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INTRODUCTION

Excessive and chronic alcohol consumption may lead to the pro-

gression of alcoholic liver disease (ALD).1 ALD is caused by chronic 

alcohol consumption (>20 g/day for women and >30 g/day for 

men).2,3 Moreover, repeated alcohol drinking may promote pro-

gression of simple steatosis to steatohepatitis and/or cirrhosis.4 

Another most common liver disease is non-alcoholic fatty liver 

disease (NAFLD), which is considered as the hepatic manifestation 

of the metabolic syndrome including hypertension, type 2 diabe-

tes, insulin-resistance, obesity, dyslipidemia, and distinct hepatic 

histological features.5 Both ALD and NAFLD share general histo-

pathological spectrum from simple steatosis to steatohepatitis 

and fibrosis, which may progress to more severe diseases (i.e., cir-

Endoplasmic reticulum stress and autophagy dysregu-
lation in alcoholic and non-alcoholic liver diseases
Yun Seok Kim1 and Sang Geon Kim1,2

1College of Pharmacy, Seoul National University, Seoul; 2College of Pharmacy, Dongguk University, Goyang, Korea

Alcoholic and non-alcoholic liver diseases begin from an imbalance in lipid metabolism in hepatocytes as the earliest 
response. Both liver diseases share common disease features and stages (i.e., steatosis, hepatitis, cirrhosis, and 
hepatocellular carcinoma). However, the two diseases have differential pathogenesis and clinical symptoms. Studies 
have elucidated the molecular basis underlying similarities and differences in the pathogenesis of the diseases; the 
factors contributing to the progression of liver diseases include depletion of sulfhydryl pools, enhanced levels of 
reactive oxygen and nitrogen intermediates, increased sensitivity of hepatocytes to toxic cytokines, mitochondrial 
dysfunction, and insulin resistance. Endoplasmic reticulum (ER) stress, which is caused by the accumulation of misfolded 
proteins and calcium depletion, contributes to the pathogenesis, often causing catastrophic cell death. Several studies 
have demonstrated a mechanism by which ER stress triggers liver disease progression. Autophagy is an evolutionarily 
conserved process that regulates organelle turnover and cellular energy balance through decomposing damaged 
organelles including mitochondria, misfolded proteins, and lipid droplets. Autophagy dysregulation also exacerbates 
liver diseases. Thus, autophagy-related molecules can be potential therapeutic targets for liver diseases. Since ER 
stress and autophagy are closely linked to each other, an understanding of the molecules, gene clusters, and networks 
engaged in these processes would be of help to find new remedies for alcoholic and non-alcoholic liver diseases. In this 
review, we summarize the recent findings and perspectives in the context of the molecular pathogenesis of the liver 
diseases. (Clin Mol Hepatol 2020;26:715-727)
Keywords: Non-alcoholic steatohepatitis; Non-alcoholic fatty liver disease; Mitochondria; Endoplasmic reticulum stress; 
Autophagy

Copyright © 2020 by Korean Association for the Study of the Liver
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) 
which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://crossmark.crossref.org/dialog/?doi=10.3350/cmh.2020.0173&domain=pdf&date_stamp=2020-10-01


716 http://www.e-cmh.orghttps://doi.org/10.3350/cmh.2020.0173

Volume_26  Number_4  October 2020

rhosis and hepatocellular carcinoma) (Fig. 1).4 However, the two 

diseases differ from each other in a variety of properties, ranging 

from the molecular mechanisms of disease exacerbation to differ-

ences in clinical features. In particular, infiltration of inflammatory 

cells occurs to a greater degree in ALD than in NAFLD. In contrast, 

fat degeneration in hepatocytes is more pronounced in NAFLD 

than in ALD.6 Despite the ongoing study of the pathology, causes, 

and risk factors for the diseases, we do not yet have an appropri-

ate treatment regimen. Here, we aim to motivate intensive re-

search on the diseases by reviewing the current understanding of 

the causes of ALD and NAFLD, and the trends in potential thera-

peutic approaches.

GENERAL MOLECULAR PATHOGENESIS

Definition of endoplasmic reticulum (ER) stress

ER is a structure of a membrane component that extends from 

the nuclear membrane and has two types: a ribosome attached 

rough ER and a ribosome-free smooth ER. Approximately one-

third of the protein in the cell is translated from the messenger 

RNA to protein, which becomes an active protein structure 

through processes such as folding, assembly, glycation, and disul-

fide bond.7 Smooth ER is the site for the synthesis of lipids and 

sterols, and functions as a calcium reservoir to regulate the cellu-

lar calcium concentrations.8,9 However, if either immature protein 

flows into the ER above the capacity, or calcium is depleted in the 

ER, the function of ER is impaired. This condition is defined as ER 

stress.9-11 When ER stress occurs, cells have a defense mechanism 

to survive, which is called the ER stress response.8 Thus, ER stress 

is a cellular stress, in which the levels of synthetic proteins exceed 

the capacity of unfolded protein responses. Finally, when the ER 

stress becomes so severe that it cannot be overcome and the ER 

cannot recover its function, then cell death pathway is activated 

with inflammatory responses.9,12

Cross-links between ER and mitochondria 

In several cell and animal models, we found ER stress as a key 

stimulus of fatty liver transition to non-alcoholic steatohepatitis 

(NASH). So, ER stress is claimed as a secondary hit to provoke he-

patocyte injury and inflammation, leading to liver fibrosis in a 

chronic situation (Fig. 1). Dysregulation of unfolded protein re-

sponses enhances ER stress and consequently may promote cata-

strophic cell death.13 Additionally, ER stress, in association with 

reactive oxygen species (ROS) production, triggers the subsequent 

activation of cell death pathway due to imbalance of redox ho-

meostasis.14,15 Cytochrome P450 2E1, a high affinity enzyme for 

ethanol metabolism, is located in the membrane of ER, and thus 

Figure 1. General pathological processes for ALD and NAFLD. ALD, al-
coholic liver disease; NAFLD, non-alcoholic fatty liver disease; ER, endo-
plasmic reticulum; ROS, reactive oxygen species. 
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the induction of cytochrome P450 2E1 would be also associated 

with ER stress in hepatocytes inflicted by sustained ethanol con-

sumption.16 This idea would be also supported by impairment of 

free fatty acids (FFAs) oxidation in mitochondria because mito-

chondria and ER physiologically work together through mitochon-

dria-associated ER membrane.17

The lipids are mainly metabolized in the liver, and lipid metabo-

lism in the liver maintains homeostasis by balancing or storing fat 

for energy.18 In particular, lipid absorption, esterification, oxidation 

and secretion of fatty acids are performed in liver cells.19 The sup-

ply of FFAs to the liver contributes to the pathogenesis of hepatic 

steatosis; triglycerides and cholesterol are stored in the form of 

lipid droplets to protect cells from exposure to excessive amounts 

of FFAs that can damage signal pathways and metabolic homeo-

stasis.20 Impairment of oxidative metabolism of FFAs is also cou-

pled to fat accumulation because FFAs are used as fuel for mito-

chondrial oxidation.

Compared to normal individuals, the incidence of ALD increases 

in patients with fatty liver by 2–3 times.21 Thus, obesity is consid-

ered as an independent risk factor for alcoholic steatohepatitis 

since diet pattern and dietary fat content contribute to the pro-

gression of ALD. Mitochondrial dysfunction occurs not only by 

peroxidation of unsaturated fats of mitochondrial phospholipids, 

but by the attack of oxygen free radicals generated through etha-

nol metabolism. Hence, excessive alcohol consumption causes im-

pairment of mitochondrial function.22 In NAFLD patients, dysregu-

lation of fatty acid metabolism causes hepatic steatosis and 

hyperlipidemia in a large patient population. In addition, NAFLD 

as a result of obesity and diabetes facilitates inflammatory cyto-

kines production.23 So, metabolic profile in hepatocytes greatly al-

ters because of fuel source and consumption rates change. To-

gether, metabolic disturbances caused by fat along with alcohol 

consumption stimulate worsening of alcoholic steatohepatitis, 

which may lead to more severe conditions.

MITOCHONDRIAL TARGETS 

Peroxisome proliferator-activated receptor alpha regulates the 

expression of lipid metabolism-related genes (e.g., Cyp4a1, Acbp, 

and Acsl ).24 In our preliminary study, we found that mitochondrial 

activity and oxidative energy metabolism are controlled by core 

molecules including sirtuin 1, peroxisome proliferator-activated 

receptor-γ coactivator 1-alpha and peroxisome proliferator-acti-

vated receptor alpha (i.e., a transcription complex required for mi-

tochondrial biogenesis).25,26 In this study, we have shown that an 

activated form of G protein subunit alpha 12 (Gα12) stabilizes sir-

tuin 1 via ubiquitin specific peptidase 22 induction, which de-

pends on hypoxia-inducible factor 1-alpha. The research results 

showed that Gα12 regulates sirtuin 1-dependent lipid oxidation in 

mitochondria through hypoxia-inducible factor 1-alpha-mediated 

ubiquitin specific peptidase 22 induction, identifying Gα12 as a 

linker between cell surface signaling and mitochondrial lipid oxi-

dation (Fig. 2).

Liver fibrosis is manifested by repeated wound healing process-

es, such as an increase in matrix protein and a decrease in matrix 

remodeling: liver fibrosis is characterized by decreased matrix re-

modeling and increased production of matrix proteins, and may 

lead to end-stage cirrhosis.27 Liver fibrosis is defined by concerted 

actions of non-parenchymal cells of the liver, particularly macro-

phages (including Kupffer cells), hepatic stellate cells (HSCs), and 

endothelial cells.28 Accumulation of aberrant extracellular matrix 

is induced by a diverse population of myofibroblasts, among 

which HSCs play a major role.29

AUTOPHAGY TARGETS

Definition of autophagy

Studies have reported the correlation between hepatic diseases 

and autophagy. Autophagy may inhibit the progression of steato-

sis and fatty hepatitis by preventing hepatocyte injury.30,31

The liver is the major detoxifying and metabolic organ. Autoph-

agy, a “recycling mechanism” in hepatocytes, is evolved to salvage 

key metabolites and to provide energy for sustaining anabolism.32 

Thus, autophagy is a crucial regulator of cellular homeostasis;32-34 

autophagy targets damaged cellular constituents, such as dena-

tured proteins, accumulated fat, and mitochondria that have lost 

their function to lysosomes for degradation.35,36 Amino acids, in-

sulin, and mammalian target of rapamycin signaling pathways in-

hibit the autophagic pathway.36 Additionally, fasting regulates 

metabolic pathways, such as gluconeogenesis, ketone body for-

mation, and β-oxidation. Fatty acids are mainly generated by se-

lective autophagy of lipid droplets (lipophagy), while amino acids 

are generated by proteolysis through autophagy and are used for 

gluconeogenesis.33,37 Therefore, autophagy plays a decisive role in 

regulating liver physiology and balancing liver metabolism.38
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Autophagic molecules associated with liver steatosis

Chronic alcohol intake or excessive energy intake causes dam-

age to the regulation of autophagy. When it persists, the homeo-

static balance breaks and metabolic diseases develop.39,40 Al-

though several studies have demonstrated the correlation 

between autophagy and metabolic liver disease, the role of au-

tophagy in metabolic liver disease has not been completely eluci-

dated. Moreover, the understanding of the regulatory molecules 

by which the disease progression is determined is still needed.

The role of autophagy in acute and chronic ALD is still complex 

and controversial. It is generally known that binge drinking en-

hances autophagy of hepatocytes, which limits hepatic cell dam-

age, death and fat accumulation by selectively removing excess 

lipid droplets and damaged mitochondria.41 In contrast, chronic 

alcohol intake has been reported to decrease lysosome function 

and increase ubiquitinated aggregates accumulation.42 Thus, the 

duration of alcohol exposure affects autophagy.43 5’ AMP-activat-

ed protein kinase, an enzyme that plays a role in the metabolism 

of fatty acids (e.g., acetyl-CoA carboxylase), is a key player of au-

tophagy. Ethanol consumption causes inhibition of 5’ AMP-acti-

vated protein kinase, suggestive of the role of autophagy in ALD. 

One of the studies claims a mechanism for suppressing autophagy 

during chronic alcohol intake in association with decrease of 5’ 

AMP-activated protein kinase activity, which may increase fat 

production through decrease of β-oxidation.44 This information 

can be employed to understand the pathogenesis of ALD.

Although the evaluation of autophagy in animal and human 

samples is somewhat controversial,45 it is generally agreed that 

autophagy is reduced in NAFLD. Hepatocellular steatosis is aggra-

vated in mice deficient in autophagy-related genes.46,47 Inhibition 

of hepatocyte-specific run domain beclin-1-interacting and cyste-

ine-rich domain-containing protein (beclin-1 interacting negative 

regulator for autophagosome fusion), overexpression of adenovi-

Figure 2. Functional molecular biomarkers for the processes of ALD and NAFLD. ALD, alcoholic liver disease; AMPKα, AMP-activated protein kinase al-
pha; miR, microRNA; TXNIP, thioredoxin interacting protein; LXRα, liver X receptor α; ATG4B, autophagy related 4B cysteine peptidase; Gα12, G protein 
subunit alpha 12; HIF-1α, hypoxia-inducible factor 1-alpha; USP22, ubiquitin specific peptidase 22; SIRT1, sirtuin 1; ER, endoplasmic reticulum; ROS, reac-
tive oxygen species; HSCs, hepatic stellate cells; JNK, c-Jun N-terminal kinase; ATG12-5, autophagy related 12-5 conjugate; NAFLD, non-alcoholic fatty 
liver disease. 
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ral-induced autophagy-related 7,47,48 or treatment of an autophagy 

activator such as rapamycin can relieve ER stress and hepatic ste-

atosis. The opposite effect was seen with the inhibitor.49 More-

over, autophagy participates in the basic conversion process of 

lipids by decomposing lipid droplets under physiological condi-

tions. Recently, we demonstrated that liver X receptor α (LXRα) 

functions as a transcriptional regulator of microRNAs (miRs).50 In 

this study, gene set enrichment analysis was used to discover the 

phenomenon that autophagy can be inhibited by LXRα, and fo-

cusing on this, we proved the regulatory mechanism of autophagy 

using animal model. As a mechanistic basis, it was noted that 

LXRα inhibits autophagy-related 4B cysteine peptidase and ras-

related protein Rab-8B, and this effect is due to the transcription-

al induction of let-7a and miR-34a by LXRα. In addition, the same 

mechanism works in human samples and genetic obesity-derived 

animal (ob/ob, db/db) samples. Furthermore, LXRα and the above 

identified molecules all inhibit lipid degradation and mitochondrial 

function, supportive of a link between autophagy and NAFLD 

when LXRα is activated. The outcomes may provide key informa-

tion for target discovery and potential strategy to treat NASH (Fig. 2).

Autophagic molecules associated with liver fibrosis

Autophagy is reported to be involved in the progression of liver 

fibrosis.51 Activation of HSCs is a major phenomenon in liver fibro-

sis because these cells differentiate into myofibroblasts and pro-

duce a major extracellular matrix in the liver.52 HSCs of the quies-

cent phenotype store vitamin A in lipids and are activated when 

vitamin A is decomposed by various stimuli. Thus, HSCs can be 

activated by promoting autophagy. Previously, we have shown 

that Gα12 activation increases autophagy in HSCs, accompanying 

c-Jun N-terminal kinase-dependent autophagy-related 12-5 conju-

gation.53 In the study, miR-16 directly inhibits de novo synthesis of 

Gα12 and thereby modulations of miR-16 alter autophagy (Fig. 2). 

Consistently, patients with severe fibrosis exhibited downregulat-

ed levels of miR-16.53 The activation of HSCs by apoptotic hepato-

cytes or by transforming growth factor-β produced from activated 

Kupffer cells also contributes to fibrosis.54 In this process, sus-

tained ER stress, cytokines, saturated FFAs, and adipokines could 

be also involved.54

Potential targeting of autophagy

Currently, there are no specific treatments for non-alcohol/alco-

hol-related liver disease, and the main treatment is dietary control 

or alcohol withdrawal. Recent studies have demonstrated the im-

portance of autophagy in metabolic diseases and suggested new 

treatment strategies. Preclinical studies have reported that en-

hancing autophagy using carbamazepine or rapamycin decreases 

fat accumulation and liver damage in obese and chronic ethanol-

fed mice.49 Although there is a Janus face of autophagy in chronic 

liver disease, autophagy is primarily a hepatoprotective mecha-

nism; autophagy is protective against the early stages of hepato-

cellular carcinoma and promotes liver regeneration.55 Conversely, 

autophagy may be deleterious during the late phase of hepatocel-

lular carcinoma in addition to activation of HSCs.51,56 Thus, the 

cell-specific and pathology-specific regulation of autophagy 

should be considered for devising strategies for liver disease treat-

ment.

CHANGES IN LIPID PROFILES

Alcohol-induced hepatic dysfunction or injury is closely related 

to abnormal lipid profiling.57,58 Cumulated evidence shows that 

liver steatosis is linked to insulin resistance and the consequent 

hyperinsulinemia. In addition to steatosis, chronic alcohol con-

sumption induces insulin resistance in the liver as indicated by the 

suppression of insulin-responsive genes.59,60 Moreover, heavy al-

cohol consumption may lead to impairment of mitochondrial 

membrane depolarization; dysregulation of cellular redox state re-

sults at least in part from changes in the nicotinamide adenine di-

nucleotide (NAD+)/nicotinamide adenine dinucleotide hydride 

(NADH) ratio.61,62 Alcohol disrupts the sirtuin 1 signaling pathway, 

which is involved in the regulation of mitochondrial biogenesis 

and oxygen consumption, and consequently promotes hepatic 

steatosis, injury, and inflammation.63 In particular, mitochondrial 

dysfunction contributes to this change to a large extent, in which 

replacement of old non-functional mitochondria is disturbed due 

to autophagy inhibition as well as impaired proteasome func-

tion.64,65 Electron microscopy has revealed the presence of mega-

mitochondria in the liver of patients with ALD.66,67

Lipotoxicity not only causes inflammation, ER stress, and ROS, 

but also affects the biological function of organelles, the most im-

portant of which is the mitochondria.68 Increasing autophagy re-

moves damaged mitochondria in a non-alcoholic fatty liver animal 

model, improving fatty liver.69 Conversely, when autophagy is in-

hibited, severe mitochondrial damage and hepatic steatosis oc-

cur.70 Additionally, suppression of autophagy through drug or 

gene regulation can reduce the number of triglycerides and lipid 
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Table 1. Ongoing clinical trials or candidate targets of pharmacotherapies for the treatment of ALD or NAFLD

Pathology Target Agent Stage Reference

ALD Hepatic regeneration IL-22 (F-652) Phase 1 100

IgG antibody to LPS Bovine colostrum (IMM-124E) Phase 2 101

Probiotic, restores gut microbiome Lactobacillus rhamnosus GG Phase 2 102

Antagonist to IL-1 receptor Anakinra Phase 2 103

FXR agonism Obeticholic acid (INT-747) Phase 2 104

Antibiotic amoxicillin plus clavulanic acid Augmentin Phase 3 105

Antioxidant and promotes abstinence Metadoxine Phase 4 106

Increase neutrophils, hepatic regeneration G-CSF (filgrastim) Phase 4 107

Glutamate - Target discovery stage 108

HMGB1 - Target discovery stage 109

ALDH2 - Target discovery stage 110

Toll-like receptor 3 - Target discovery stage 111

C3aR, C5aR1 - Target discovery stage 112

Fructose, cytochrome P450-2E1 - Target discovery stage 113

HIF-1α - Target discovery stage 114

Lactobacillus GG - Target discovery stage 115

Bile acid，FXR，FGF15 - Target discovery stage 116

FGF19 - Target discovery stage 117

FoxO1, miR-148a, TXNIP - Target discovery stage 91

REG3 lectins - Target discovery stage 118

NAFLD Thyroid hormone receptor beta agonist VK2809 Phase 2 119

PanPPAR agonist Lanafibranor Phase 2 120

FXR agonist and SGLT1/2 inhibitor Tropifexor and licoglifozin Phase 2 121

Engineered version of human hormone FGF19 Aldafermin Phase 2 122

FXR agonist EDP-305 Phase 2 123

ASBT inhibitor Volixibat Phase 2 124

Recombinant FGF21 BMS-986036 Phase 2 125

Pan-caspase inhibitor Emricasan Phase 2 126

Galectin 3 inhibitor GR-MD-02 Phase 2 127

CCR2/CCR5 receptor inhibitor Cenicriviroc (AURORA) Phase 3 128

SCD1 modulator Aramchol Phase 3 129

Thyroid hormone receptor beta agonist Resmetirom Phase 3 130

PPARα/δ ligand Elafibranor (RESOLVE-IT) Phase 3 131

FXR ligand Obeticholic acid (REGENERATE) Phase 3 132

FXR agonist Obeticholic acid (REVERSE) Phase 3 132

ASK1 inhibitor Selonsertib Phase 3 133

SGLT2 inhibitor Gliflozin Pilot 134

LXRα, let-7a, miR-34a, ATG4B, Rab-8B – Target discovery stage 50

STAT-1, STAT-3 – Target discovery stage 135

Fructokinase – Target discovery stage 136

Gα13, ITIH1 – Target discovery stage 137
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particles in hepatocytes.71 As a result, a decrease in FFAs supply 

from lipid particles reduces mitochondrial β-oxidation, and the 

consequential fat accumulation in turn increases mitochondrial 

dysfunction.72

Therefore, the interactions among mitochondrial activity, bio-

genesis, and autophagy contribute to metabolic dysregulation of 

hepatocytes in alcoholic and non-alcoholic liver diseases.

ALD AND DRUG CANDIDATES

Alcoholic liver steatosis is considered as a benign condition and 

is thus reversible to normal state under the condition of absti-

nence.73,74 One of the early hallmarks of alcohol-induced liver 

damage caused by alcohol is the accumulation of lipid droplets in 

hepatocytes.75 Clinically, most patients experience no symptoms 

for alcohol-induced fatty liver. However, patients with alcoholic 

steatohepatitis or fibrosis may present symptoms such as nausea 

and vomiting, which are caused by dysregulated cytokines pro-

duction.76-79 In a small proportion of chronic and heavy alcohol 

drinkers, ALD may lead to the development of liver cirrhosis (Fig. 

1).80-84

Electrons generated during alcohol metabolism promote pro-

duction of reactive intermediates, including ROS and reactive ni-

trogen species, which are catalyzed by enzymes such as alcohol 

dehydrogenase and cytochrome P450 2E1.85,86 ROS and reactive 

nitrogen species oxidize lipids to generate lipid peroxidation end 

products such as isoprostane and malondialdehyde.87-89 Mito-

chondria is another organelle, from which ROS is greatly generat-

ed through oxidative fuel consumption.90 Since an excess amount 

of ROS production causes depletion of reduced sulfhydryl pools 

(e.g., glutathione) in hepatocytes, hepatocytes may be sensitized 

by the stresses of toxic cytokines (e.g., tumor necrosis factor-β) 

and thus are more susceptible to injurious challenges. Previously, 

we had demonstrated that a spectrum of liver injury, including py-

roptotic hepatocyte death, occurs in an alcohol abuse animal 

model; alcohol induces pyroptosis in hepatocytes by promoting 

‘thioredoxin interacting protein and NOD-, LRR- and pyrin do-

main-containing protein 3’ inflammation through decreases of 

miR-148a and forkhead box protein O1.91 Attention was also paid 

to methionine and S-adenosylmethionine in the field of metabolic 

mechanism studies, the levels of which may be changed by alco-

hol consumption as part of the evidence of changes in cellular 

glutathione pool.92

As mentioned above, various mechanisms are involved in ALD, 

and based on these findings, clinical treatment with new and 

emerging molecular targets for ALD treatment is ongoing (Table 1).

NAFLD AND DRUG CANDIDATES

Globally, NAFLD is the most common liver disease that encom-

passes diseases from inflamed steatosis to NASH, cirrhosis, and 

hepatocellular carcinoma.93 In Asian and American populations, 

the prevalence of NAFLD is approximately 30% and the disease is 

often accompanied by type 2 diabetes and obesity.94 Accurate di-

agnosis of NASH is essential because inflammation and/or fibrosis 

may determine the prognosis of NASH. Additionally, advanced 

conditions such as cirrhosis may require liver transplantation ac-

cordingly.95 Currently, there are increased efforts to develop thera-

Pathology Target Agent Stage Reference

TAZ – Target discovery stage 138

TNFAIP3 – Target discovery stage 139

Glutaminase 1 – Target discovery stage 140

USP22, Gα12, SIRT1 – Target discovery stage 26

OTULIN – Target discovery stage 141

ALD, alcoholic liver disease; NAFLD, non-alcoholic fatty liver disease; IL, interleukin; IgG, immunoglobulin G; LPS, lipopolysaccharide; FXR, farnesoid X 
receptor; G-CSF, granulocyte-colony stimulating factor; HMGB1, high mobility group box-1; ALDH2, aldehyde dehydrogenase 2; HIF, hypoxia-inducible factor; 
FGF, fibroblast growth factor; miR, microRNA; TXNIP, thioredoxin interacting protein; REG3, regenerating islet-derived protein 3; PanPPAR, pan-peroxisome 
proliferator-activated receptor; SGLT, sodium-glucose co-transporter; ASBT, apical sodium-dependent bile acid transporter; CCR, C-C chemokine receptor; 
SCD, stearoyl-CoA desaturase; PPAR, peroxisome proliferator-activated receptor; ASK1, apoptosis signal-regulating kinase 1; LXRα, liver X receptor α; ATG4B, 
autophagy related 4B cysteine peptidase; STAT, signal transducer and activator of transcription; Gα13, G protein subunit alpha 13; ITIH, inter-alpha-trypsin 
inhibitor heavy chain H1; TAZ, tafazzin; TNFAIP3, tumor necrosis factor alpha induced protein 3; USP, ubiquitin specific peptidase 22; SIRT, sirtuin 1; OTULIN, 
OTU domain-containing deubiquitinase with linear linkage specificity.

Table 1. Continued
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peutic strategies for NASH, which have no established treatment.

Previous studies have reported that multiple hits triggered 

NAFLD, which was recognized as a potential therapeutic goal. 

Several modulators of these targets and related pathways have 

been analyzed in clinical trials (phase II) or are currently in ongo-

ing clinical trials (Table 1).93 The candidate drugs inhibit de novo 

lipogenesis or increase lipid export from the liver.94 Additionally, 

liver or systemic insulin resistance is improved by diverse drugs or 

gastrointestinal hormones such as peroxisome proliferator-activat-

ed receptor γ agonists. Accumulation of excess lipids may facili-

tate simple steatosis progression to inflamed steatosis. This step 

usually provides effective targeting because inflammation gener-

ally precedes fibrosis. Currently, the inhibitors of apoptosis signal-

regulating kinase 1, C-C chemokine receptor types 2/5, and che-

mokine receptors of C-C motif chemokine 5 and C-C motif 

chemokine 2 are under phase III clinical trials.96 Several farnesoid 

X receptor agonists reduce gluconeogenesis and liver fat produc-

tion, inhibit bile acid synthesis, improve peripheral insulin sensitiv-

ity, and thereby have a profound effect on various pathways for 

development of NAFLD.97,98 Several farnesoid X receptor agonists 

have been tested in clinical trials (Table 1).99 Combination therapy 

may be an effective therapeutic strategy for NAFLD as it has a 

complex pathophysiology.

CONCLUSION

In this review, we attempted to summarize the molecular mech-

anisms underlying ALD and NAFLD. Both diseases are associated 

with unhealthy lifestyle habits, including increased consumption 

of alcohol and unhealthy diet. Extraordinary progress has been 

made in the understanding of the pathology of fatty liver disease 

so far, suggesting that several parallel hits are required to conquer 

the disease. Understanding the molecular mechanisms underlying 

ALD and NAFLD is important for medical professionals, especially 

physicians, general practitioners, hepatologists, and diabetolo-

gists. Because fatty liver disease has many clinical features, doc-

tors should consider the patients in a multifaceted way. Identify-

ing the various molecular mechanisms and finding therapeutic 

functions are key clinical prerequisites. In the future, the aware-

ness of the disease progression and key targets would enable 

proper diagnosis, effective management, and treatment of co-

morbid diseases.
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