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OVERVIEW OF THE COMPLEMENT SYSTEM

Complement activation is a key part of the innate immune sys-

tem, which plays a crucial role in the defense against microbial in-

fections, healing of the host, and disposal of the products of inflam-

matory injury.1-3 The complement system consists of complement 

components, receptors, and regulatory factors. Most of the serum 

complement components are produced in the liver, and many 

complement receptors (CRs) are expressed in liver Kupffer cells 

and hepatic stellate cells.4-6 According to the recognition of differ-

ent molecules, complement activation can be divided into three 

main pathways: the classical pathway (CP), the alternative path-

way (AP), and the lectin pathway (LP) (Fig. 1).7 The CP is triggered 

by C1q recognition of antibodies bound to antigens or microbial 

surfaces, resulting in the activation of C1r and C1s. The activated 

C1s then cleaves C4 and C2 to form C3 convertase (C4bC2b). The 
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LP is similar to the CP; they share C3 convertase (C4bC2b). How-

ever, the LP does not rely on antibodies to identify pathogenic 

components but uses mannan binding lectin (MBL) and ficolins to 

identify sugars or N-acetylated groups on the surface of patho-

gens. In response, MBL-associated serine proteases (MASP1/

MASP3 and MASP2) are activated.8 The activated MASP1/MASP3 

and MASP2 can cleave C2 and C4 to form C4bC2b.9,10 The AP is 

different from the CP and LP; the AP is initiated by C3 itself. In 

the first step, the spontaneous hydrolysis of the thioester bond 

within C3 takes place, resulting in the formation of C3(H2O). Then, 

C3(H2O) recruits factor B (FB) to form a complex, which can be 

further cleaved by factor D (FD), leading to the formation of 

C3(H2O)Bb. C3(H2O)Bb is also a C3 convertase enzyme complex, 

which cleaves C3 to C3a and C3b. C3b can be added to FB and 

cleaved by FD, resulting in the formation of the C3 convertase 

C3bBb, which acts as an amplification loop of the complement 

system.11,12

The above three pathways produce C3 convertase and C5 con-

vertase, which can cleave the central complement components C3 

and C5, respectively, and generate effector molecules.13 Anaphyl-

atoxins, including C3a and C5a, are important potent pro-inflam-

matory molecules that attract and activate immune cells. Opsonin 

C3b (or C4b) is deposited on the surface of pathogens or injured 

cells, and mediates immune adhesion and opsonization or induces 

cytolysis through the membrane attack complex (MAC). The MAC 

consists of C5b, C6, C7, C8, and C9, which can directly lyse tar-

geted pathogens or damaged autologous cells.14,15

In recent years, the comprehensive evaluation of complement 

function has shown that the complement system not only plays a 

traditional role in the immune process but also participates in a 

variety of important physiological functions, such as lipid metabo-

lism, the inflammatory response, coagulation, angiogenesis, and 

tissue repair.2,10,16-20 A growing number of studies have revealed 

that the complement system also plays essential roles in the prog-

Figure 1. Schematic overview of the complement cascade illustrating three activation pathways (classical, lectin, and alternative) and summarizing 
the biological effects of complement activation products. MAC, membrane attack complex.
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ress of alcoholic liver disease (ALD).21-23 In this mini-review, we 

used five search engines, that is, MEDLINE, PubMed, EMBASE, 

Web of Science, and Biosos Preview, and we screened out 218 

papers in this field. We will discuss the recent findings on the role 

of complement activation and regulation and oxidative stress in 

the progression of ALD, which might help us to better understand 

the pathogenesis of ALD and provide some novel potential thera-

peutic strategy for ALD.

COMPLEMENT AND ALCOHOL-INDUCED LIVER 
DISEASE

Studies have reported that the complement system is activated 

in ALD and participates in different stages of its pathogenesis, in-

cluding alcoholic fatty liver disease (AFLD), alcoholic hepatitis 

(AH), alcoholic hepatic fibrosis, and cirrhosis (Table 1).21-23 In this 

mini-review, the role and mechanism of the complement system 

in different stages of ALD are briefly summarized, especially fo-

cusing on the recent relevant progress.

The complement system participates in AFLD

The liver is a predominant organ for the metabolism of alcohol 

and lipids.24 It is generally accepted that in the pathogenesis of 

AFLD, alcohol, as the “first strike,” causes the disorder of lipid 

metabolism and the heterotopic deposition of triglycerides in he-

patocytes. The reaction between reactive oxygen species (ROS) 

and accumulated triglycerides in hepatocytes is lipotoxic and acts 

as the “second strike” in the AFLD process.25 However, how the 

complement system is involved in this process remains unclear.

Barry and McGivan22 reported that acetaldehyde, an intermedi-

ate product of alcohol metabolism, can bind to hepatocyte plasma 

membranes, resulting in the activation of C3 by causing a struc-

tural change in the surface of the plasma membrane. A previous 

study in rats revealed that the expression of complement compo-

nents (C1, C3, and C8) was elevated, while the expression of 

complement receptor 1 (CR1)-related protein y (Crry) and CD59 

was reduced after long-term alcohol feeding.26 Wlazlo et al.5 

showed that the serum level of C3a, an indicator of C3 activation, 

was associated with liver steatosis and hepatocellular injury in in-

dividuals who are chronic alcohol abusers. In mouse models of 

ethanol feeding, Bykov et al.27 found that C3+/+ mice developed 

AFLD, while C3–/– mice had reduced lipid accumulation in the liver. 

In a study of the role of C3 in AFLD, the authors suggested that 

C3a binding to the receptor C3aR, which is highly expressed on 

Kupffer cells, can promote the inflammatory response and stimu-

late the release of the inflammatory cytokine tumor necrosis 

factor-α (TNF-α). TNF-α participates in AFLD, either directly or in-

directly, through the induction of insulin resistance.5 Pritchard et 

al.28 also proved that C3–/– mice did not develop AFLD or increase 

triglycerides in the circulation, but the levels of serum alanine 

aminotransferase (ALT) and inflammatory cytokines were signifi-

cantly higher. On the contrary, C5–/– mice had increased hepatic 

triglycerides and developed AFLD, whereas they did not show in-

creased levels of ALT or inflammatory cytokines after ethanol 

Table 1. Important research of the complement system in alcoholic liver disease

Alcoholic liver disease Complement component Species

Alcoholic fatty liver disease

Wlazlo et al.5 C3a Human

Bykov et al.27 C3 Mouse

Pritchard et al.28 C3, C5 Mouse

Zhong et al.32 C3 Mouse and human

Alcoholic hepatitis

Shen et al.37 C1q, C3, C5, and C5aR Human

McCullough et al.41 Factor D Mouse

Fan et al.42 CFI and sC5b9 Human

Alcoholic hepatic fibrosis and cirrhosis

Hillebrandt et al.43 C5 Mouse and human

Baumann al.50 C3 Human



680 http://www.e-cmh.orghttps://doi.org/10.3350/cmh.2020.0094

Volume_26  Number_4  October 2020

feeding. Another study showed that more cholesterol was depos-

ited in the liver of C5–/– mice than in the liver of C5+/+ mice, and 

C5–/– mice had higher levels of serum triglycerides and cholesterol 

than C5+/+ mice.23 These results show that C3 and C5 play differ-

ent roles in the development of AFLD. However, the mechanisms 

by which the complement system is involved in AFLD are still in-

completely understood.

Ethanol consumption increases the generation of ROS and de-

creases the antioxidant activity, leading to the increase of oxida-

tive stress. Increased oxidative stress from ethanol exposure is a 

critical element for the pathogenesis of ALD.29 Growing evidence 

suggests that the interaction between complement activation and 

oxidative stress plays crucial roles in ALD.29-31 Under basal condi-

tions, the anaphylatoxin C3a and C5a receptors are highly ex-

pressed in Kupffer cells. Ethanol-induced complement activation 

results in the generation of the anaphylatoxins C3a and C5a, 

which bind to the receptors on Kupffer cells, and subsequently in-

creases the expression of inflammatory cytokines and releases the 

ROS, contributing to ALD.28 However, the mechanisms underlying 

the interaction between complement activation and oxidative 

stress in ALD remain unclear. A recent study found that C3a and 

its degraded form, C3a-des-Arg (also known as acylation stimu-

lating protein [Asp]), contribute to the pathogenesis of AFLD. Asp 

binding to its receptor C5aR2 promotes the expression of cyto-

chrome P450 family 2, subfamily E, polypeptide 1, which induces 

the production of ROS. The induced oxidative stress subsequently 

leads to the increased expression of glycine tRNA-derived frag-

ments (Gly-tRFs). Gly-tRF antisense inhibitor treatment can pre-

vent the development of AFLD by reducing fatty acid synthesis 

and increasing fatty acid oxidation through regulating the SIRT1 

signaling pathway in ethanol-fed mice. This study bridges the 

knowledge gap between the complement system, oxidative 

stress, and steatosis through elucidating the role of Gly-tRFs in 

ALD.32

The complement system participates in alcoholic 
hepatitis

Different from AFLD, except for the deposition of triglycerides in 

hepatocytes, AH is also characterized by the infiltration of inflam-

matory cells, elevated inflammatory cytokine levels, increased se-

rum transaminase levels, and liver injury. Previous studies have 

shown that inflammatory cytokines play an important role in the 

occurrence and development of ALD.33,34 In AH, inflammatory cy-

tokine levels were elevated, leading to liver cell dysfunction and 

continued tissue damage.35 The complement system is also associ-

ated with the pathogenesis of AH. Cohen et al.36 reported that 

C1q deficiency abolishes the activation of the CP, reduces the ex-

pression of inflammatory cytokines, and attenuates liver tissue in-

jury. These results were further confirmed in a study of an alco-

holic liver model in mice by Smathers et al.34 Moreover, in AH 

patients, C1q and C5 levels were significantly increased, and the 

expression of C5aR was also upregulated in the Mallory-Denk 

body forming cells, which are the major features of ongoing in-

flammation in AH.37,38 These studies showed that complement ac-

tivation is involved in the occurrence of AH and the impairment of 

liver function. The underlying mechanism may be that there is a 

crosstalk between toll-like receptors (TLRs) and C3aR and C5aR 

in AH.21,37,39,40 TLRs belong to the pattern recognition receptor 

family, which can bind to damage-associated molecular patterns 

or pathogen-associated molecular patterns (PAMPs). PAMPs 

mainly refer to bacterial metabolites, including bacterial lipopoly-

saccharide, peptidoglycan, RNA, and DNA, which can reach the 

liver upon alcohol-induced intestinal microecology imbalance, 

subsequently initiating the innate immune response and inducing 

the expression of inflammatory cytokines (such as TNF-α and in-

terleukin-6). In addition, PAMPs increase lipid deposition and in-

flammatory infiltration in hepatocytes. McCullough et al.41 found 

that complement FD promotes the clearance of apoptotic cells 

and maintains tissue homeostasis in AH and suggested that inap-

propriate complement activation likely delays the clearance of 

apoptotic cells and impairs healing/recovery in ALD. Fan et al.42 

found that complement activation is expected to be a diagnostic 

and prognostic indicator for patients with AH. However, the de-

tailed mechanisms of complement function in AH need to be fur-

ther clarified.

The complement system participates in alcoholic 
hepatic fibrosis and cirrhosis

Hepatic fibrosis is an early event of cirrhosis. Alcoholic hepatic 

fibrosis is a process of damage and repair of the liver after long-

term alcohol exposure, accompanied by the excessive accumulation 

and rearrangement of the extracellular matrix, the development 

of AH, and the formation of pseudolobules. These pathological 

changes cause damage to the liver structure and ultimately prog-

ress to liver cirrhosis. A previous study showed that the expression 

of the C5 gene is involved in liver fibrogenesis, and inhibition of 

the C5aR1 attenuates liver fibrosis in mice.43 Moreover, C5 has a 

causal role in fibrogenesis across species between humans and 
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mice. A number of studies have confirmed a decrease in the level 

of serum complement proteins, including C1, C3, C4, C5, and FB, 

in patients with alcoholic cirrhosis.44-47 Other studies further re-

vealed that serum concentrations of C3, C4a, and C5a had a neg-

ative relationship with liver fibrosis stages and the Child-Pugh 

score.48-50 These studies show that the levels of complement com-

ponents may be an indicator of liver fibrosis or cirrhosis stage.51 

There are two possible mechanisms: the reduction of complement 

synthesis after severe liver injury and excessive complement de-

pletion.52 However, the results of two studies showed some dis-

crepancies; the serum complement concentration was normal, 

and no significant differences were observed in patients with al-

coholic cirrhosis.53,54 Further studies are required to explore the 

mechanisms underlying the role of the complement system in the 

Figure 2. Schematic of CR2 site-targeted complement inhibitors. The CR2 moiety of the fusion protein binds the C3 degradation products iC3b, 
C3dg, and C3d that are covalently attached at sites of complement activation. Complement inhibitory constructs that have previously been prepared 
and characterized are CR2-Crry (murine inhibitor of C3 activation), CR2-CR1 (human inhibitor of C3 activation), CR2-fH (murine and human inhibitor of 
the alternative complement pathway), and CR2-CD59 (murine and human inhibitor of MAC formation). F1, factor 1; SP, serum protease; CR1/2, comple-
ment receptor 1/2; Crry, complement receptor-1 related protein y.
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occurrence and development of advanced liver disease, as com-

plement regulation may be a potential strategy for reversing the 

progress of liver fibrosis.

COMPLEMENT REGULATION IN ALCOHOLIC 
LIVER DISEASE

In physiological conditions, there is a delicate balance between 

complement activation and regulation. Insufficient regulation or 

excessive activation can result in a large variety of disorders.55 The 

host expresses a variety of both fluid-phase and membrane-

bound inhibitory proteins to regulate the location and activity of 

complement factors. Soluble inhibitors of the complement system 

include C1 inhibitor, C4 binding protein, factor I, factor H (FH), 

and MBL-associated protein of 44 kilodalton, which can be dis-

tributed throughout the body with the blood.56 These soluble in-

hibitors have the characteristics of systematic regulation, which 

easily lead to immune regulation imbalance and lack of targeting. 

Membrane-bound inhibitory proteins are anchored on the mem-

brane surface of specific cells to protect the host from comple-

ment attack. These membrane-bound inhibitors can be divided 

into two categories. The first includes inhibitors of the formation 

of C3 convertases, including CR1, decay accelerating factor, and 

membrane cofactor protein. Crry is expressed in rodents, which is 

similar to human CR1 in structure and function. The other is rep-

resented by CD59, which competes to combine with C8 and C9, 

further inhibiting MAC formation.57

Tissue targeting is a promising complement regulation strategy, 

which provides a safer and considerably more effective therapeu-

tic approach compared with a systemic (untargeted) complement 

inhibition. One such targeting approach involves linking a comple-

ment inhibitor to a fragment of CR2 that recognizes C3 activation 

products deposited at sites of complement activation (Fig. 2). 

Complement inhibitors such as Crry, FH, or CD59 will go directly 

to the complement-attacked tissue after systemic infusion and lo-

cally inhibit complement without compromising the systemic com-

plement function.55 CR2-Crry, a site-targeted complement inhibitor, 

can suppress C3 activation through inhibition of C3 convertase, 

resulting in a reduction in the levels of C3a, C3b, and Asp. A recent 

study showed that suppression of C3 activation can protect against 

the injury of steatosis and inflammation in ALD.32 Therefore, tar-

geted complement inhibitors may become a potential drug to pro-

tect against both infiammatory response syndrome and hepatic 

steatosis for AFLD patients (Fig. 3).32

According to the specific structure of complement molecules, 

complement mutants and complement peptides can also be used 

to regulate complement activity.58,59 Moreover, the crosstalk be-

tween the complement, coagulation, and fibrinolysis systems also 

plays an important role in complement regulation. As an example, 

thrombomodulin participates in complement regulation through 

two mechanisms. Thrombomodulin can enhance factor I-mediated 

inactivation of C3b on the cell surface. Moreover, thrombomodu-

lin also accelerates the inactivation of anaphylatoxins C3a and 

C5a by regulating the activation of procarboxypeptidase B.60,61 

These strategies may be also applicable to the treatment of ALD.

FUTURE PERSPECTIVE

Recent advances in complement research have shown that the 

complement system acts an important regulator for each stage of 

ALD. The precise regulatory mechanisms of the complement sys-

tem in the occurrence and development of ALD need to be further 

explored. A better understanding of the mechanisms by which the 

complement system affects ALD may help us identify novel thera-

peutic targets and provide a potential therapeutic approach to in-

hibit or reverse the progression of ALD. Based on the advances of 

the present research, targeted complement inhibitors and anti-

sense inhibition of Gly-tRF may provide a therapeutic strategy for 

treating human ALD.
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