TABLE 7.
Does comprehension of relative clause structure interact with bilingualism for cognitive function? glm() regression with Poisson error were used to model cognitive parameters.
Dependent variable: |
||||
TEA-1 |
TEA-2 |
TEA-3 |
Backward digit span |
|
(1) | (2) | (3) | (4) | |
(Intcpt)/Monolingual | 1.897 | 1.917 | 1.660 | 1.692 |
t = 19.539 | t = 19.646 | t = 14.784 | t = 15.165 | |
p = 0.000 | p = 0.000 | p = 0.000 | p = 0.000 | |
Bilingual | 0.021 | 0.239 | 0.322 | 0.132 |
t = 0.159 | t = 1.939 | t = 2.312 | t = 0.920 | |
p = 0.874 | p = 0.053 | p = 0.021 | p = 0.358 | |
Relative-Clause | 0.043 | −0.007 | −0.045 | −0.073 |
t = 0.412 | t = −0.064 | t = −0.371 | t = −0.603 | |
p = 0.681 | p = 0.949 | p = 0.711 | p = 0.547 | |
Bilingual: Rel-Clause | −0.034 | −0.055 | −0.010 | 0.087 |
(Interaction) | t = −0.251 | t = −0.432 | t = −0.071 | t = 0.583 |
p = 0.802 | p = 0.666 | p = 0.944 | p = 0.560 | |
Observations | 48 | 48 | 48 | 48 |
Log Likelihood | −91.323 | −108.801 | −131.834 | −93.458 |
Akaike Inf. Crit. | 190.647 | 225.601 | 271.668 | 194.915 |
Model 1: TEA-1 ∼ Monoling/Biling × Relative Clause, Poisson error. Model 2: TEA-2 ∼ Monoling/Biling × Relative Clause, Poisson error. Model 3: TEA-3 ∼ Monoling/Biling × Relative Clause, Poisson error. Model 4: Backward digit span ∼ Monoling/Biling × Relative Clause, Poisson error.