zero variance (dashed red line) with no discernible pattern. 

This is likely to be expected given that the predictions made by TEST utilised in this study 

are the consensus predictions from up to three separate QSAR models.

On the other hand, the TIMES predictions (Figure 4b) appear to be a combination of 

randomly distributed points and some discernible patterns, i.e. vertical lines. Again, this is a 

product of how TIMES makes predictions; whereby, a chemical is first assigned to a 

toxicological category and the associated QSAR is used to make an LD50 prediction. These 

toxicological categories fall into one of three types of toxicity: 1) basic toxicity (also called 

narcosis), where a chemical affects basic cell functions, e.g. non-reactive interaction with 

cell membranes; 2) excess invariable toxicity, where a chemical interacts with a specific 

cellular structure/process and has a constant toxicity that is independent of physicochemical 

properties, and; 3) excess bioavailability dependent toxicity, where a chemical interacts with 

a specific cellular structure/process and the level of toxicity exhibited is determined by 

certain physicochemical properties.
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Whilst individual linear regression models were derived for the categories comprising excess 

bioavailability dependent toxicity (explaining the randomly distributed points), none of the 

models for either basic toxicity or excess invariable toxicity contain an explanatory variable. 

As such, all chemicals assigned to the same toxicological category within one of these two 

toxicity types are predicted to have the same pLD50 (± confidence) in −log10(mol/kg). For 

example, chemicals assigned to the isocyanate excess invariable toxicity category will be 

predicted to have an pLD50 of 1.82 (±0.15) −log10(mol/kg). It appears this is the reason for 

the linear patterns throughout Figure 2b, which are best exemplified by chemicals with 

higher predicted LD50s: here, three vertical lines can be easily distinguished.

Upon further investigation, each line represents a different excess invariable TIMES toxicity 

category (trifluoromethylbenzimidazoles, organophosphate excess toxicity, and 

trifluoromethyl tetrahalobenzimidazoles) with all chemicals assigned to the same category 

being predicted to have the same LD50 by TIMES models. However, the experimental 

values can vary by up to 2 log units across the chemicals associated with these categories, 

thus, producing the vertical lines. Assigning all chemicals in the same toxicological 

category, the same LD50 is a limitation of the TIMES model and should be kept in 

consideration when a chemical is classified as exhibiting either basic or excess invariable 

toxicity.

Furthermore, the residuals of chemicals with an over-prediction of pLD50 relative to the 

representative experimental value have a tendency to be smaller than the residuals of 

chemicals with an under-prediction of pLD50 relative to the representative experimental 

value for both models. This can, perhaps, be best observed in Figures 5a and 5b; whereby, 

chemicals with a predicted pLD50 that overestimates the experimental pLD50 (i.e. a 

negative residual), generally, have smaller residuals than the underestimated predictions (i.e. 

a positive residual). This is especially true for those chemicals with a prediction below 

approximately 3.5 −log10(mol/kg). This appears to be more pronounced for the TEST 

predictions than the TIMES predictions; although, this may partially be due to TEST making 

more predictions than TIMES. After further examination of the residuals, predictions made 

by both models are heteroscedastic (Figures 5a and 5b), i.e. the variance in the residuals 

increases for chemicals predicted to be of either very high or low toxicity. Again, this was 

more readily apparent for the TEST predictions; however, this may also be due to the limited 

number of chemicals TEST predicted with very high toxicity (i.e. above 4.5/5 - log10(mol/

kg)).

There were 58 chemicals with a TIMES prediction above 4 −log10(mol/kg), 16 (27.5%) of 

which were within the 95% confidence interval of the in vivo variability and 29 (50%) 

chemicals were below the CI: hence, more conservative in their LD50 estimates. TEST does 

comparatively worse above this threshold, with 3 of the 20 chemicals (15%) having a 

prediction within the 95% confidence interval of the in vivo variability but 10 (50%) 

chemicals being below the CI threshold. Therefore, even though each chemical assigned to 

one of these categories by TIMES is predicted to have the same LD50, the prediction itself is 

more likely to be close to, or more conservative than, the experimental value.
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To further assess the performance of TEST and TIMES predictions, four performance 

metrics were computed using all predictions generated by each model, respectively: the root 

mean square error (RMSE), the mean absolute error (MAE), the coefficient of determination 

(R2), and the Pearson correlation coefficient. As can be seen in Table 3, the RMSE and MAE 

for all TEST predictions (0.642 and 0.469 −log10(mol/kg), respectively) are comparable to 

the RMSE and MAE for all TIMES predictions (0.62 and 0.447 - log10(mol/kg), 

respectively).

Whilst the RMSE and MAE are similar between the two software, the R2 values are not, 

with the TIMES predictions having a much larger R2 (0.54) and, therefore, fitting the 

experimental data much better than the TEST predictions (0.296).

This is also borne out when comparing the correlation coefficients of the two software 

(Figure 6); whereby, the predictions from both software are positively correlated with the 

experimental pLD50 values, but the predictions from TIMES have a higher correlation 

(0.75) than do the TEST predictions (0.57). The higher R2 and correlation coefficients 

observed for the TIMES predictions are likely being driven by the predictions made for the 

higher potency chemicals, e.g. pLD50 values predicted above 4 (−log10(mol/kg)), such as 

chemicals assigned to the trifluoromethylbenzimidazole, organophosphate excess toxicity, or 

trifluoromethyl tetrahalobenzimidazole categories.

3.4 Comparison of chemicals with predictions in both TEST and TIMES

After investigating the performance of each software across all chemicals for which a 

prediction could be made, the chemical list was filtered to include only those chemicals with 

a LD50 prediction in both the TEST and TIMES models (i.e. the overlap set). Upon 

applying this additional filtering criteria, a total of 274 chemicals were retained; thus, 

enabling a comparison of the performance of the two models for the set of chemicals.

For each model, the overall count and percentage of overlapping chemicals show a similar 

split to the complete subsets of chemicals, with the majority of chemicals having a residual 

that is within the 95% confidence interval of the in vivo variability (Table 4). TEST, has a 

slightly greater percentage of chemicals present within this category (40.5%) than does 

TIMES (38.32%); however, both models have a marginal improvement for the overlap 

subset compared to the complete subset of chemicals with a prediction.

A similar trend is observed when the RMSE and MAE values are compared as both of these 

metrics stay relatively consistent, with only marginal changes occurring between the 

complete and overlapping subsets (Table 5). Much larger changes are observed between the 

TIMES complete and overlap subsets in terms of the R2 and correlation coefficients (Figure 

7). The R2 for the TIMES predictions of the overlapping subset (0.255) is almost half that of 

the complete subset (0.54) and the correlation coefficient decreases by approximately 0.20 

points from 0.75 to 0.56.

The decrease in these metrics brings them more in-line with the corresponding metric for the 

TEST predictions, which remain consistent between the complete and overlap subsets. The 

differences in the R2 and correlation coefficients between the two subsets for the TIMES 
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predictions is likely due to 52 of the 58 higher potency chemicals not being present in the 

overlap subset, including all of the chemicals in the trifluoromethylbenzimidazole, 

organophosphate excess toxicity, and trifluoromethyl tetrahalobenzimidazole categories.

3.5 Chemotypes associated with predictions outside confidence intervals

To identify chemical features that may contribute to less accurate predictions of rat oral 

acute LD50, odds ratios were computed to identify ToxPrints that were more highly enriched 

in the chemicals having predictions outside of the 95% CI. Only a handful of ToxPrints were 

enriched with different ToxPrints identified between the models, i.e. the sorts of chemicals 

that were likely to give rise to less accurate predictions with residuals outside the threshold 

of variability were different for TEST vs. TIMES (Table 6). The 95% confidence intervals of 

the odds ratios are shown too to highlight the uncertainties associated with the odds ratios 

themselves. Some enriched ToxPrints e.g. ring:hetero_[6_6]_O_benzopyrone_(1_4-) are far 

more uncertain with a much wider confidence interval than others. Due to the hierarchical 

nature of the ToxPrints themselves, some substances drove the enrichment of multiple 

ToxPrints e.g. bond:S(=O)N_sulfonylamide and bond:S(=O)N_sulfonamide (Table 7 

highlights specific substances). In other circumstances, multiple ToxPrints may be enriched 

because there is somewhat of an overlap in the structural fragment(s) the ToxPrints code for. 

For example, of the substances with a TEST prediction outside the 95% CI that contain the 

ring:hetero_[6_6]_O_benzopyrone_(1_4-) ToxPrint, all but 5 also contain the 

bond:CC(=O)C_ketone_alkene_cyclic_2-en-1-one ToxPrint. In these instances, it may be 

difficult to ascertain exactly which of the ToxPrints is driving the enrichment. However, 

there are an additional 10 substances containing the 

bond:CC(=O)C_ketone_alkene_cyclic_2-en-1-one ToxPrint with a prediction outside the CI 

that do not also contain the ring:hetero_[6_6]_O_benzopyrone_(1_4-) ToxPrint. Therefore, 

it appears that in this study, chemicals containing one or other of these ToxPrints may be 

more likely to be poorly predicted. Furthermore, some ToxPrints are always present in 

chemicals with predictions outside the CI. For example, bond:COC_ether_alkenyl and 

bond:COH_alcohol_allyl identified for TIMES had an odds ratio of “Inf” meaning that none 

of the chemicals (Table 8) containing those ToxPrints had a prediction that was within the 

95% CI. There were no ToxPrints in common between those enriched for presence in low 

accuracy predictions from TEST vs. TIMES, further highlighting the difference in the 

training sets and thus applicability domains for the models.

Table 9 showcases a handful of examples where the probability of a ToxPrint being present 

for substances that fell outside of the confidence interval was computed for both models and 

the ratio taken. This was intended to provide an indication of which model was preferable to 

use for a given substance depending on the ToxPrints it contained. As an example, the set of 

32 ToxPrints for DTXSID20182958 [CASRn 28782-19-6] Flavoxate succinate was 

identified. The product of the probabilities for each model (equating the probability of all 32 

ToxPrints being present) was computed. For TEST, this equated to 1.72E-32 and for TIMES, 

1.219E-34. The ratio of these two probabilities was defined as the confidence metric which 

is calculated to be 141.15, suggesting that TEST is the preferred model to use in this case.
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Conclusions

Acute oral systemic toxicity is an endpoint that is required for a number of different 

regulatory contexts. Here a large body of rat acute oral toxicity data was utilised to evaluate 

the performance of LD50 models within two expert systems: TEST and TIMES. To 

benchmark the performance of the models, predictions were only considered for chemicals 

that were not part of the training sets for each model, respectively. The relative performance 

was compared to a 95% CI threshold established by bootstrapping the standard deviation 

across experimental data for chemicals with at least three LD50 values. Given the upper 

95% CI was rather small, many of the predictions derived lay outside of this threshold range. 

Past evaluations of variability are limited to the variability study conducted by Hoffman et al 

[20] as part of the EU AcuteTox project which reported a median log transformed standard 

deviation of ~0.2 for rat and mouse acute oral toxicity studies and appears similar to the 

mean of the bootstrapped replicates of standard deviations found here, 0.218 though in units 

of −log10(mol/kg).

TEST was able to make predictions for more chemicals relative to TIMES and the 

performance characteristics in terms of the RMSE and MAE values were similar between 

the two models, (TEST: RMSE 0.642, MAE 0.469; TIMES RMSE 0.62, MAE 0.447). The 

coefficient of determination of TIMES was much higher (0.54) than that for TEST (0.296), 

but this value decreased (0.27-2.55) when the assessment was limited to chemicals for which 

both models generated predictions. ToxPrints that were enriched were identified for 

chemicals that fell outside the upper 95% CI for both TEST and TIMES. These enriched 

ToxPrints were different for the 2 models indicating that the least robust predictions for the 

TIMES and TEST models, in terms of the highest residual values, were for different types of 

chemicals, highlighting differences in the models’ strengths likely due to different training 

sets and ultimately different domains of applicability. A confidence metric was proposed as 

a means to aid selection of models for substances outside of this 95% CI on the basis of 

ToxPrints. Further it is worth noting, that the evaluation was impacted by the extent to which 

the training set of the 2 models overlapped with the reference set, limiting the number of 

chemicals for which the performance assessment could be undertaken. This was particularly 

evident for the TEST model which had a large overlap between its training set and the 

reference set. TEST and TIMES were developed in very different ways with comparable 

performance for chemicals for which both models generated predictions, and a slightly 

better performance from TIMES when considering their performance separately. This 

highlights the benefits of combining models together to leverage their respective strengths.

The evaluation was informative in terms of highlighting the potential that structure-based 

models have in predicting acute oral toxicity. The release of the dataset compiled has 

prompted many subsequent models to be developed, examples of newer studies include new 

k-nn approaches by Alberga et al [21], various SAR and QSAR approaches by Gadaleta et al 

[22] as well as read-across approaches such as Helman et al [23] and those incorporating 

mechanistic information from in vitro high throughput screening assays by Russo et al [24], 

This analysis also reinforces the benefits of developing a large collaborative modelling 

project that takes advantage of all the data collected to develop new refined models, such as 

those captured in the ongoing work in developing the CATMOS suite that exploited the 

Nelms et al. Page 13

Comput Toxicol. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



relative strengths and limitations of the different models derived as part of the global 

international modelling project (see https://ntp.niehs.nih.gov/whatwestudy/niceatm/3rs-

meetings/past-meetings/tox-models-2018/index.html) and https://github.com/NIEHS/

OPERA/releases which contains the CATMOS models themselves. As noted in Table 10, the 

availability of this dataset has resulted in an improvement in the performance of acute oral 

toxicity LD50 models.
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Highlights

• TEST and TIMES acute oral LD50 models were similar in performance.

• TEST was able to make predictions for more chemicals than TIMES (3927 vs 

863).

• Poorly predicted substances were different between the models.
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Figure 1. 
Workflow for creating the TEST and TIMES datasets.
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Figure 2. 
Workflow to create the dataset for the CI threshold.
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Figure 3. 
Histogram of the bootstrapped standard deviations.
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Figure 4a. 
Scatterplot relating TEST predictions vs. actual experimental pLD50 values.
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Figure 4b. 
Scatterplot relating TIMES predictions vs. actual experimental pLD50 values.
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Figure 5a. 
Residuals plot for TEST model predictions.
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Figure 5b. 
Residual plot for the TIMES model predictions.
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Figure 6. 
Correlation coefficients for TEST and TIMES relative to experimental pLD50 values.
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Figure 7. 
Correlation coefficients for TEST, TIMES relative to experimental pLD50 values for the 

overlap set.
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Table 1.

Counts of chemicals with QSAR Ready SMILES run through TEST and TIMES

TEST TIMES

Total chemicals amenable to processing for prediction 10760 10371

Chemicals with LD50 prediction (not in training set) 3927 863
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Table 2.

Counts and percentage of chemicals with residual values relative to the 95% CI threshold

TEST TIMES

Above 95% CI threshold 555 (34.2%) 171 (33.9%)

Within the 95% CI threshold 588 (36.3%) 191 (37.9%)

Below the 95% CI threshold 476 (29.4%) 141 (28.0%)

Note: values represent the number of chemicals followed by the percent of total predictions in parentheses.
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Table 3.

Performance metrics for the TEST (1619 substances) and TIMES (503 substances) models for the respective 

entire datasets

TEST TIMES

RMSE 0.642 0.62

R2 0.296 0.54

MAE 0.469 0.447
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Table 4.

Counts and percentage of chemicals with residual values relative to the 95% CI threshold for the overlap set

TEST TIMES

Above 95% CI threshold 87 (31.8%) 99 (36.1%)

Within the 95% CI threshold 111 (40.5%) 105 (38.3%)

Below the 95% CI threshold 76 (27.7%) 70 (25.5%)

Note: values represent chemical counts followed by percentage of the overlap set in parentheses.
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Table 5.

Performance metrics for the TEST and TIMES models for the overlap dataset

TEST TIMES

RMSE 0.643 0.65

R2 0.27 0.255

MAE 0.457 0.457
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Table 9.

Example substances with computed ToxPrint probabilities calculated to illustrate model selection based on 

presence of ToxPrint chemical features outside of the confidence interval range

Substance ID Name Known 
LD50 
mg/kg

TEST 
LD50 
mg/kg

TIMES 
LD50 
mg/kg

Confidence 
index(TEST:TIMES)

Comments

DTXSID3025461 Isobutyl 
methacrylate

9590 3490 5280 0.3 TIMES model 
favoured for 
prediction

DTXSID20182958 Flavoxate succinate 1445 509 482 141 TEST model 
favoured for 
prediction

DTXSID1030319 3-amino-9-
ethylcarbazole

144 620 540 0.08 TIMES model 
favoured for 
prediction
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Table 10.

Performance metrics for selected models.

Model R2 RMSE MSE Approach

TIMES [16] 0.85 0.15 Expert system

TIMES (in this study) 0.54 0.62 Expert system

TEST [15] 0.626 0.594 Consenus model of 3 local approaches

TEST (in this study) 0.296 0.642 Consenus model of 3 local approaches

Alberga [21] 0.737 0.408 k-NN

Gadaleta [22] 0.59-0.651 0.541-0.585 Various

CATMOS 0.65 0.49 Consensus
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