Skip to main content
. 2020 Oct 20;11:570587. doi: 10.3389/fpsyg.2020.570587

TABLE 10.

Regression modeling for possible SIMD interaction with bilingualism in cognitive function. glm() regression with Poisson error distribution was used.

Dependent variable:
TEA-1
TEA-2
TEA-3
Backward digit span
(1) (2) (3) (4)
(Intcpt)/Monolingual 1.820 1.835 1.457 1.654
t = 8.293 t = 8.430 t = 5.562 t = 6.942
p = 0.000 p = 0.000 p = 0.00000 p = 0.000
Bilingual 0.104 0.271 0.474 0.174
t = 0.437 t = 1.166 t = 1.713 t = 0.677
p = 0.663 p = 0.244 p = 0.087 p = 0.499
SIMD −0.082 −0.127 −0.335 −0.115
t = −0.272 t = −0.426 t = −0.943 t = −0.353
p = 0.786 p = 0.671 p = 0.346 p = 0.725
Bilingual: SIMD 0.081 0.161 0.376 0.120
(Interaction) t = 0.261 t = 0.527 t = 1.038 t = 0.357
p = 0.795 p = 0.598 p = 0.300 p = 0.721
Observations 48 48 48 48
Log Likelihood −91.376 −108.947 −131.520 −93.593
Akaike Inf. Crit. 190.752 225.893 271.040 195.185

Model 1: TEA-1 ∼ Monoling/Biling × SIMD, Poisson error. Model 2: TEA-2 ∼ Monoling/Biling × SIMD, Poisson error. Model 3: TEA-3 ∼ Monoling/Biling × SIMD, Poisson error. Model 4: Backward digit span ∼ Monoling/Biling × SIMD, Poisson error.